В частном доме

Контроль прочности бетона методом отрыва со скалыванием. Основные методы определения прочности тяжелого бетона на сжатие в сборных и монолитных бетонных и железобетонных конструкциях и изделиях

Контроль прочности бетона методом отрыва со скалыванием. Основные методы определения прочности тяжелого бетона на сжатие в сборных и монолитных бетонных и железобетонных конструкциях и изделиях

Прочность бетона — важнейшая характеристика, которая применяется при проектировании и расчете конструкций для строительства различных сооружений. Она задается маркой М (в кг/см²) или классом В (в МПа) и выражает максимальное давление сжатия, которое выдерживает материал без разрушения.

При определении марочной прочности бетона строительные организации и изготовители конструкций должны руководствоваться требованиями нормативных документов — ГОСТ 22690-88, 28570, 18105-2010, 10180-2012. Они регламентируют методику проведения испытаний, обработку результатов.

Затвердевшая в условиях строительной площадки бетонная смесь может давать отличные от лабораторных результаты. Помимо качества цемента и заполнителей на характеристику влияют:

  • условия транспортировки;
  • способ укладки в опалубку;
  • размеры и форма конструкции;
  • вид напряженного состояния;
  • влажность, температура воздуха на всем протяжении твердения смеси;
  • уход за монолитом после заливки.

Качество смеси и ее прочностные характеристики ухудшаются, если при производстве работ совершались грубые нарушения технологии:

  • доставка производилась не в миксере;
  • время в пути превысило допустимое;
  • при заливке смесь не уплотнялась вибраторами или трамбовками;
  • при монтаже была слишком низкая или высокая температура, ветер;
  • после укладки в опалубку не поддерживались оптимальные условия твердения.

Неправильная транспортировка приводит к схватыванию, расслоению и потере подвижности смеси. Без уплотнения в толще конструкции остаются пузырьки воздуха, которые ухудшают качество монолита.

При температуре 15°-25°С и высокой влажности в первые 7-15 суток бетон достигает прочности 70%. Если условия не выдерживаются, то сроки затягиваются. Опасно как охлаждение смеси, так и ее пересушивание. Зимой опалубку утепляют или прогревают, летом поверхность монолита увлажняют, накрывают пленкой.

На заводах ЖБИ осуществляют пропаривание или автоклавную обработку конструкций, чтобы уменьшить время набора прочности. Процесс занимает от 8 до 12 часов.

Чтобы определить, насколько характеристики конструкции соответствуют проектным, а также при обследованиях и мониторинге технического состояния зданий проводят проверку прочности бетона. Она включает лабораторные испытания образцов, неразрушающие прямые и косвенные методы исследования объектов.

Факторы, влияющие на погрешность измерений при контроле и оценке прочности бетона:

  • неравномерность состава;
  • дефекты поверхности;
  • влажность материала;
  • армирование;
  • коррозия, промасливание, карбонизация внешнего слоя;
  • неисправности прибора — износ пружины, слабую зарядка аккумуляторной батареи.

Самый информативный способ проверки бетонных конструкций — изъятие образцов из тела монолита с последующим их испытанием. Такой метод сводит к минимуму ошибки, но достаточно дорог и трудоемок. Поэтому чаще пользуются более доступными исследованиями с помощью приборов, измеряющих зависимые от прочности характеристики — твердость, усилие на отрыв или скол, длину волны. Зная их, можно с помощью переходных формул вычислить искомую величину.

Требования к проверке

С точки зрения заказчика наиболее предпочтительно проводить испытания неразрушающими методами контроля фактической прочности бетона. Сегодня созданы приборы, которые позволяют быстро получить результаты без бурения, высверливания или вырубки образца, портящих целостность конструкции.

Для осуществления контроля и оценки прочности бетона рассматривают три показателя:

  • точность измерений;
  • стоимость оборудования;
  • трудоемкость.

Наиболее дорогими являются испытания кернов на лабораторном прессе и отрыв со скалыванием. Исследования по величине ударного импульса, упругого отскока, пластических деформаций или с помощью ультразвука имеют меньшую затратную часть. Но применять их рекомендуется после установления градуировочной зависимости между косвенной характеристикой и фактической прочностью.

Параметры смеси могут существенно отличаться от тех, при которых была построена градуировочная зависимость. Чтобы определить достоверную прочность бетона на сжатие, проводят обязательные испытания кубиков на прессе или определяют усилие на отрыв со скалыванием.

Если пренебречь этой операцией, неизбежны большие погрешности при контроле и оценке прочности бетона. Ошибки могут достигать 15-75 %.

Целесообразно пользоваться косвенными методами при оценке технического состояния конструкции, когда необходимо выявить зоны неоднородности материала. Тогда правила контроля допускают применение неточного относительного показателя.

Как определить прочность бетона?

В производстве материалов и строительстве применяются методы для испытания бетона на прочность:

  • разрушающие;
  • неразрушающие прямые;
  • неразрушающие косвенные.

Они позволяют с той или иной точностью проводить контроль и оценку фактической прочности бетона в лабораториях, на площадках или в уже построенных сооружениях.

Разрушающие методы

Из готовой смонтированной конструкции выпиливают или выбуривают образцы, которые затем разрушают на прессе. После каждого испытания фиксируют значения максимальных сжимающих усилий, выполняют статистическую обработку.

Этот метод, хотя и дает объективные сведения, часто не приемлем из-за дороговизны, трудоемкости и причинения локальных дефектов.

На производстве исследования проводят на сериях образцов, заготовленных с соблюдением требований ГОСТ 10180-2012 из рабочей бетонной смеси. Кубики или цилиндры выдерживают в условиях, максимально приближенным к заводским, затем испытывают на прессе.

Неразрушающие прямые

Неразрушающие методы контроля прочности бетона предполагают испытания материала без повреждений конструкции. Механическое взаимодействие прибора с поверхностью производится:

  • при отрыве;
  • отрыве со скалыванием;
  • скалывании ребра.

При испытаниях методом отрыва на поверхность монолита приклеивают эпоксидным составом стальной диск. Затем специальным устройством (ПОС-50МГ4, ГПНВ-5, ПИВ и другими) отрывают его вместе с фрагментом конструкции. Полученная величина усилия переводится с помощью формул в искомый показатель.

При отрыве со скалыванием прибор крепится не к диску, а в полость бетона. В пробуренные шпуры вкладывают лепестковые анкеры, затем извлекают часть материала, фиксируют разрушающее усилие. Для определения марочной характеристики применяют переводные коэффициенты.

Метод скалывания ребра применим к конструкциям, имеющим внешние углы — балки, перекрытия, колонны. Прибор (ГПНС-4) закрепляют к выступающему сегменту при помощи анкера с дюбелем, плавно нагружают. В момент разрушения фиксируют усилие и глубину скола. Прочность находят по формуле, где учитывается крупность заполнителя.

Внимание! Способ не применяют при толщине защитного слоя менее 20 мм.

Неразрушающие косвенные методы

Уточнение марки материала неразрушающими косвенными методами проводится без внедрения приборов в тело конструкции, установки анкеров или других трудоемких операций. Применяют:

  • исследование ультразвуком;
  • метод ударного импульса;
  • метод упругого отскока;
  • пластической деформации.

При ультразвуковом методе определения прочности бетона сравнивают скорость распространения продольных волн в готовой конструкции и эталонном образце. Прибор УГВ-1 устанавливают на ровную поверхность без повреждений. Прозванивают участки согласно программе испытаний.

Данные обрабатывают, исключая выпадающие значения. Современные приборы оснащены электронными базами, проводящими первичные расчеты. Погрешность при акустических исследованиях при соблюдении требований ГОСТ 17624-2012 не превышает 5%.

При определении прочности методом ударного импульса используют энергию удара металлического бойка сферической формы о поверхность бетона. Пьезоэлектрическое или магнитострикционное устройство преобразует ее в электрический импульс, амплитуда и время которого функционально связаны с прочностью бетона.

Прибор компактен, прост в применении, выдает результаты в удобном виде — единицах измерения нужной характеристики.

При определении марки бетона методом обратного отскока прибор — склерометр — фиксирует величину обратного движения бойка после удара о поверхность конструкции или прижатой к ней металлической пластины. Таким образом устанавливается твердость материала, связанная с прочностью функциональной зависимостью.

Метод пластических деформаций предполагает измерение на бетоне размеров следа после удара металлическим шариком и сравнение его с эталонным отпечатком. Способ разработан давно. Наиболее часто на практике используется молоток Кашкарова, в корпус которого вставляют сменный стальной стержень с известными характеристиками.

По поверхности конструкции наносят серию ударов. Прочность материала определяется из соотношения полученных диаметров отпечатков на стержне и бетоне.

Заключение

Для контроля и оценки прочности бетона целесообразно пользоваться неразрушающими методами испытаний. Они более доступны и недороги по сравнению с лабораторными исследованиями образцов. Главное условие получения точных значений — построение градуировочной зависимости приборов. Необходимо также устранить факторы, искажающие результаты измерений.

ОНИКС-1.ОС (старое название ОНИКС-ОС) предназначен для определения прочности бетона и его класса методом отрыва со скалыванием по ГОСТ 22690 на объектах строительства, при обследовании зданий, сооружений и конструкций

Прибор используют для уточнения градуировочных характеристик ультразвуковых и ударно-импульсных приборов в соответствии с Методической инструкцией НИИЖБ МДС 62-2.01 и ГОСТ 22690, Прил. Ж

  • В ОНИКС-1.ОС впервые применены инновационные технические решения, исключающие проскальзывание анкера и стабилизирующие конус вырыва, существенно улучшающие метрологические и эксплуатационные характеристики (патент)
  • Создана эргономичная, компактная и лёгкая конструкция с двумя силовыми гидроцилиндрами-опорами, с самоустановкой оси вырыва и винтовым соединением анкера с тягой, упрощающая установку на объект во время испытаний без перекосов, регулировок и проскальзываний, а также исключающая падение прибора (патент)
  • Удобный штурвал для быстрого создания предварительного натяжения анкера (с усилием до 5 кН) при установке прибора на объект контроля
  • Легкая, безопасная и удобная установка прибора на объект контроля, особенно на вертикальных поверхностях, удобное горизонтальное расположение рукояти гидропривода
  • Функция сигнализации превышения рабочего хода, позволяющая продлить безопасную эксплуатацию прибора
  • Большой запас прочности конструкции; конструктивные элементы прибора выполнены из высокопрочных и легких материалов, минимизирующих его габариты и вес
  • Приборы имеют встроенные электронику с цветным TFT дисплеем и литиевый аккумулятор большой ёмкости
  • Выпускаются два варианта исполнения прибора с диапазонами нагрузок до 50 и 100 кН
  • Для работы с высокопрочными бетонами существенно доработана конструкция прибора: использовано запатентованное решение с двумя приводными гидроцилиндрами, редуктором и двумя силовыми опорными цилиндрами, создающими диапазон нагрузок до 100 кН
  • Возможна комплектация приборов специализированными расточными устройствами двух видов (для формирования кольцевой проточки в шпуре, обеспечивающей надежную фиксацию анкера):
  •  – ручным механическим с твердосплавным режущим элементом
  •  – с высокооборотным электроприводом и алмазным режущим элементом
  • Новая усиленная конструкция анкеров из высокопрочной булатной стали с многократно увеличенным эксплуатационным ресурсом

Описание и технические характеристики

Вопрос-ответ

11 июля 2019, 21:31
Рафаел :  Какая полная глубина заделки анкерного устройства в бетон? Для анкера диаметром 24 мм в табл. 3 руководства по эксплуатации указаны цифры 60(75). Какую же глубину принимать?

Сергей : Глубина заделки анкера диаметром 24 мм составляет 48 мм. 75 мм - это глубина сверления отверстия под анкер. Значение 60 мм указано ошибочно.

10 апреля 2019, 14:08
Вероника :  Если дополнительно заказывать анкер он идет с комплекте с сегментами?

Павел : Нет, анкер - это одна позиция, комплект из 3-х сегментов с кольцом - другая. Их заказывают по отдельности.

24 января 2019, 13:05
Хасан :  А какой рабочий диапазон температур?

Павел : Прибор аттестован для работы в диапазоне от -10 до +40С.

25 сентября 2018, 16:41
Александр :  Если при заливке бетона использовался электропрогрев, необходимо ли в приборе устанавливать условия твердения "тепловая обработка"?

Сергей : Устанавливать условия "тепловая обработка" необходимо только при испытаниях бетона в возрасте до 28 суток, после этого срока следует работать с обычными коэффициентами.

07 августа 2018, 13:29
Артем :  Входит ли проставочное кольцо в комплект ОНИКС-1.ОС?

Сергей : С августа 2018 года приборы ОНИКС-1.ОС не комплектуются проставочными кольцами.

13 июля 2018, 11:43
Александр :  При испытаниях был использован анкер 16х35, а необходимо было использовать 24х48. Есть ли коэффициент пересчёта полученных результатов?

Сергей : Если речь о том, что в настройках прибора был задан анкер 24х48, а испытания проводили анкером 16х35, то необходимо полученные показания поделить на коэффициент М2 для анкера 24х48 и умножить на коэффициент М2 для анкера 16х35.

22 мая 2018, 22:15
Александр :  1) необходимо ли проводить калибровку прибора оникс-1.ОС или достаточно поверки? 2) для чего необходима функция ввода нового материала?

5.1. Подготовка изделий и анкерного устройства для испытаний методом отрыва со скалыванием

5.1.1.Разметку участка изделия для проведения испытаний производят после визуального осмотра поверхности бетона (наличие видимых трещин, границ ярусов бетонирования, сколов и наплывов бетона) и определения расположения и глубины залегания арматуры.

5.1.2.Отверстие для заложения анкера сверлят в центрах арматурных ячеек после выявления арматурной сетки на расстоянии не менее 150мм от границ ярусов бетонирования при условии, что в радиусе 90мм от центра отверстия нет видимых дефектов (трещины, сколы и наплывы бетона).

Отверстие для заложения анкера должно быть не ближе 150 мм от края изделия и не ближе 70 мм от ближайшего арматурного стержня или закладной детали.

Расстояние между отверстиями (местами испытаний) должно быть не менее 200 мм, а глубина заложения анкера должна превышать размеры крупного заполнителя не менее чем в 1,2 раза.

5.1.3. Отверстия (шпуры) выполняют сверлильным, ударно-вращательным или ударным инструментом с энергией удара не более 2 Дж с использованием направляющей, обеспечивающей верти­кальность отверстия к опорной плоскости. Допускаемое отклонение от перпендикулярности не более 1:25.

Диаметр сверла (бура) должен составлять 16+0,5 мм для анкера ø 16x35 мм и 24...25 мм для анкеров ø 24x30 мм, ø 24x48 мм.

Отверстие (шпур) после сверления при необходимости откалибровать шлямбуром соответствующего диаметра, тщательно продуть сжатым воздухом, очистив от пыли и остатков бетона, после чего диаметр отверстия должен составлять 16+1 мм (24+1 мм).

Для образования отверстий допускается применять закладные пробки.

Глубина отверстия должна со­ставлять для анкерного устройства типа II, не менее:

55 мм (глубина заделки 48 мм);

45 мм (глубина заделки 35 мм);

40мм (глубина заделки 30 мм).

5.1.4. Навернуть на резьбовой хвостовик анкерного устройства тягу с микрометрической гайкой.

5.1.5 Заложить анкерное устройство с тягой в подготовленное отверстие до упора выравнивающей шайбы в поверхность бетона (рис. 5.1) и создать предварительное напряжение в зоне установки анкера, для чего ключом на 19 мм довернуть тягу по часовой стрелке, не допуская вытягивания анкера из отверстия. Затяжку произвести с усилием (момент затяжки 45...50 кг-м).

5.2 .Подготовка прибора для испытаний методом отрыва со укалыванием

5.2.1. Установить силовозбудитель в опорную плиту, совместив отверстие в силовозбудителе с осью защелки, и ввернуть вилочный захват в шток силовозбудителя.

5.2.2. Вращая рукоятку нагружения против часовой стрелки, привести силовозбудитель в исходное состояние, при этом вылет винта силовозбудителя в должен составлять 99± 1 мм.

5.2.3. Установить прибор опорами на поверхность изделия, завести вилочный захват под головку тяги и совместить его ось с осью тяги.

5.2.4. Поворачивая прибор вокруг тяги, найти устойчивое положение опор, при необходимости вывернуть один или два регулировочных винта до упора в поверхность изделия.

5.2.5. Выбрать зазоры между опорными поверхностями тяги и вилочного захвата, для чего довернуть вилочный захват в шток силовозбудителя.

5.2.6.Довернуть микрометрическую гайку до упора в поверхность изделия и нанести на бетон видимую риску напротив нулевого деления шкалы гайки.

5.2.7 Подключить электронный блок к разъему силовозбудителя, расположенному в крышке силовозбудителя (соединительный кабель прилагается) и включить питание. Индикатор при этом имеет вид:

5.2.8 Кнопками ,↓ переместить мигание на требуемый метод испытаний - «Отрыв со скалыванием» и нажать кнопку ВВОД,

с мигающим значением вида крупного заполнителя.

5.2.9 Кнопками ,↓вывести на индикатор требуемый вид заполнителя (гранитный, известняковый, гравийный) и нажать кнопку ВВОД.

В этом экране пользователь имеет возможность выбора типа изделия, подвергаемого испытаниям, для сохранения в архиве вместе с результатом измерения.

Затем, по миганию, кнопками ,↓и ВВОД ввести тип изделия, подвергаемого испытаниям, а затем тип применяемого анкерного устройства (ø 24x48, ø 24x30, ø16x35). При этом в формулу (3.1) для вычисления прочности бетона автоматически вводится значение коэффициента т 2

5.3 Выполнение испытаний методом отрыва со скалыванием

5.3.1 Выполнить испытание, для чего, равномерно вращая рукоятку нагружения по часовой стрелке, произвести нагружение анкера до контрольного усилия или до отрыва фрагмента бетона и зафиксировать нагрузку Р. После чего довернуть микрометрическую гайку до упора в поверхность бетона и определить величину проскаль­зывания анкера ∆h с точностью до ± 0,1мм (цена деления микрометрической гайки 0,1 мм)

В процессе испытаний скорость нагружения необходимо поддерживать в пределах 1,5... 3 кН/сек.

5.3.2 Скорость нагружения индицируется в верхней строке индикатора в виде символов >>>>>□□□□□□<<<<<.

Свечение символов >>> свидетельствует о необходимости увеличения скорости нагружения, поскольку она меньше 1,5 кН/сек. При скорости нагружения более 3 кН/сек светятся символы <<<.

Свечение крайнего левого символа □ соответствует скорости нагружения 1,5 кН/сек, крайнего правого символа □ соответствует 3 кН/сек.

5.3.3 Для получения соответствующей прочности бетона нажать кнопку ВВОД, при этом производится автоматическое вычисление прочности бетона по формуле (3.1), а индикатор имеет вид, например:

5.3.6 Нажатием кнопок (↓) ввести значение ∆h, считанное с микрометрической гайки, например 3,6 мм и, нажатием кнопки ВВОД, выполнить корректировку.

Индикатор при этом имеет вид, например:

R к =26,8МПа 0,9 Р к =33,69 кН

Значения R к и Р к заносятся в память прибора и маркируются типом изделия, датой и временем испытания.

5.3.7 Необходимое количество испытаний на одном участке:

Для анкеров с глубиной заделки 48 мм и 35 мм - одно испытание;

Для анкеров с глубиной заделки 30 мм - три испытания.

5.3.8. Для проведения повторных испытаний на том же изделии без изменения исходных данных необходимо повторно нажать кнопку ВВОД, произвести автоподстройку согласно п. 6.2.10. и выполнить испытания в соответствии сп. 5.3.1. ..5.3.6.

5.3.9. Результаты испытаний занести в протокол в соответствии с Приложением 2 настоящего Руководства.

5.4. Выполнение испытаний методом отрыва со скалыванием по индивидуальным градуировочным зависимостям

5.4.1. Войти в Режим 2, для чего после включения прибора нажать кнопку РЕЖИМ, кнопками или ↓ установить мигающее сообщение «Инд. зависим» и нажать кнопку ВВОД. Индикатор имеет вид:

5.4.2. Кнопками (↓) установить мигание требуемого метода - «Отрыв» (отрыв со скалыванием) и нажать кнопку ВВОД, после чего индикатор имеет вид:

5.4.4. Подготовить прибор к работе в соответствии с п.п. 6.2.1.. .6.2.7 и подключить электронный блок к силовозбудителю.

5.4.5. Нажатием кнопки ВВОД произвести автоподстройку прибора, после чего индикатор имеет вид, например:

>>> 04 P=00,00 кН

свидетельствующий о готовности прибора к работе.

5.4.6. Произвести испытания в соответствии с п.п. 5.3.1 ... 5.3.6.

Метод скалывания ребра

5.5. Подготовка изделия для испытаний методом скалывания ребра.

5.5.1. При испытании методом скалывания ребра на участке испытания не должно быть трещин, сколов бетона, наплывов или раковин высотой (глубиной) более 5 мм. Участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

5.6. Подготовка прибора для испытаний методом скалывания ребра

Внимание! Перед началом каждого испытания необходимо привести силовозбудитель в исходное состояние, вращая руко­ятку нагружения против часовой стрелки (вылет винта силовозбудителя в = 100 ± 1мм).

Значительное сопротивление вращению может свидетельст­вовать о нахождении поршня рабочего цилиндра в крайних по­ложениях, когда возможна поломка силовозбудителя.

Запрещается применение удлинительных рычагов.

5.6.1. Вставить силовозбудитель в корпус силовой рамы, совместив отверстие в силовозбудителе с осью защелки и, вращая рукоятку нагружения против часовой стрелки, привести силовозбудитель в исходное состояние, при этом вылет винта силовозбудителя в должен составлять 100± 1 мм.

5.6.2. Вращая штурвал против часовой стрелки вывернуть прижимной винт до упора пятки в кронштейн.

5.6.3. Ввести удлинительные штанги в отверстиях захватов и зафиксировать их фиксатором таким образом, чтобы размер С превышал размер грани контролируемого изделия не более чем на 45 мм.

5.6.4. Установить силовую раму с силовозбудителем на контролируемое изделие (см. рис. 5.2) и, вращая штурвал по часовой стрелке до упора пятки в изделие, закрепить его на изделии.

5.6.5. Вставить тягу со скобой в вилочный захват силовозбудителя.

5.6.6. Проверить положение скобы. Если зазор между скалывающей пластиной и изделием более Змм, необходимо тягу со скобой довернуть в шток (один оборот тяги соответствует перемещению скобы на 1мм), если нет зазора между скалывающей пластиной и изделием или размер а менее 20 ± 2мм необходимо отворачивая тягу со скобой на один оборот проверять появление зазора и совпадения размера а с требуемым значением - 20 ± 2мм.

5.6.7. Кнопками , ↓ переместить мигание на требуемый метод испытаний - «Скол ребра» и нажать кнопку ВВОД, после чего на индикаторе высвечивается максимальный размер крупного заполнителя (фракц.) в бетоне контролируемого изделия, с мигающим значением 20 мм.

5.6.8. Нажатием кнопок , ↓ установите мигание на требуемый (предлагаемый) размер заполнителя и нажать кнопку ВВОД. При этом в формулу (3.2) для вычисления прочности бетона вводится значение коэффициента m=1,0 (1,05 или 1,1) После чего индикатор имеет вид, например:

В этом экране пользователь имеет возможность выбора типа изделия, подвергаемого испытаниям, для сохранения в памяти вместе с результатом измерения.

Кнопками , ↓ вывести на индикатор тип изделия, подвергаемого испытаниям и нажать кнопку ВВОД.

5.6.9. По окончании ввода исходных данных на индикаторе высвечивается сообщение:

Если электронный блок подключен кабелем к силовозбудителю, нажатием кнопки ВВОД произвести автоподстройку прибора, после чего индикатор имеет вид, свидетельствующий о готовности прибора к проведению испытаний:

>>> 0,2 P= 00,00 кН

Рис. 5.2. Общий вид прибора ПОС-50МГ4 «Скол» в комплектации «Скалывание ребра»

5.7. Выполнение испытаний методом скалывания ребра

5.7.1. Произвести испытание, для чего вращать рукоятку нагружения по часовой стрелке таким образом, чтобы скорость нагружения находилась в пределах, установленных ГОСТ 22690 (от 0,5 до 1,5кН/сек).

Нагружение производится до разрушения бетона, либо до контроль­ного усилия.

5.7.2. Скорость нагружения индицируется в верхней строке ин­дикатора в процессе испытаний, одновременно с нагрузкой.

5.7.3. Для получения соответствующей прочности бетона необ­ходимо нажать кнопку ВВОД. При этом производится вычисление прочности бетона по формуле (3.2) и запоминание результата испы­таний. Индикатор имеет вид, например:

R k =38,3 МПа 0,2 P k = 18,74 кН

Значения R k и Р k заносятся в память прибора и маркируются типом изделия, датой и временем испытания.

5.7.4. Для проведения повторных испытаний на том же изделии без изменения исходных данных необходимо повторно нажать кнопку ВВОД, произвести автоподстройку согласно п. 5.6.10. и выполнить испытания в соответствии с п.п. 5.7.1...5.7.3.