В частном доме

Химические свойства смешанных солей. Курсовая работа: Соли

Химические свойства смешанных солей. Курсовая работа: Соли

1. Основания взаимодействуют с кислотами, образуя соль и воду:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

2. С кислотными оксидами, образуя соль и воду:

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

3. Щелочи реагируют с амфотерными оксидами и гидроксидами, образуя соль и воду:

2NaOH + Cr 2 O 3 = 2NaCrO 2 + H 2 O

KOH + Cr(OH) 3 = KCrO 2 + 2H 2 O

4. Щелочи взаимодействуют с растворимыми солями, образуя, либо слабое основание, либо осадок, либо газ:

2NaOH + NiCl 2 = Ni(OH) 2 ¯ + 2NaCl

основание

2KOH + (NH 4) 2 SO 4 = 2NH 3 ­ + 2H 2 O + K 2 SO 4

Ba(OH) 2 + Na 2 CO 3 = BaCO 3 ¯ + 2NaOH

5. Щелочи реагируют с некоторыми металлами, которым соответствуют амфотерные оксиды:

2NaOH + 2Al + 6H 2 O = 2Na + 3H 2 ­

6. Действие щелочи на индикатор:

OH - + фенолфталеин ® малиновый цвет

OH - + лакмус ® синий цвет

7. Разложение некоторых оснований при нагревании:

Сu(OH) 2 ® CuO + H 2 O

Амфотерные гидроксиды – химические соединения, проявляющие свойства и оснований, и кислот. Амфотерные гидроксиды соответствуют амфотерным оксидам (см. п.3.1).

Амфотерные гидроксиды записывают, как правило, в форме основания, но их можно представить и в виде кислоты:

Zn(OH) 2 Û H 2 ZnO 2

основание к-та

Химические свойства амфотерных гидроксидов

1. Амфотерные гидроксиды взаимодействуют с кислотами и кислотными оксидами:

Be(OH) 2 + 2HCl = BeCl 2 + 2H 2 O

Be(OH) 2 + SO 3 = BeSO 4 + H 2 O

2. Взаимодействуют со щелочами и основными оксидами щелочных и щелочноземельных металлов:

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O;

H 3 AlO 3 кислота метаалюминат натрия

(H 3 AlO 3 ® HAlO 2 + H 2 O)

2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Все амфотерные гидроксиды являются слабыми электролитами

Соли

Соли – это сложные вещества, состоящие из ионов металла и кислотного остатка. Соли представляют собой продукты полного или частичного замещения ионов водорода ионами металла (или аммония) у кислот. Типы солей: средние (нормальные), кислые и основные.

Средние соли – это продукты полного замещения катионов водорода у кислот ионами металла (или аммония) :Na 2 CO 3 , NiSO 4 , NH 4 Cl и т.д.

Химические свойства средних солей

1. Соли взаимодействуют с кислотами, щелочами и другими солями, образуя, либо слабый электролит, либо осадок; либо газ:

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ¯ + 2HNO 3

Na 2 SO 4 + Ba(OH) 2 = BaSO 4 ¯ + 2NaOH

CaCl 2 + 2AgNO 3 = 2AgCl¯ + Ca(NO 3) 2

2CH 3 COONa + H 2 SO 4 = Na 2 SO 4 + 2CH 3 COOH

NiSO 4 + 2KOH = Ni(OH) 2 ¯ + K 2 SO 4

основание

NH 4 NO 3 + NaOH = NH 3 ­ + H 2 O + NaNO 3

2. Соли взаимодействуют с более активными металлами. Более активный металл вытесняет менее активный из раствора соли (прил. 3).

Zn + CuSO 4 = ZnSO 4 + Cu

Кислые соли – это продукты неполного замещения катионов водорода у кислот ионами металла (или аммония): NaHCO 3 , NaH 2 PO 4 , Na 2 HPO 4 и т.д. Кислые соли могут быть образованы только многоосновными кислотами. Практически все кислые соли хорошо растворимы в воде.

Получение кислых солей и перевод их в средние

1. Кислые соли получают при взаимодействии избытка кислоты или кислотного оксида с основанием:

H 2 CO 3 + NaOH = NaHCO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

2. При взаимодействии избытка кислоты с основным оксидом:

2H 2 CO 3 + CaO = Ca(HCO 3) 2 + H 2 O

3. Кислые соли получают из средних солей, добавляя кислоту:

· одноименную

Na 2 SO 3 + H 2 SO 3 = 2NaHSO 3 ;

Na 2 SO 3 + HCl = NaHSO 3 + NaCl

4. Кислые соли переводят в средние, используя щелочь:

NaHCO 3 + NaOH = Na 2 CO 3 + H 2 O

Основные соли – это продукты неполного замещения гидроксогрупп (ОН - ) основания кислотным остатком: MgOHCl, AlOHSO 4 и т.д. Основные соли могут быть образованы только слабыми основаниями многовалентных металлов. Эти соли, как правило, труднорастворимы.

Получение основных солей и перевод их в средние

1. Основные соли получают при взаимодействии избытка основания с кислотой или кислотным оксидом:

Mg(OH) 2 + HCl = MgOHCl¯ + H 2 O

гидроксо-

хлорид магния

Fe(OH) 3 + SO 3 = FeOHSO 4 ¯ + H 2 O

гидроксо-

сульфат железа (III)

2. Основные соли образуются из средней соли при добавлении недостатка щелочи:

Fe 2 (SO 4) 3 + 2NaOH = 2FeOHSO 4 + Na 2 SO 4

3. Основные соли переводят в средние, добавляя кислоту (лучше ту, которая соответствует соли):

MgOHCl + HCl = MgCl 2 + H 2 O

2MgOHCl + H 2 SO 4 = MgCl 2 +MgSO 4 + 2H 2 O


ЭЛЕКТРОЛИТЫ

Электролиты – это вещества, распадающиеся на ионы в растворе под влиянием полярных молекул растворителя (Н 2 О). По способности к диссоциации (распаду на ионы) электролиты условно делят на сильные и слабые. Сильные электролиты диссоциируют практически полностью (в разбавленных растворах), а слабые распадаются на ионы лишь частично.

К сильным электролитам относятся:

· сильные кислоты (см. с. 20);

· сильные основания – щелочи (см. с. 22);

· практически все растворимые соли.

К слабым электролитам относятся:

· слабые кислоты (см. с. 20);

· основания – не щелочи;

Одной из основных характеристик слабого электролита является константа диссоциации К . Например, для одноосновной кислоты,

HA Û H + + A - ,

где, – равновесная концентрация ионов H + ;

– равновесная концентрация анионов кислоты А - ;

– равновесная концентрация молекул кислоты,

Или для слабого основания,

MOH Û M + + OH - ,

,

где, – равновесная концентрация катионов M + ;

– равновесная концентрация гидроксид ионов ОН - ;

– равновесная концентрация молекул слабого основания.

Константы диссоциации некоторых слабых электролитов (при t = 25°С)

Вещество К Вещество К
HCOOH K = 1,8×10 -4 H 3 PO 4 K 1 = 7,5×10 -3
CH 3 COOH K = 1,8×10 -5 K 2 = 6,3×10 -8
HCN K = 7,9×10 -10 K 3 = 1,3×10 -12
H 2 CO 3 K 1 = 4,4×10 -7 HClO K = 2,9×10 -8
K 2 = 4,8×10 -11 H 3 BO 3 K 1 = 5,8×10 -10
HF K = 6,6×10 -4 K 2 = 1,8×10 -13
HNO 2 K = 4,0×10 -4 K 3 = 1,6×10 -14
H 2 SO 3 K 1 = 1,7×10 -2 H 2 O K = 1,8×10 -16
K 2 = 6,3×10 -8 NH 3 × H 2 O K = 1,8×10 -5
H 2 S K 1 = 1,1×10 -7 Al(OH) 3 K 3 = 1,4×10 -9
K 2 = 1,0×10 -14 Zn(OH) 2 K 1 = 4,4×10 -5
H 2 SiO 3 K 1 = 1,3×10 -10 K 2 = 1,5×10 -9
K 2 = 1,6×10 -12 Cd(OH) 2 K 2 = 5,0×10 -3
Fe(OH) 2 K 2 = 1,3×10 -4 Cr(OH) 3 K 3 = 1,0×10 -10
Fe(OH) 3 K 2 = 1,8×10 -11 Ag(OH) K = 1,1×10 -4
K 3 = 1,3×10 -12 Pb(OH) 2 K 1 = 9,6×10 -4
Cu(OH) 2 K 2 = 3,4×10 -7 K 2 = 3,0×10 -8
Ni(OH) 2 K 2 = 2,5×10 -5

Данный урок посвящен изучению общих химических свойств еще одного класса неорганических веществ – солей. Вы узнаете с какими веществами могут взаимодействовать соли и каковы условия протекания таких реакций.

Тема: Классы неорганических веществ

Урок: Химические свойства солей

1. Взаимодействие солей с металлами

Соли – сложные вещества, состоящие из атомов металла и кислотных остатков.

Поэтому свойства солей будут связаны с наличием в составе вещества того или иного металла или кислотного остатка. Например, большинство солей меди в растворе имеют голубоватую окраску. Соли марганцовой кислоты (перманганаты) в основном фиолетовые. Знакомство с химическими свойствами солей начнем со следующего опыта.

В первый стакан с раствором сульфата меди (II) опустим железный гвоздь. Во второй стакан с раствором сульфата железа (II) опустим медную пластинку. В третий стакан с раствором нитрата серебра тоже опустим медную пластинку. Через некоторое время мы увидим, что железный гвоздь покрылся слоем меди, медная пластинка из третьего стакана покрылась слоем серебра, а с медной пластинкой из второго стакана ничего не произошло.

Рис. 1. Взаимодействие растворов солей с металлами

Объясним результаты опыта. Реакции произошли только в том случае, если металл, реагирующий с солью, был более активен, чем металл, входящий в состав соли. Сравнить активность металлов между собой можно по их положению в ряду активности. Чем левее расположен металл в этом ряду, тем у него большая способность вытеснить другой металл из раствора соли.

Уравнения проведенных реакций:

Fe + CuSO4 = FeSO4 + Cu

При взаимодействии железа с раствором сульфата меди (II) образуется чистая медь и сульфат железа (II). Эта реакция возможна, т. к. железо имеет большую реакционную способность, чем медь.

Cu + FeSO4 → реакция не идет

Реакция между медью и раствором сульфата железа (II) не протекает, т. к. медь не может заместить железо из раствора соли.

Cu+2AgNO3=2Ag+Cu(NO3)2

При взаимодействии меди с раствором нитрата серебра образуется серебро и нитрат меди (II). Медь замещает серебро из раствора его соли, т. к. медь расположена в ряду активности левее серебра.

Растворы солей могут взаимодействовать с более активными металлами, чем металл в составе соли. Эти реакции относятся к типу замещения.

2. Взаимодействие растворов солей друг с другом

Рассмотрим еще одно свойство солей. Растворенные в воде соли могут взаимодействовать между собой. Проведем опыт.

Смешаем растворы хлорида бария и сульфата натрия. В результате выпадет белый осадок сульфата бария. Очевидно, что прошла реакция.

Уравнение реакции: BaCl2 + Na2SO4 = BaSO4 + 2NaCl

Растворенные в воде соли могут вступать в реакцию обмена, если в результате образуется нерастворимая в воде соль.

3. Взаимодействие солей со щелочами

Выясним, взаимодействуют ли соли с щелочами, проведя следующий опыт.

В раствор сульфата меди (II) прильем раствор гидроксида натрия. В результате выпадает синий осадок.

Рис. 2. Взаимодействие раствора сульфата меди(II) со щелочью

Уравнение проведенной реакции: CuSO4 + 2NaOH = Cu(OH)2 + Na2SO4

Данная реакция является реакцией обмена.

Соли могут взаимодействовать со щелочами, если в результате реакции образуется нерастворимое в воде вещество.

4. Взаимодействие солей с кислотами

В раствор карбоната натрия прильем раствор соляной кислоты. В результате мы видим выделение пузырьков газа. Объясним результаты опыта, записав уравнение данной реакции:

Na2CO3 + 2HCl= 2NaCl + H2CO3

H2CO3 = H2O + CO2

Угольная кислота - вещество нестойкое. Она разлагается на углекислый газ и воду. Данная реакция является реакцией обмена.

Соли могут вступать в реакцию обмена с кислотами, если в результате реакции выделяется газ или образуется осадок.

1. Сборник задач и упражнений по химии: 8-й кл.: к учеб. П. А. Оржековского и др. «Химия. 8 класс» / П. А. Оржековский, Н. А. Титов, Ф. Ф. Гегеле. – М.: АСТ: Астрель, 2006. (с.107-111)

2. Ушакова О. В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П. А. Оржековского и др. «Химия. 8 класс» / О. В. Ушакова, П. И. Беспалов, П. А. Оржековский; под. ред. проф. П. А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.108-110)

3. Химия. 8 класс. Учеб. для общеобр. учреждений / П. А. Оржековский, Л. М. Мещерякова, М. М. Шалашова. – М.:Астрель, 2013. (§34)

4. Химия: 8-й класс: учеб. для общеобр. учреждений / П. А. Оржековский, Л. М. Мещерякова, Л. С. Понтак. М.: АСТ: Астрель, 2005. (§40)

5. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений / Г. Е. Рудзитис, Ф. Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§33)

6. Энциклопедия для детей. Том 17. Химия / Глав. ред. В. А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Взаимодействия кислот с солями.

2. Взаимодействия металлов с солями.

Домашнее задание

1) с. 109-110 №№ 4,5 из Рабочей тетради по химии: 8-й кл.: к учебнику П. А. Оржековского и др. «Химия. 8 класс» / О. В. Ушакова, П. И. Беспалов, П. А. Оржековский; под. ред. проф. П. А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

2) с.193 №№ 2,3 из учебника П. А. Оржековского, Л. М. Мещеряковой, М. М. Шалашовой «Химия: 8кл.», 2013 г.

Основания могут взаимодействовать:

  • с неметаллами -

    6KOH + 3S → K2SO 3 + 2K 2 S + 3H 2 O;

  • с кислотными оксидами -

    2NaOH + CO 2 → Na 2 CO 3 + H 2 O;

  • с солями (выпадение осадка, высвобождение газа) -

    2KOH + FeCl 2 → Fe(OH) 2 + 2KCl.

Существую также другие способы получения:

  • взаимодействие двух солей -

    CuCl 2 + Na 2 S → 2NaCl + CuS↓;

  • реакция металлов и неметаллов -
  • соединение кислотных и основных оксидов -

    SO 3 + Na 2 O → Na 2 SO 4 ;

  • взаимодействие солей с металлами -

    Fe + CuSO 4 → FeSO 4 + Cu.

Химические свойства

Растворимые соли являются электролитами и подвержены реакции диссоциации. При взаимодействии с водой они распадаются, т.е. диссоциируют на положительно и отрицательно заряженные ионы - катионы и анионы соответственно. Катионами являются ионы металлов, анионами - кислотные остатки. Примеры ионных уравнений:

  • NaCl → Na + + Cl − ;
  • Al 2 (SO 4) 3 → 2Al 3 + + 3SO 4 2− ;
  • CaClBr → Ca2 + + Cl - + Br - .

Помимо катионов металлов в солях могут присутствовать катионы аммония (NH4 +) и фосфония (PH4 +).

Другие реакции описаны в таблице химических свойств солей.

Рис. 3. Выделение осадка при взаимодействии с основаниями.

Некоторые соли в зависимости от вида разлагаются при нагревании на оксид металла и кислотный остаток или на простые вещества. Например, СаСO 3 → СаO + СО 2 , 2AgCl → Ag + Cl 2 .

Что мы узнали?

Из урока 8 класса химии узнали об особенностях и видах солей. Сложные неорганические соединения состоят из металлов и кислотных остатков. Могут включать водород (кислые соли), два металла или два кислотных остатка. Это твёрдые кристаллические вещества, которые образуются в результате реакций кислот или щелочей с металлами. Реагируют с основаниями, кислотами, металлами, другими солями.

Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na + Cl – – хлорид натрия

Ca 2+ SO 4 2– – сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 и т.д.

2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 ит. д.

3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO 3 = CaO + CO 2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO 3 → AgCl + NaNO 3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu↓.

Остались вопросы? Хотите знать больше о солях?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Известно большое число реакций, приводящих к образованию солей. Приведем наиболее важные из них.

1. Взаимодействие кислот с основаниями (реакция нейтрализации):

N аОН + Н NO 3 = N а NO 3 + Н 2 О

Al (OH ) 3 + 3НС1 = AlCl 3 + 3Н 2 О

2. Взаимодействие металлов с кислотами:

F е + 2 HCl = FeCl 2 + Н 2

Zn + Н 2 S О 4 разб. = ZnSO 4 + Н 2

3. Взаимодействие кислот с основными и амфотерными оксидами:

С uO + Н 2 SO 4 = С uSO 4 + Н 2 О

ZnO + 2 HCl = Zn С l 2 + Н 2 О

4. Взаимодействие кислот с солями:

FeCl 2 + H 2 S = FeS + 2 HCl

AgNO 3 + HCI = AgCl + HNO 3

Ba(NO 3 ) 2 + H 2 SO 4 = BaSO 4 + 2HNO 3

5. Взаимодействие растворов двух различных солей:

BaCl 2 + Na 2 SO 4 = Ва SO 4 + 2N аС l

Pb(NO 3 ) 2 + 2NaCl = Р b С 1 2 + 2NaNO 3

6. Взаимодействие оснований с кислотными оксидами (щелочей с амфотерными оксидами):

Са(ОН) 2 + СО 2 = СаСО 3 + Н 2 О,

2 N аОН (тв.) + ZnO Na 2 ZnO 2 + Н 2 О

7. Взаимодействие основных оксидов с кислотными:

Са O + SiO 2 Са SiO 3

Na 2 O + SO 3 = Na 2 SO 4

8. Взаимодействие металлов с неметаллами:

2К + С1 2 = 2КС1

F е + S F е S

9. Взаимодействие металлов с солями.

Cu + Hg(NO 3 ) 2 = Hg + Cu(NO 3 ) 2

Pb(NO 3 ) 2 + Zn = Р b + Zn(NO 3 ) 2

10. Взаимодействие растворов щелочей с растворами солей

CuCl 2 + 2NaOH = Cu(OH) 2 ↓+ 2NaCl

NaHCO 3 + NaOH = Na 2 CO 3 + H 2 O

      1. Применение солей.

Ряд солей являются соединениями необходимыми в значительных количествах для обеспечения жизнедеятельности животных и растительных организмов (соли натрия, калия, кальция, а также соли, содержащие элементы азот и фосфор). Ниже, на примерах отдельных солей, показаны области применения представителей данного класса неорганических соединений, в том числе, в нефтяной промышленности.

N аС1 - хлорид натрия (соль пищевая, поваренная соль). О широте использования этой соли говорит тот факт, что мировая добыча этого вещества составляет более 200 млн. т.

Эта соль находит широкое применение в пищевой промышленности, служит сырьем для получения хлора, соляной кислоты, гидроксида натрия, кальцинированной соды (Na 2 CO 3 ). Хлорид натрия находит разнообразное применение в нефтяной промышленности, например, как добавка в буровые растворы для повышения плотности, предупреждения образования каверн при бурении скважин, как регулятор сроков схватывания цементных тампонажных составов, для понижения температуры замерзания (антифриз) буровых и цементных растворов.

КС1 - хлорид калия. Входит в состав буровых растворов, способствующих сохранению устойчивости стенок скважин в глинистых породах. В значительных количествах хлорид калия используется в сельском хозяйстве в качестве макроудобрения.

Na 2 CO 3 - карбонат натрия (сода). Входит в состав смесей для производства стекла, моющих средств. Реагент для увеличения щелочности среды, улучшения качества глин для глинистых буровых растворов. Используется для устранения жесткости воды при ее подготовке к использованию (например, в котлах), широко используется для очистки природного газа от сероводорода и для производства реагентов для буровых и тампонажных растворов.

Al 2 (SO 4 ) 3 - сульфат алюминия. Компонент буровых растворов, коагулянт для очистки воды от тонкодисперсных взвешенных частиц, компонент вязкоупругих смесей для изоляции зон поглощения в нефтяных и газовых скважинах.

N а 2 В 4 О 7 - тетраборат натрия (бура). Является эффективным реагентом - замедлителем схватывания цементных растворов, ингибитором термоокислительной деструкции защитных реагентов на основе эфиров целлюлозы.

B а S О 4 - сульфат бария (барит, тяжелый шпат). Используется в качестве утяжелителя (  4,5 г/см 3) буровых и тампонажных растворов.

2 SO 4 - сульфат железа (П) (железный купорос). Используется для приготовления феррохромлигносульфоната - реагента-стабилизатора буровых растворов, компонент высокоэффективных эмульсионных буровых растворов на углеводородной основе.

F еС1 3 - хлорид железа (Ш). В сочетании со щелочью используется для очистки воды от сероводорода при бурении скважин водой, для закачки в сероводородсодержащие пласты с целью снижения их проницаемости, как добавка к цементам с целью повышения их стойкости к действию сероводорода, для очистки воды от взвешенных частиц.

CaCO 3 - карбонат кальция в виде мела, известняка. Является сырьем для производства негашеной извести СаО и гашеной извести Ca(OH) 2 . Используется в металлургии в качестве флюса. Применяется при бурении нефтяных и газовых скважин в качестве утяжелителя и наполнителя буровых растворов. Карбонат кальция в виде мрамора с определенным размером частиц применяется в качестве расклинивающего агента при гидравлическом разрыве продуктивных пластов с целью повышения нефтеотдачи.

CaSO 4 - сульфат кальция. В виде алебастра (2СаSО 4 · Н 2 О) широко используется в строительстве, входит в состав быстротвердеющих вяжущих смесей для изоляции зон поглощений. При добавке к буровым растворам в виде ангидрита (СаSО 4) или гипса (СаSО 4 · 2Н 2 О) придает устойчивость разбуриваемым глинистым породам.

CaCl 2 - хлорид кальция. Используется для приготовления буровых и тампонажных растворов для разбуривания неустойчивых пород, сильно снижает температуру замерзания растворов (антифриз). Применяется для создания растворов высокой плотности, не содержащих твердой фазы, эффективных для вскрытия продуктивных пластов.

N а 2 Si О 3 - силикат натрия (растворимое стекло). Используется для закрепления неустойчивых грунтов, для приготовления быстросхватывающихся смесей для изоляции зон поглощений. Применяется в качестве ингибитора коррозии металлов, компонента некоторых буровых тампонажных и буферных растворов.

AgNO 3 - нитрат серебра. Используется для химического анализа, в том числе пластовых вод и фильтратов буровых растворов на содержание ионов хлора.

Na 2 SO 3 - сульфит натрия. Используется для химического удаления кислорода (деаэрация) из воды в целях борьбы с коррозией при закачке сточных вод. Для ингибирования термоокислительной деструкции защитных реагентов.

Na 2 Cr 2 О 7 - бихромат натрия. Используется в нефтяной промышленности в качестве высокотемпературного понизителя вязкости буровых растворов, ингибитора коррозии алюминия, для приготовления ряда реагентов.