В частном доме

Альдегиды кратко. Альдегиды и кетоны

Альдегиды кратко. Альдегиды и кетоны

Альдегидами называются органические соединения, в которых карбонильная группа (С-О) связана с водородом и радикалом R (остатки алифатических, ароматических и гетероциклических соединений):

Полярность карбонильной группы обеспечивает полярность молекулы в целом, поэтому альдегиды имеют более высокие температуры кипения, чем неполярные соединения сравнимой молекулярной массы.

Поскольку атомы водорода в альдегидах связаны только с атомом углерода (близкие относительные электроотрицательности), межмолекулярные водородные связи не образуются. Поэтому температуры кипения альдегидов ниже, чем у соответствующих спиртов или карбоновых кислот. В качестве примера можно сравнить температуры кипения метанола (Т^ 65 °С), муравьиной кислоты (Гкип 101 °С) и формальдегида (7^, -21 °С).

Низшие альдегиды растворимы в воде, вероятно, вследствие образования водородных связей между молекулами растворенного вещества и растворителя. Высшие альдегиды хорошо растворяются в большинстве обычных органических растворителей (спирты, эфиры). Низшие альдегиды имеют резкий запах, у альдегидов с С3-С6 весьма неприятный запах, в то время как высшие альдегиды обладают цветочными запахами и применяются в парфюмерии.

В химическом отношении альдегиды - весьма реакционноспособные соединения. Наиболее характерны для альдегидов реакции нуклеофильного присоединения, что обусловлено присутствием в молекуле электрофильного центра - карбонильного атома углерода группы С=0.

Многие из этих реакций, например, образование оксимов, семикарбазонов и других соединений, используются в качественном и количественном анализе ЛС из группы альдегидов потому, что продукты присоединения альдегидов характеризуются определенной для каждого альдегида температурой плавления. Так, альдегиды при встряхивании с насыщенным раствором гидросульфита натрия легко вступают в реакцию присоединения:

Продукты присоединения представляют собой соли, имеющие определенную температуру плавления, хорошо растворимы в воде, но не растворимы в органических растворителях.

При нагревании с разбавленными кислотами гидросульфитные производные гидролизуются до исходных соединений.

Способностью альдегидов образовывать гидросульфитные производные пользуются как для определения подлинности препарата с альдегидной группой в молекуле, так и для очистки альдегидов и выделения их из смесей с другими веществами, не реагирующими с гидросульфитом натрия.


Альдегиды также легко присоединяют аммиак и другие азотсодержащие нуклеофилы. Продукты присоединения обычно малоустойчивы и легко подвергаются дегидратации и полимеризации. Образующиеся в результате полимеризации циклические соединения при нагревании с разбавленными кислотами легко разлагаются, вновь освобождая альдегид:
r-ch-nh2 г з -NH R-СС
-зн2о "
он

Альдегиды легко окисляются. Оксид серебра(І) и другие окислители с невысоким значением окислительного потенциала способны окислять альдегиды. Например, для альдегидов характерна реакция образования серебряного зеркала, которая протекает с аммиачным раствором AgN03:

AgN03 + 3NH3 - OH + NH4N03

Реактив Толленса

При этом на стенках пробирки образуется зеркальный налет металлического серебра:

2OH + RCOH 2Agi + RCOOH + 4NH3T + Н20

Аналогично альдегиды могут восстанавливать медь(П) до меди(1). Для проведения реакции к раствору альдегида добавляют реактив Фелинга (щелочной раствор тартратного комплекса меди(П)) и нагревают. Сначала образуется желтый осадок гидроксида меди(1) - СиОН, а затем красный - оксида меди(1) - Си20:

2KNa + RCOH + 3NaOH + 2КОН -

2CuOHi + RCOONa + 4KNaC4H406 + 2H20 2CuOH - Cu20 + H20

К окислительно-восстановительным относится также реакция взаимодействия альдегидов с реактивом Несслера в щелочной среде; при этом выпадает темный осадок восстановленной ртути:

K2 + RCOH + ЗКОН - RCOOK + 4KI + Hgl + 2Н20

Следует иметь в виду, что реакция с реактивом Несслера более чувствительна, поэтому ее используют для обнаружения примесей альдегидов в ЛС. Подлинность лекарственных средств, содержащих альдегидную группу, подтверждают менее чувствительными реакциями: серебряного зеркала или с реактивом Фелинга. Некоторые другие соединения, например полифенолы, также окисляются соединениями Ag(I) и Си(П), т.е. реакция не является специфической.


Формальдегид и уксусный альдегид склонны к полимеризации. Формальдегид полимеризуется, образуя циклические тримеры, тетрамеры или линейные полимеры. Реакция полимеризации протекает в результате нуклеофильной атаки кислорода одной молекулы карбонильного атома углерода другой:

Так, из 40 % водного раствора формальдегида (формалина) образуется линейный полимер - параформ (и = 8 - 12), тример и тетрамер.

Для альдегидов характерны наркотические и дезинфицирующие свойства. По сравнению со спиртами альдегидная группа усиливает токсичность вещества. Введение галогена в молекулу альдегида повышает его наркотические свойства. Например, наркотические свойства хлораля более выражены, чем у уксусного альдегида:

с!3с-сС

Получение. Альдегиды могут быть получены окислением первичных спиртов хромовой кислотой (Na2Cr04, H2S04) при кипячении или перманганатом калия в щелочной среде:

Дегидрирование первичных спиртов осуществляют над медным катализатором (Си, Сг203) при 300-400 °С.

Промышленное производство метаналя основано на парофазном окислении метанола с железомолибденовым катализатором:

2СН3ОН + 02 500 ~600 2СН2=0 + Н20

Раствор формальдегида (формалин)

Получение. Формалин - это водный раствор формальдегида (40 %), стабилизированный метанолом (6-10 %). Европейская Фармакопея содержит ФС «Формальдегида раствор (35 %)» (см. табл. 9.1). В лабораторных условиях формальдегид может быть получен дегидрированием метанола над медью или деполимеризацией параформа.

Определение подлинности. Фармакопейный способ - реакция серебряного зеркала.

Поскольку формальдегид легко вступает в реакции конденсации, например, с гидроксилсодержащими ароматическими соединениями с образованием окрашенных соединений, ГФ рекомендует также использовать для его идентификации реакцию с салициловой кислотой, в результате которой появляется красное окрашивание:

H2S04
НО
соон

Аналогично протекает реакция с хромотроповой кислотой с образованием синефиолетовых и красно-фиолетовых продуктов (ЕФ).

Для определения подлинности фармальдегида могут быть использованы реакции с азотсодержащими нуклеофилами, например первичными аминами:

H-Ctf° + H2N-R - н-с^^К + Н20

Образующиеся N-замещенные имины (основания Шиффа) малорастворимы, некоторые из них окрашены, другие дают окрашенные соединения с ионами тяжелых металлов. ЕФ предлагает реакцию с фенилгидразином. В присутствии калия феррици- анида в кислой среде образуются продукты реакции интенсивно красного цвета.

Испытания на чистоту. Контроль примеси муравьиной кислоты осуществляют, определяя кислотность. Согласно ГФ, концентрация муравьиной кислоты в препарате не должна превышать 0,2 %; устанавливают содержание муравьиной кислоты методом нейтрализации (ГФ). Согласно ЕФ, метанол определяют методом газовой хроматографии (9-15 % об.). Сульфатная зола - не более 0,1 % в навеске 1,0 г.

I2 + 2NaOH - Nal + NaOI + Н20

Гипойодит окисляет формальдегид до муравьиной кислоты. Непрореагировавший гипойодит при подкислении раствора избытком серной кислоты превращается в йод, который оттитровывают тиосульфатом натрия:

НСОН + NaOI + NaOH - HCOONa + Nal + H20 NaOI + Nal + H2S04 -*■ I2 + Na2S04 + H20 I2 + 2Na2S203 - Na2S406 + 2NaI

Возможно использование и других титрующих агентов при определении формальдегида: водорода пероксида в щелочном растворе, церия(ІУ) сульфата, натрия сульфита.

Препарат можно рассматривать как пролекарство, так как физиологическое действие оказывает не сам гексаметилентетрамин, а формальдегид, выделяющийся при разложении препарата в кислой среде. Именно этим объясняется включение его в настоящий раздел (см. табл. 9.1).

Получение. Уротропин (тетраазаадамантан) получают конденсацией метаналя и аммиака из водных растворов. Промежуточный продукт реакции - гексагидро-1,3,5- триазин:

ll

Гексагидро- Уротропин

1,3,5-трназин


Определение подлинности. При нагревании смеси препарата с разведенной серной кислотой образуется аммонийная соль, из которой при добавлении избытка щелочи выделяется аммиак:

(CH2)6N4 + 2H2S04 + 6Н20 - 6НСОН + 2(NH4)2S04 (NH4)2S04 + 2NaOH - 2NH3t + Na2S04 + 2H20

Гексаметилентетрамин можно обнаружить также по красному окрашиванию раствора при добавлении салициловой кислоты после предварительного нагревания с серной кислотой (см. определение подлинности формальдегида).

Испытания на чистоту. В препарате не допускается присутствие примесей органических соединений, параформа, солей аммония. ГФ указывает допустимые пределы содержания примесей хлоридов, сульфатов, тяжелых металлов.

Количественное определение. Для количественного определения гексаметилентетрамина ГФ предлагает использовать метод нейтрализации. Для этого навеску препарата нагревают с избытком 0,1М раствора серной кислоты. Избыток кислоты оттитровы- вают раствором щелочи концентрацией 0,1 моль/л (индикатор метиловый красный).

На способности гексаметилентетрамина давать с йодом тетрайодиды основан йодометрический метод количественного определения.

Альдегиды и кетоны относятся к карбонильным органическим соединениям. Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >С=О (карбонил или оксогруппа).

Общая формула карбонильных соединений:

Функциональная группа –СН=О называется альдегидной. Кетоны - органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами. Общие формулы: R 2 C=O, R–CO–R" или

Модели простейших карбонильных соединений

Название

Формальдегид (метаналь)

H 2 C=O

Ацетальдегид (этаналь)

СH 3 -CH=O

Ацетон (пропанон)

(СH 3 ) 2 C=O

Номенклатура альдегидов и кетонов.

Систематические названия альдегидов строят по названию соответствующего углеводорода и добавлением суффикса -аль . Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении.

Формула

Название

систематическое

тривиальное

H 2 C=O

метаналь

муравьиный альдегид (формальдегид)

CH 3 CH=O

этаналь

уксусный альдегид (ацетальдегид)

(CH 3 ) 2 CHCH=O

2-метил-пропаналь

изомасляный альдегид

CH 3 CH=CHCH=O

бутен-2-аль

кротоновый альдегид

Систематические названия кетонов несложного строения производят от названий радикалов (в порядке увеличения) с добавлением слова кетон . Например: CH 3 –CO–CH 3 - диметилкетон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - метилпропилкетон. В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса -он ; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе (заместительная номенклатура ИЮПАК). Примеры: CH 3 –CO–CH 3 - пропанон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - пентанон- 2; CH 2 =CH–CH 2 –CO–CH 3 - пентен-4-он- 2.

Изомерия альдегидов и кетонов .

Для альдегидов и кетонов характерна структурная изомерия .

Изомерия альдегидов :

изомерия углеродного скелета, начиная с С 4

межклассовая изомерия с кетонами, начиная с С 3

циклическими оксидами (с С 2)

непредельными спиртами и простыми эфирами (с С 3)

Изомерия кетонов : углеродного скелета (c C 5)

положения карбонильной группы (c C 5)

межклассовая изомерия (аналогично альдегидам).

Строение карбонильной группы C=O.

 Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.

Связь С=О сильно полярна. Ее дипольный момент (2,6-2,8D) значительно выше, чем у связи С–О в спиртах (0,70D). Электроны кратной связи С=О, в особенности более подвижные -электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

 Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н + .

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С 2 –C 5 и кетоны С 3 –С 4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Реакционные центры альдегидов и кетонов

sp 2 -Гибридизованный атом углерода карбонильной группы образует три σ-связи, лежащие в одной плоскости, и π-связь с атомом кислорода за счет негибридизованной p-орбитали. Вследствие различия в электроотрицательности атомов углерода и кислорода π-связь между ними сильно поляризована (рис. 5.1). В результате на атоме углерода карбонильной группы возникает частичный положительный заряд δ+, а на атоме кислорода - частичный отрицательный заряд δ-. Поскольку атом углерода электронодефицитен, он представляет собой центр для нуклеофильной атаки.

Распределение электронной плотности в молекулах альдегидов и кетонов с учетом передачи электронного влияния электроно-

Рис. 5.1. Электронное строение карбонильной группы

дефицитного атома углерода карбонильной группы по σ-связям представлено на схеме 5.1.

Схема 5.1. Реакционные центры в молекуле альдегидов и кетонов

В молекулах альдегидов и кетонов присутствует несколько реакционных центров:

Электрофильный центр - атом углерода карбонильной группы - предопределяет возможность нуклеофильной атаки;

Основный центр - атом кислорода - обусловливает возможность атаки протоном;

СН-кислотный центр, атом водорода которого обладает слабой протонной подвижностью и может, в частности, подвергаться атаке сильным основанием.

В целом альдегиды и кетоны обладают высокой реакционной способностью.

Что вообще такое альдегиды? Ответ на этот вопрос не так прост, как может показаться на первый взгляд. Спросите об этом любителя парфюмерии со стажем - скорее всего он вам расскажет про синтетические материалы с трудноописуемым запахом, которые сделали аромат таким необычным, абстрактным и новаторским.

Химик или даже обычный одиннадцатиклассник, регулярно посещавший уроки химии, тоже не будет особо раздумывать и скажет, что альдегиды - это класс органических соединений, содержащие группу -СНО , которую называют альдегидной группой. У всех альдегидов есть общие химические свойства, например, они легко окисляются с образованием соответствующих кислот. На этом основана реакция серебряного зеркала - помните, когда пробирку нагревают и на поверхности стекла появляется блестящий металлический слой. Само слово «альдегид», придуманное немецким химиком Юстасом фон Либихом, является сокращенным alcohol dehydrogenatum, что означает «спирт без водорода ».

В тривиальных названиях альдегидов часто* (см.сноску) присутствует либо само слово «альдегид», либо суффикс -аль , например, «пельменный альдегид», «жабальдегид», «кочергаль». Такие вещества, как ванилин и гелиотропин - тоже альдегиды с химической точки зрения. Вообще в арсенале парфюмера огромное количество альдегидов с совершенно различными запахами: мелональ пахнет дыней, адоксаль пахнет морем и яичным белком, цитронеллаль - лемонграссом, лираль - ландышем, триплаль - зелёной травой. Есть цикламенальдегид, коричный альдегид, анисовый, куминовый, мандариновый.

Хорошо, спросите вы, причём тут Шанель? Если альдегидов так много и все они пахнут по-разному, то что же это за такая «альдегидная нота», чем она пахнет и какие конкретно альдегиды входят в состав Chanel №5? Помните хармсовские «Анекдоты из жизни Пушкина»: «Пушкин очень полюбил Жуковского и стал называть его по-приятельски Жуковым»? То, что парфюмеры часто называют по-приятельски просто альдегидами, на самом деле некий подвид и частный случай: насыщенные алифатические или так называемые жирные альдегиды. Их принято называть по числу атомов углерода в молекуле. У «альдегида С-7», или гептаналя , - семь атомов углерода, у «альдегида С-10», деканаля , как нетрудно догадаться, десять.

В состав Chanel №5 входит смесь из альдегидов "С-11 undecylic" или "С-110" (ундеканаля), "С-11 undecylenic" (10-ундеценаля) и С-12 (додеканаля). Стоит отметить, что альдегиды появились в составе духов задолго до возникновения этого легендарного аромата [Chanel №5 была выпущена в 1921 году ]. Многие историки парфюмерии сходятся на том, что впервые альдегиды использовались при создании , вернее, его переиздания 1905 года, созданное парфюмером Пьером Армижаном (Pierre Armigeant). Есть альдегиды и в (1912), и в Bouquet de Catherine (1913) московской фабрики Alphonse Rallet & Co, созданные, как и Сhanel №5, парфюмером Эрнестом Бо (кстати говоря, коренным москвичом). Но именно Шанель, несомненно, стала главным альдегидным ароматом всех времен и народов, породив огромное количество подражаний и копий.

Жирные альдегиды объединяет характерный восковой запах, похожий на запах задутой свечки (собственно, этот свечной запах и обусловлен жирными альдегидами, продуктами неполного сгорания парафина). Запах у жирных альдегидов очень интенсивный и резкий, приятным он становится при разбавлении до 1% или меньше. Запах деканаля (С-10) имеет оттенок цедры, запах альдегида С-12 имеет нюансы лилии и фиалки. У простейших альдегидов, формальдегида и ацетальдегида, запах крайне резкий и довольно неприятный (тем не менее даже ацетальдегид используется флейвористами и входит в состав некоторых вкусоароматичских добавок), у гексаналя (альдегида С-6) уже можно различить сравнительно приятные зеленые и яблочные аспекты. Жирные альдегиды, у которых в цепочке 15 атомов углерода и больше, уже практически лишены запаха.

У запаха жирных альдегидов есть ещё одно общее свойство - некая «мылкость». Альдегиды давно и активно используются для отдушки мыла по причине своей невысокой стоимости, интенсивности запаха и способности хорошо маскировать неприятные оттенки запаха мыльной основы. Часто альдегидный запах ассоциируется с абстрактной чистотой или с ощущением от свежевыглаженного белья.

Ещё один важный момент, на который стоит отдельно обратить внимание - альдегиды не являются чем-то искусственным, результатом труда человека. Многие из них широко встречаются в природе. Деканаль, например, содержится в эфирных маслах цитрусовых (в апельсиновом до 4%!), хвойных и многих цветочных растений, много его в эфирном масле кориандра. Ненасыщенные алифатические альдегиды тоже повсеместно встречаются в природе, они обладают ещё более интенсивным запахом, например, (E)-2-деценаль отвечает за характерный запах кинзы, он же действительно часто присутствует в «химическом оружии» клопов, а эпоксипроизводное, транс-4,5-эпокси-(Е)-2-деценаль, обуславливает характерный запах крови, который и придаёт ей выраженный металлический аспект. Именно по запаху этого вещества хищники выслеживают свою добычу.

На волне успеха первых цветочно-альдегидных ароматов химики неустанно работали над синтезом новых материалов с похожими ольфакторными свойствами. В 1905 году французы E.E.Blaise и L.Huillon (Bull.Soc.Chim.Fr. 1905, 33, 928) синтезировали гамма-ундекалактон, чуть позже, в 1908 году, аналогичную работу опубликовали и два русских химика А.А. Жуков и П.И. Шестаков (ЖРХО 40, 830, 1908). Это соединением обладало интересным ароматом, напоминающим запах разогретого на солнце спелого персика - фруктовым, восковым и несколько кокосово-сливочным.

Производители решили продавать это вещество под названием «альдегид С-14», чтобы с одной стороны удовлетворить жажду парфюмеров в новых «альдегидах с цифрами», а с другой стороны ввести в заблуждение конкурентов, ведь на самом деле с химической точки зрения это был не альдегид, а лактон (циклический сложный эфир), да и атомов в молекуле у этого соединения не 14, а 11. Как в анекдоте, «не в шахматы, а в преферанс, не выиграл, а проиграл».

Так называемый «альдегид С-14» с огромным успехом в 1919 году дебютировал в аромате Guerlain Mitsouko, а чуть позже появились новые похожие материалы: «альдегид C-16 (клубничный)», «альдегид C-18 (кокосовый)», «альдегид C-20 (малиновый)» и некоторые другие. Вот и получается, что с одной стороны чуть ли не каждое третье душистое вещество является альдегидом, а с другой стороны - некоторые самые главные альдегиды вовсе никакие и не альдегиды.

* Химики пользуются несколькими типами названий. Первый тип - систематические, или номенклатурные. Номенклатурное название - это своего рода шифр, алгоритм, благодаря которому можно воссоздать структуру вещества, то есть понять какие атомы и каким образом соединены внутри молекулы. Каждому названию соответствует единственная структура и наоборот - для каждого вещества есть только одно номенклатурное название. Альдегиды, согласно номенклатуре, должны иметь суффикс «аль». Единственный, но весьма существенный минус таких названий - громоздкость. Например, обсуждавшийся в прошлый раз изо е супер согласно номенклатурным правилам должен называться «1-(1,2,3,4,5,6,7,8-октагидро-2,3,8,8,-тетраметил-2-нафтил)этанон-1». Трудно себе представить, во что бы превратились будни лабораторий, если бы химики пользовались только номенклатурными названиями («Василий, передайте, пожалуйста, вон ту колбу с цис-3-диметилметокси…»).

По этой причине чаще пользуются названиями тривиальными. Тривиальное название это как бы прозвище, nickname вещества. Оно ничего не говорит нам о строении и структуре, но оно короткое и запоминающееся. Ванилин, дихлофос, промедол, парабен - это всё тривиальные названия. Разные компании могут выпускать одно и то же соединение под разными названиями, обычно такие названия принято называть торговыми марками. 2ацетилоксибензойная кислота - это номенклатурное название, ацетилсалициловая кислота - тривиальное, а аспирин - торговая марка. Производители синтетических душистых веществ любят давать своим материалам яркие звучные названия. Часто альдегиды (с химической точки зрения) получают название с суффиксом «аль» на конце. Но зная любовь парфюмеров к альдегидам иногда названия с «аль» даются веществам, представляющим собой что-то совершенно иное. Например Clonal, продукт компании IFF, на самом деле нитрил, а Mystikal, каптивный материал компании Givaudan - карбоновая кислота. По сути, тот же трюк, что и с «альдегидом С-14».

Для которых характерна двойная связь между углеродным и кислородным атомами и две одинарные связи этого же атома углерода с углеводородным радикалом, обозначаемым буквой R, и атомом водорода. Группа атомов >С=О называется карбонильной группой, она характерна для всех альдегидов. Многие альдегиды имеют приятный запах. Они могут быть получены из спиртов путем дегидрирования (удаление водорода), благодаря чему получили общее название — альдегиды. Свойства альдегидов определяются наличием карбонильной группы, ее расположением в молекуле, а также длиной и пространственной разветвленностью углеводородного радикала. То есть, зная название вещества, отражающего его можно ожидать определенные химические, а также физические свойства альдегидов.

Есть два основных способа именования альдегидов. Первый метод основан на системе, используемой Международным союзом (IUPAC), его часто называют систематическая номенклатура. Он основывается на том, что самая длинная цепочка, в которой к атому углерода присоединена карбонильная группа, служит основой названия альдегида, то есть его название происходит от названия родственного алкана благодаря замене суффикса -ан на суффикс -аль (метан — матаналь, этан — этаналь, пропан — пропаналь, бутан — бутаналь и так далее). Другой метод образования названия альдегидов использует наименование соответствующей в которую в результате окисления тот превратится (метаналь — альдегид муравьиный, этаналь — альдегид уксусный, пропаналь — альдегид пропионовый, бутаналь — альдегид масляный и так далее).

Именно полярность группы >С=О влияет на физические свойства альдегидов: кипения, растворимость, дипольный момент. Углеводородные соединения, состоящие только из атомов водорода и углерода, плавятся и кипят при низких температурах. У веществ с карбонильной группой они значительно выше. Например, бутан (CH3CH2CH2CH3), пропаналь (CH3CH2CHO) и ацетон (CH3СОСН3) имеют одинаковую молекулярную массу, равную 58, а температура кипения у бутана равняется 0 °C, в то время как для пропаналя она составляет 49 °С, а у ацетона равна 56 °C. Причина большой разницы заключается в том, что полярные молекулы имеют больше возможности друг к другу притягиваться, чем неполярные молекулы, поэтому для их разрыва необходимо больше энергии и, следовательно, требуется более высокая температура, чтобы эти соединения плавились или кипели.

С ростом меняются физические свойства альдегидов. Формальдегид (HCHO) является газообразным веществом при нормальных условиях, ацетальдегид (CH3CHO) кипит при комнатной температуре. Другие альдегиды (за исключением представителей с высоким молекулярным весом) при нормальных условиях являются жидкостями. Полярные молекулы не смешиваются легко с неполярными, потому что полярные молекулы друг к другу притягиваются, и неполярные не в состоянии протиснуться между ними. Поэтому углеводороды не растворяются в воде, так как молекулы воды полярны. Альдегиды, в молекулах которых число атомов углерода менее 5, растворяются в воде, но если число углеродных атомов больше 5, растворение не происходит. Хорошая растворимость альдегидов с низким молекулярным весом обусловлена образованием водородных связей между атомом водорода молекулы воды и атомом кислорода карбонильной группы.

Полярность молекул, образованных различными атомами, может быть количественно выражена числом, называемым дипольным моментом. Молекулы, образованные одинаковыми атомами, не являются полярными и дипольного момента не имеют. Вектор дипольного момента направлен в сторону элемента, стоящего в таблице Менделеева (для одного периода) правее. Если молекула состоит из атомов одной подгруппы, то электронная плотность будет смещаться в сторону элемента с меньшим порядковым номером. Большинство углеводородов не имеют дипольного момента или величина его чрезвычайно мала, но для альдегидов она гораздо выше, что также объясняет физические свойства альдегидов.