Теория

Способы измерения углов и конусов. Контроль углов и конусов

Способы измерения углов и конусов. Контроль углов и конусов

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минута состоит из 60 угловых секунд. Особенность угловых размеров состоит в том, что точность их изготовления и контроля зависит от длины сторон, образующих угол. Чем короче сторона, тем труднее изготовить и измерить угол. Методы измерения углов можно разделить на три основных вида:

1) метод сравнения с жесткими угловыми мерами;

2) абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой (угол при этом отсчитывают непосредственно по шкале прибора в угловых единицах);

3) косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Угловые меры и угольники

Угловые меры (рис. 1.19, а) изготавливают в виде прямых призм и применяют для контроля углов и градуировки угломерных инструментов и угловых шаблонов. Угловые меры аналогичны рассмотренным ранее плоскопараллельным концевым мерам длины. Угловые меры выпускают в виде наборов с градацией углов через 2°, 1°,15′ и различными номинальными значениями углов. Изготавливают угловые меры четырех классов точности (00, 0, 1, 2) и аттестуют на разряды. Угловые меры могут притираться друг к другу, но их сцепление менее надежно, чем у плоскопараллельных концевых мер длины, поэтому блоки угловых мер соединяют друг с другом при помощи специальных приспособлений. Плитки в блоки соединяют при помощи державок (рис. 1.19, б-г), винтов и конических штифтов. Державки (см. рис. 1.19, б, в) позволяют собирать блоки из двух и трех угловых мер. Для получения дополнительных углов применяют державки со специальными лекальными линейками (см. рис. 1.19, г). Контроль углов угловыми мерами производят обычно на просвет. В случае отсутствия угловой меры с необходимыми значениями угла или в случае, когда изделие не позволяет использовать угловую меру, изготавливают специальный угловой шаблон.

Для контроля и разметки прямых углов (90 °) предназначены проверочные угольники (рис. 1.20), которые применяют также для контроля взаимного расположения поверхностей деталей при сборке. Изготавливают угольники следующих типов УЛ, УЛП, УЛШ, УЛЦ, УП, УШ.

Угольники типов УЛ, УЛП и УЛШ предназначены для точных лекальных работ, они имеют две острые рабочие грани.

Угольники типа УП и УШ используют при слесарной сборке, обработке и ремонте.

Угольники типа УЛЦ представляют собой отрезок вала с торцами, перпендикулярными образующей цилиндрической поверхности. Эти угольники используют для проверки других угольников, так как они позволяют получить точное значение угла 90°.

Угломеры

Для контроля углов методом непосредственной оценки в машиностроении широко применяют угломеры с нониусом . Эти угломеры выпускают двух типов: УН — для измерения наружных и внутренних углов (рис. 1.21, а) и УМ — для измерения только наружных углов (рис. 1.21, б).

Угломер типа УН состоит из основания 2 с нанесенной по окружности градусной шкалой, которое жестко соединено с линейкой 3. Линейка имеет снаружи доведенную измерительную поверхность. По основанию 2 перемещается сектор 5 с нониусом 1 и стопором 4. К сектору крепят угольник 6 при помощи державки 9. К угольнику 6 крепят съемную линейку 7 при помощи державки 8. Варианты измерений показаны на рис. 1.22. Угломер позволяет измерять углы в диапазоне от 0 до 50° (рис. 1.22, а). Для измерения углов в диапазоне от 50 до 140° с угломера снимают угольник, а на его место устанавливают линейки (рис. 1.22, б). Чтобы измерить наружные углы в диапазоне от 140 до 230°, необходимо снять линейку, измерения в этом случае ведут с использованием угольника. Если с угломера снять угольник, линейку и державки, то с его помощью можно будет контролировать размеры углов в диапазоне от 240 до 320°. Следовательно, общий диапазон измерений угломером УН составляет от 0 до 320 ° для наружных углов.

При измерении углов деталей сложных контуров необходима установка угломера на заданную величину длины прямолинейного контура. Такая установка осуществляется при помощи блока концевых мер длины 2, который устанавливается на съемную линейку 3, а основание угломера перемещают по угольнику 1 так, чтобы измерительная линейка была установлена на блоке концевых мер. Схема такой установки приведена на рис. 1.22, в.

Если с угломера снять угольник и линейку, то им можно измерять внутренние углы в диапазоне от 40 до 180° (рис. 1.22, г).

Измерение углов в труднодоступных местах производят по схеме, показанной на рис. 1.22, д.

Угломер типа УМ (см. рис. 1.21, б) широко применяется при обучении слесарному делу. Он состоит из основания 4 со шкалой, проградуированной в градусах. На основании закреплена линейка 3. Подвижная линейка 10 с сектором 9 и нониусом 7 может поворачиваться на оси А, фиксация линейки в момент измерения осуществляется стопорным винтом 5. Угломер имеет винт 6 для микрометрической подачи измерительной подвижной линейки 10 с сек- , тором 9. На подвижной линейке крепится угольник 2 при помощи державки 1. Угломер обеспечивает измерение углов в диапазоне от О до 180°. Для измерения углов свыше 90° угольник 2 необходимо снять, в этом случае для получения значения угла к показаниям по шкалам угломера прибавляют 90°.

При работе с угломером типа УМ необходимо:

Определить способ измерения угла (с использованием угольника или без него);

Убедиться в плавности перемещения сектора угломера;

Убедиться в точности установки угломера на ноль;

При измерении прочно удерживать угломер за корпус;

Измерительная поверхность должна плотно прилегать к поверхности детали (без просвета и перекоса);

Обратить внимание на достигаемую точность измерений, которая выбита на нониусе.

Средства измерения углов и конусов

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минуты – из 60 угловых секунд.

Методы измерения углов можно разделить на 3 основных вида:

1. Метод сравнения с жесткими угловыми мерами или шаблонами.

2. Абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой.

3. Косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Простейшие инструменты для контроля углов – угольники с углом 90 0 , предназначенные для разметки и проверки взаимной перпендикулярности отдельных поверхностей деталей при монтаже оборудования и для контроля инструмента, приборов и станков. В соответствии со стандартом различают 6 типов угольников (рис. 2.12.):


Более универсальные инструменты для контроля и разметки углов – транспортирные угломеры (простые, оптические, универсальные). В машиностроении широко применяются угломеры с нониусом типа УН для измерения наружных и внутренних углов и типа УМ для измерения только наружных углов (рис. 2.13.).


а - для измерения наружных и внутренних углов: 1 - нониус; 2 - основание; 3 - линейка; 4 - стопор; 5 - сектор; 6 - угольник; 7 - съемная линейка; 8 - державка линейки; 9 - державка угольника; б - для измерения только наружных углов: 1 - державка угольника; 2 - угольник; 3 - линейка; Рисунок 2.13 Угломеры а, в - до 90 о: 1 - угольник; 2 - блок концевых мер длины; 3 - линейка; б - до 140 о; г,д - до 60 о; е - внутренних углов; пунктиром показаны положения подвижной измерительной линейки при измерении минимального размера в заданном диапазоне Рисунок 2.14 Приемы измерения углов различной величины

Приемы измерения углов смотрите рис. 2.14.



Калибры применяются для контроля размеров отверстий и наружных поверхностей деталей. В производстве не всегда нужно знать действительный размер. Иногда достаточно убедиться в том, что действительный размер детали находится в пределах установленного допуска, т.е. между наибольшими и наименьшими предельными размерами. В соответствии с этими размерами применяют предельные калибры, которые имеют две (или две пары) измерительные поверхности проходной и непроходной частей. Различают калибры гладкие, резьбовые, конусные и др. Калибры-пробки, калибры-скобы в зависимости от размеров контролируемых деталей, типа производства и других факторов имеют различные конструктивные формы (рис. 2.15, рис. 2.16).

Проходная сторона (ПР) пробки или скобы имеет размер, равный наименьшему предельному размеру отверстия или вала, а непроходная сторона (НЕ) – наибольшему предельному размеру вала и соответственно отверстия. Приемы измерения калибрами-пробками и калибрами-скобами показаны на рис. 2.16.

Калибры для конусов инструментов представляют собой калибры-пробки и калибры-втулки. Контроль инструментальных конусов производят комплексным методом, т.е. одновременно проверяют угол конуса, диаметры и длину (рис. 2.17).

а - калибрами-пробками; б - калибрами-втулками Рисунок 2.17 Приемы измерения конусов

Шаблоны применяют для проверки сложных профилей деталей и линейных размеров. Шаблоны изготовляют из листовой стали. Контроль производят сопряжением шаблона с проверяемой поверхностью. По размеру и равномерности просвета судят о качестве обработки (рис. 2.18., рис. 2.19.).

а - двусторонние; б - односторонние двухпредельные; в, г, д, е - предельные, измеряющие "на просвет"; ж,з - предельные, измеряющие "надвиганием"; и - предельные, измеряющие по методу "рисок" Рисунок 2.19 Предельные шаблоны для контроля линейных размеров

Контроль резьбы в зависимости от типа (профиля) и точности производится различными контрольно-измерительными средствами.

Шаблоны резьбовые для определения шага и профиля резьбы представляют собой закрепленные в обойме наборы стальных пластин с точными профилями (зубьями) метрической и дюймовой резьб. На каждой пластине указаны значения шага, диаметры резьбы или количество ниток на дюйм.

Шаблоны радиусные служат для измерения отклонения размеров выпуклых и вогнутых поверхностей деталей (рис. 2.18.). Для измерения глубины пазов, высоты и длины уступов применяют предельные калибры-шаблоны, работающие на просвет. Они также имеют две стороны и обозначены Б (для большего размера) и М (для меньшего размера). На рис. 2.19. показаны шаблоны для контроля длины, ширины и высоты выступов и пазов различными методами: "на просвет", "надвиганием" и "методом рисок".

Резьбовые калибры (пробки и кольца) применяют для контроля внутренних и наружных резьб (рис. 2.20.).

Рисунок 2.20 Резьбовые калибры (пробки и кольца) и приемы измерения резьбы

Резьбовые микрометры со вставками применяют для измерения среднего диаметра треугольной наружной резьбы.

Вставки выбирают в соответствии с шагом измеряемой резьбы из набора имеющегося в футляре для микрометра (рис. 2.21.). Чтение показаний микрометра производят так же, как при измерении гладких цилиндрических поверхностей.


Контроль резьбы также может быть осуществлен микрометром с применением трех измерительных проволочек (рис. 2.22.). При этом методе измеряется расстояние М между выступающими точками трех проволочек, помещаемых во впадины резьбы, затем путем математических преобразований определяют средний диаметр d 2 резьбы.

Диаметр проволочек d пр выбирают по таблице в зависимости от шага резьбы. Две проволочки устанавливают во впадины с одной стороны, а третью – в противоположную впадину (рис. 2.22.)

Средний диаметр метрической резьбы d 2 = М – 3 d пр + 0,866 Р

Средний диаметр дюймовой резьбы d 2 = М – 3,165 d пр + 0,9605 Р

Плоскопараллельные концевые меры длины применяются для переноса размера единицы длины на изделие (при разметке), проверки и настройки средств измерения (микрометров, калибр скоб и др. измерительных приборов), непосредственного измерения размеров изделий, приспособлений, при наладке станков и т.п.

Одним из основных свойств концевых мер является прилипаемость, способность прочно соединяться между собой при прикладывании и надвигании одной меры на другую с некоторым давлением, что достигается благодаря очень низкой шероховатости измерительных поверхностей. Концевые меры комплектуются в наборе с количеством 7…12 плиток (рис. 2.23).

Рисунок 2.23 Набор плоскопараллельных концевых мер длины в футляре

Наиболее широко применяют наборы, состоящие из 87 и 42 концевых мер. Каждая плитка воспроизводит только один размер, который маркируется на одной из ее сторон. Для удобства использования концевых мер длины к ним выпускают наборы принадлежностей (рис. 2.24.), в состав которых входят: основания – 5, плоскопараллельные, радиусные – 2, чертильные – 3, центровые боковички – 4, державки – 1 для крепления блоков концевых мер с боковичками. Составление блока концевых мер длины производят в соответствии с классом или разрядом плиток и размерами плиток, имеющихся в данном наборе.

Первоначально подбирают меньшую плитку, в размер которой входит последний десятичный знак и т.д. Допустим, необходимо собрать блок концевых мер размером 37,875 мм из набора, состоящего из 87 плиток:

1 плитка 1,005 мм, остаток 36,87

2 плитка 1,37 мм, остаток 35,5

3 плитка 5,5 мм, остаток 30,00

4 плитка 30 мм, остаток 0.

Сумма блок 1,005+1,37+5,5+30 = 37,875.

Таким же способом набирают блок из набора, состоящего из 42 плиток.

1,005+1,07+4,00+30 = 37,875.

а - составление блока требуемого размера; б - притирка плиток в блок; в - проверка погрешности микрометра; г - проверка межосевого расстояния; д - проверка предельных размеров скобы; е - измерение внутреннего диаметра; ж - разметка на плоскости; з - пространственная разметка Рисунок 2.25 Приемы измерения и разметки плоскопараллельными концевыми мерами длины

Приемы измерения плоскопараллельными концевыми мерами длины и разметки с использованием принадлежностей к ним показаны на рис. 2.25.

Угловые призматические меры (плитки) предназначены для проверки и настройки измерительных угломерных приборов и инструментов, а также для непосредственного измерения наружных и внутренних углов деталей с высокой плотностью. Угловые меры выполняют при измерении углов ту же роль,

что и концевые меры при измерении длины. К рабочим сторонам угловых мер предъявляют такие же требования, что и к концевым мерам, т.е. обеспечение адгезии (прилижаемости).

1 - линейка; 2 - державки; 3 – клиновые штифты; 4 - отвертка Рисунок 2.27 Набор принадлежностей к призматическим угловым мерам

Угловые меры выпускают наборами с количеством 7…93 плиток в каждом (рис. 2.26.). Проверку углов плитками выполняют "на просвет".

Для увеличения прочности блока, собранного из угловых плиток, к ним выпускают набор принадлежностей, в состав которых входят стяжки, винты, клинья и другие (рис. 2.27.). Укрепляют блок через специальные отверстия в плитках.

Правила расчета угловых мер для образования блоков, а также правила подготовки к сборке и сборка их в блок аналогичны правилам, применяемым при составлении концевых мер длины.

Приемы измерения угловыми мерами показаны на рис. 2.28.


Углы изделий измеряют тремя основными методами: методом сравнения с жёсткими контрольными инструментами – угловыми мерами, угольниками, конусными калибрами и шаблонами; абсолютным гониометрическим методом, основанным на использовании приборов с угломерной шкалой; косвенным тригонометрическим методом, который заключается в определении линейных размеров, связанных с измеряемым углом тригонометрической функцией.

К универсальным средствам измерения углов относятся нониусные, оптические и индикаторные угломеры, а также другие приборы. Углы наклона поверхностей изделий измеряют уровнями и оптическими квадратами.

Конец работы -

Эта тема принадлежит разделу:

Метрология, стандартизация и сертификация

Федеральное государственное бюджетное образовательное учреждение.. высшего профессионального образования.. пермский национальный исследовательский политехнический университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Метрология, стандартизация и сертификация
Методические указания по организации самостоятельной работы студентов Направления: 150900.62 «Технология, оборудование и автоматизация машинострои

Перечень лабораторных занятий
1. Измерение деталей с применением плоскопараллельных концевых мер длины; 2. Измерение размеров деталей с применением штангенинструментов; 3. Определение шероховатости поверхности

Развитие и роль метрологии, стандартизации и сертификации в обеспечении высокого качества продукции
Переход России к рыночной экономике определил новые условия для деятельности отечественных фирм, предприятий и организаций не только на внутреннем рынке, но и на внешнем. Право предприятий

Метрологическое обеспечение. Технические основы метрологического обеспечения
Метрологическое обеспечение– это комплекс работ, направленных на обеспечение единства измерений, при котором результаты измерений выражены в узаконенных единицах величин и погрешно

Основные виды работ по метрологическому обеспечению
1)Проведение анализа состояния с измерением. Постоянный анализ – основной вид работ метрологического обеспечения, т. к. изготовитель должен знать, с какой достоверностью выявляются значени

Единство, достоверность, точность измерений. Единообразие средств измерений
Единство измерений – состояние измерений, при котором их результаты выражены в узаконенных единицах, а погрешности известны с заданной вероятностью и не выходят за установленные пр

Государственный метрологический контроль. Утверждение типа средств измерений
Закон «Об обеспечении единства измерений» устанавливает следующие виды государственного метрологического контроля: 1) утверждение типа средств измерений; 2) поверка средств измере

Поверка средств измерений
Поверка средств измерений – совокупность операций, выполняемых органами Государственной метрологической службы или другими уполномоченными на то органами и организациями с целью определения и подтв

Калибровка средств измерений. Калибровочная служба России (РСК)
Калибровка СИ – это совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности к применению ср

Государственный метрологический надзор (ГМН)
ГМН – процедуры проверок соблюдения метрологических правил и норм, требований закона, нормативных документов системы ГСИ, принятых в связи с введением Закона, а также действующих ранее и противореч

Метрологический контроль и надзор на предприятиях и в организациях (у юридических лиц)
В соответствии с законом «Об обеспечении единства измерений» на предприятиях, организациях, учреждениях, являющихся юридическими лицами, создаются в необходимых случаях метрологические службы для в

Физические величины как объект измерений
Объектом измерений являются физические величины, которые принято делить на основные и производные. Основные величиныне зависимы друг от друга, но они могут служить основой

Виды средств измерений
Для практического измерения единицы величины применяются технические средства, которые имеют нормированные погрешности и называются средствами измерений. К средствам измерений отно

Измерение. Виды измерений
Измерение –Совокупность операций, выполняемых с помощью технического средства, хранящего единицу величины и позволяющего сопоставить с нею измеряемую величину. Полученное

Основные параметры средств измерений
Длина деления шкалы –расстояние между осями (центрами) двух соседних отметок шкалы, измеренное вдоль воображаемой линии, проходящей через середины самых коротких отметок шкалы.

Погрешности измерения
Под погрешностью измерения подразумевают отклонение результата измерения от истинного значения измеряемой величины. Точность измерений –качество измерения

Выбор средств измерений
При выборе средств измерений учитываются их метрологические параметры, эксплуатационные факторы (организационная форма контроля, особенности конструкции и размеры изделий, производительность оборуд

Метрологические показатели средств измерений
Меры характеризуются номинальным и действительным значениями. Номинальное значение меры –значение величины, указанное на мере или приписываемое ей. Действ

Штриховые меры длины. Плоскопараллельные концевые меры длины
Штриховые меры длины изготовляют в виде брусков четырёх типов с различными формами поперечного сечения. Однозначные меры имеют два штриха на краях бруса. Шкалы многозначных мер мог

Угловые призматические меры
Угловые призматические меры являются наиболее точным средством измерения углов в машиностроении. Они предназначены для передачи размера единицы плоского угла от эталонов образцовым и рабочим угловы

Штангенинструменты
Штангенинструменты представляют собой показывающие приборы прямого действия, у которых размер изделия определяется по положению измерительной рамки, перемещающейся вдоль штанги со штриховой шкалой.

Микрометры
Микрометрические инструменты относятся к группе универсальных измерительных инструментов. Они предназначены для измерения диаметров валов и отверстий, глубин и высот деталей. Конструкция м

Калибры. Профильные шаблоны
По методу контроля калибры делят на нормальные и предельные. Нормальные калибрыкопируют размеры и форму изделий. Предельные калибрывоспроизводят

Угольники и конусные калибры
Угольники поверочные 90° предназначены для проверки и разметки прямых углов изделий, для контроля изделий при сборке или монтаже и т. п. Угольники имеют измерительные и опорные пов

Точность геометрических параметров элементов деталей
В отношении элементов деталей в машиностроении нормирование точности, т.е. установление требований о степени приближения к заданному значению, состоянию или положению можно и нужно рассматривать в

Понятие о размере. Размеры номинальный, действительный, истинный, нормальный. Ряды нормальных линейных размеров
Размер – числовое значение линейной величины (диаметра, длины и т. п.) в выбранных единицах измерения. Из этого определения следует, что за размер принимается расстояние

Предельные размеры. Отклонения. Обозначения отклонений
Предельные размеры – это два предельно допустимых размера элемента, между которыми должен находиться (или которым может быть равен) действительный размер. Из этого следует

Система допусков и посадок. Принципы построения системы
Т. к. получить посадку (с зазором, с натягом или переходную) можно при любых соотношениях отклонений размеров элементов относительно номинального размера, поэтому с развитием различных отраслей про

Интервалы размеров
Номинальные размеры элементов деталей после их определения расчётом выбираются из рядов предпочтительных чисел, представляющих собой геометрическую прогрессию с определёнными знаменателями.

Единица допуска
При назначении допусков необходимо выбрать закономерность изменения допусков с учётом значения номинального размера. Поэтому в системе имеется так называемая единица допуска, которая является как б

Квалитеты размеров
В зависимости от места использования элементов деталей, имеющих одинаковый номинальный размер, к ним могут предъявляться различные требования в отношении точности размера.

Образование поля допуска. Основные отклонения
В ЕСДП для указания положения поля допуска относительно номинала нормируются значения основных отклонений, которые обозначаются латинскими буквами прописными (большими) для отверстия и строчными (м

Обозначение допусков и посадок на чертежах
Поле допуска с внутренней сопрягаемой поверхностью (отверстие) всегда указывается в числителе, а поле допуска с внешней сопрягаемой поверхностью (вал) – в знаменателе, например: 20H7/g6,

Нормальная температура
Температурный режим – один из важнейших элементов системы допусков и посадок; с ним связано суждение о годности изделий с точки зрения соответствия его размеров размерам, заданным чертежом, а такж

Задачи, решаемые при обеспечении точности размерных цепей. Проверочная
Задача 1. Определение предельных размеров замыкающего звена размерной цепи (точности этого звена), когда известны предельные размеры остальных составляющих звеньев (рис.2: А

Задачи, решаемые при обеспечении точности размерных цепей. Проектировочная
Известны допуск замыкающего звена (исходного звена) и номинальные размеры составляющих звеньев. Требуется определить допуски составляющих звеньев. Способ 1

Параметры для нормирования и обозначения шероховатости поверхности
Способы нормирования шероховатости поверхности установлены в ГОСТ 2789 – 73 и распространяются на поверхности изделий, изготовленных из любых материалов и любыми методами, кроме ворсистых поверхнос

Выбор шероховатости поверхности
Выбор параметров для нормирования шероховатости должен производиться с учётом назначения и эксплуатационных свойств поверхности. Основным во всех случаях является нормирование высотных параметров.

Измерение отклонений формы
Отклонения формы определяют с помощью универсальных и специальных средств измерения. При этом используют поверочные чугунные плиты и плиты из твёрдых каменных пород, поверочные линейки, угольники,

Измерение шероховатости поверхности
Качественный контроль шероховатости поверхности осуществляют путём сравнения с образцами или образцовыми деталями визуально или на ощупь. ГОСТ 9378-75 устанавливает образцы шерохов

Цели и задачи стандартизации
Стандартизация –это деятельность, направленная на разработку и установление требований, норм, правил, характеристик как обязательных для выполнения, так и рекомендуемых, обеспечива

Категории стандартов. Стандарты предприятий. Стандарты общественных объединений. Технические условия
Стандарты предприятий.разрабатываются и принимаются самим предприятием. Объектами стандартизации в этом случае обычно являются составляющие организации и управления производством,

Государственные органы и службы стандартизации, их задачи и направления работы. Национальный орган по стандартизации. Технические комитеты
Согласно Руководству 2 ИСО/МЭК деятельность по стандартизации осуществляют соответствующие органы и организации. Орган рассматривается как юридическая или административная единица, имеющая конкретн

Технические комитеты по стандартизации
Постоянными рабочими органами по стандартизации являются технические комитеты (ТК), но это не исключает разработку нормативных документов предприятиями, общественными объединениями, другими субъект

Государственный контроль и надзор за соблюдением требований государственных стандартов
Государственный контроль и надзор за соблюдением обязательных требований государственных стандартов осуществляются в России на основании Закона РФ «О стандартизации» и составляют часть государствен

Правовые основы стандартизации
Правовые основы стандартизации в России установлены Законом РФ «О стандартизации». Положения Закона обязательны к выполнению всеми государственными органами управления, субъектами хозяйственной дея

Унификация и агрегатирование
Унификация.Для рационального сокращения номенклатуры изготавливаемых изделий проводят их унификацию и разрабатывают стандарты на параметрические ряды изделий, что повышает серийнос

Международная организация по стандартизации (ИСО)
Основные цели и задачи.Международная организация по стандартизации создана в 1946г. двадцатью пятью национальными организациями по стандартизации. СССР был одним из основателей орг

Организационная структура ИСО
Организационно в ИСО входят руководящие и рабочие органы. Руководящие органы: Генеральная ассамблея (высший орган), Совет, Техническое руководящее бюро. Рабочие органы – технические комитеты (ТК),

Порядок разработки международных стандартов
Непосредственную работу по созданию международных стандартов ведут технические комитеты (ТК); подкомитеты (ПК, которые могут учреждать ТК) и рабочие группы (РГ) по конкретным направлениям деятельно

Перспективные задачи ИСО
ИСО определила свои задачи до конца столетия, выделив наиболее актуальные стратегические направления работ: 1. Установление более тесных связей деятельности организации с рынком, что прежд

Основные термины и понятия
Установление соответствия заданным требованиям сопряжено с испытанием. Испытание –техническая операция, заключающаяся в определении одной или нескольких характеристик данн

Национальный орган Совет по
По сертификации │----------------→сертификации (Госстандарт России) │ │ │ │

Исполнители)
Типовая структура взаимодействия участников системы сертификации. Испытательная лабораторияосуществляет испытания конкретной продукции или конкретные виды

Схемы сертификации
Сертификация проводится по установленным в системе сертификации схемам. Схема сертификации –это состав и последовательность действий третьей стороны при оценке соответстви

Обязательная сертификация
Обязательная сертификация осуществляется на основании законов и законодательных положений и обеспечивает доказательство соответствия товара (процесса, услуги) требованиям технических регламентов, о

Добровольная сертификация
Добровольная сертификация проводится по инициативе юридических или физических лиц на договорных условиях между заявителем и органом по сертификации в системах добровольной сертификации. Допускается

Правила по проведению сертификации
Правила по проведению сертификации устанавливают общие рекомендации, которые применяются при организации и проведении работ по обязательной и добровольной сертификации. Эти правила распрос

Порядок проведения сертификации продукции
Порядок проведения сертификации в России установлен постановлением Госстандарта РФ в 1994г. по отношению к обязательной сертификации (в том числе и импортируемой продукции), но может применяться и

Обязанности и основные функции органа по сертификации
Обязанности: 1. Проведение сертификации продукции по правилам и в пределах аккредитации. 2. Выдача лицензии на применение знака соответствия обладателю сертификата. 3. Пр

Требования к персоналу органа по сертификации
1. Руководитель органа по сертификации назначается по согласованию с аккредитующим органом. 2. Орган должен иметь постоянный персонал. Условия работы персонала должны полностью исключать в

Сертификация систем обеспечения качества
Сертификация систем обеспечения качества на соответствие стандартам ИСО серии 9000 широко развита в зарубежных странах, в России этим занимаются недавно. Зарубежные специалисты считают, чт

Сертификация услуг
Основные принципы систем сертификации услуг те же, что и для систем сертификации продукции: обязательность и добровольность, условие третьей стороны, аккредитация органов по сертификации, выдача се

Задачи, решаемые при обеспечении точности размерных цепей
Задача 1. Определение предельных размеров замыкающего звена размерной цепи (точности этого звена), когда известны предельные размеры остальных составляющих звеньев

Результаты расчета замыкающего звена
Размер номинальный, мм Допуск, мм Верхнее отклонение, мм Нижнее отклонение, мм

Для проектного расчета
Звено Номинальный размер, мм Допуск размера, мм Вид звена Аδ

Результаты расчета составляющих звеньев
Звено Номинальный диаметр, мм Допуск, мм Отклонение нижнее, мм Отклонение верхнее, мм

Учебно-методические материалы
Литература основная 1. Крылова Г.Д. Основы стандартизации, сертификации, метрологии: Учебник для вузов. – М.: Аудит-ЮНИТИ.1998. 2. Лифиц И.М. Основы стандартизации, метроло

Государственный стандарт ГОСТ 10529-86 выделяет три группы теодолитов: высокоточные, точные и технические.

Высокоточные теодолиты обеспечивают измерение углов с ошибкой не более 1"; типы Т1, Т05.

Точные теодолиты обеспечивают измерение углов с ошибкой от 2" до 7"; типы Т2, Т5.

Технические теодолиты обеспечивают измерение углов с ошибкой от 10" до 30"; типы Т15, Т30.

Дополнительная буква в шифре теодолита указывает на его модификацию или конструктивное решение: А - астрономический, М - маркшейдерский, К - с компенсатором при вертикальном круге,П - труба прямого изображения (земная).

Государственным стандартом на теодолиты предусмотрена, кроме того, унификация отдельных узлов и деталей теодолитов; вторая модификация имеет цифру 2 на первой позиции шифра - 2Т2, 2Т5 и т.д., третья модификация имеет цифру 3 - 3Т2, 3Т5КП и т.д.

Перед измерением угла необходимо привести теодолит в рабочее положение, то-есть, выполнить три операции: центрирование, горизонтирование и установку зрительной трубы.

Центрирование теодолита - это установка оси вращения алидады над вершиной измеряемого угла; операция выполняется с помощью отвеса, подвешиваемого на крючок станового винта, или с помощью оптического центрира.

Горизонтирование теодолита - это установка оси вращения алидады в вертикальное положение; операция выполняется с помощью подъемных винтов и уровня при алидаде горизонтального круга.

Установка трубы - это установка трубы по глазу и по предмету; операция выполняется с помощью подвижного окулярного кольца (установка по глазу - фокусирование сетки нитей) и винта фокусировки трубы на предмет (поз.15 на рис.4.4).

Измерения угла выполняется строго по методике, соответствующей способу измерения; известно несколько способов измерения горизонтальных углов: это способ отдельного угла (способ приемов), способ круговых приемов, способ во всех комбинациях и др.

Способ отдельного угла. Измерение отдельного угла складывается из следующих действий:

наведение трубы на точку, фиксирующую направление первой стороны угла (рис.4.16), при круге лево (КЛ), взятие отсчета L1;

поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета L2,

вычисление угла при КЛ (рис.4.16):

перестановка лимба на 1o - 2o для теодолитов с односторонним отсчитыванием и на 90o - для теодолитов с двухсторонним отсчитыванием,

переведение трубы через зенит и наведение ее на точку, фиксирующую направление первой стороны угла, при круге право (КП); взятие отсчета R1,

поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла; взятие отсчета R2,

вычисление угла при КП:

при выполнении условия |вл - вп| < 1.5 * t, где t - точность теодолита, вычисление среднего значения угла:

вср = 0.5 * (вл + вп).

Измерение угла при одном положении круга (КЛ или КП) составляет один полуприем; полный цикл измерения угла при двух положениях круга составляет один прием.

Запись отсчетов по лимбу и вычисление угла производятся в журналах установленной формы.

Способ круговых приемов. Если с одного пункта наблюдается более двух направлений, то часто применяют способ круговых приемов. Для измерения углов этим способом необходимо выполнить следующие операции (рис.4.17):

при КЛ установить на лимбе отсчет, близкий к нулю, и навести трубу на первый пункт; взять отсчет по лимбу.

вращая алидаду по ходу часовой стрелки, навести трубу последовательно на второй, третий и т.д. пункты и затем снова на первый пункт; каждый раз взять отсчеты по лимбу.

перевести трубу через зенит и при КП навести ее на первый пункт; взять отсчет по лимбу.

вращая алидаду против хода часовой стрелки, навести трубу последовательно на (n-1), ..., третий, второй пункты и снова на первый пункт; каждый раз взять отсчеты по лимбу.

Затем для каждого направления вычисляют средние из отсчетов при КЛ и КП и после этого - значения углов относительно первого (начального) направления.

Способ круговых приемов позволяет ослабить влияние ошибок, действующих пропорционально времени, так как средние отсчеты для всех направлений относятся к одному физическому моменту времени.

Влияние внецентренности теодолита на отсчеты по лимбу. Пусть на рис.4.18 ось вращения алидады пересекает горизонтальную плоскость в точке B", а точка B - проекция вершины измерямого угла на ту же плоскость. Расстояние между точками B и B" обозначим l, расстояние между пунктами B и A - S.


Если бы теодолит стоял в точке B, то при наведении трубы на точку A отсчет по лимбу был бы равен b. Перенесем теодолит в точку B", сохранив ориентировку лимба; при этом отсчет по лимбу при наведении трубы на точку A изменится и станет равным b"; различие этих отсчетов называется ошибкой центрировки теодолита и обозначается буквой c.

Из треугольника BB"A имеем:

или по малости угла c

Величина l называется линейным элементом центрировки, а угол Q - угловым элементом цетрировки; угол Q строится при проекции оси вращения теодолита и отсчитывается от линейного элемента по ходу часовой стрелки до направления на наблюдаемый пункт A.

Правильный отсчет по лимбу будет:

b = b" + c . (4.19)

Влияние редукции визирной цели на отсчеты по лимбу.

Если проекция визирной цели A" на горизонтальную плоскость не совпадает с проекцией центра наблюдаемого пункта A, то возникает ошибка редукции визирной цели (рис.4.19). Отрезок AA" называется линейным элементом редукции и обозначается l1; угол Q1 называется угловым элементом редукции; он строится при проекции визирной цели и отсчитывается от линейного элемента по ходу часовой стрелки до направления на пункт установки теодолита. Обозначим правильный отсчет по лимбу - b, фактический - b", ошибка в направлении BA равна r. Из треугольника BAA" можно написать:

или по малости угла r

Правильный отсчет по лимбу будет

b = b" + r . (4.21)

Наибольшего значения поправки c и r достигают при И = И1 = 90o (270o), когда.

В этом случае

В практике измерения углов применяют два способа учета внецентренности теодолита и визирной цели.

Первый способ заключается в том, что центрирование выполняют с такой точностью, которая позволяет не учитывать ошибку внецентренности. Например, при работе с техническими теодолитами допустимое влияние ошибок центрирования теодолита и визирной цели можно принять c = r = 10"; при среднем расстоянии между точками S = 150 м получается, что l = l1 = 0.9 см, то-есть, теодолит или визирную цель достаточно устанавливать над центром пункта с ошибкой около 1 см. Для центрирования с такой точностью можно применить обычный отвес. Центрирование теодолита или визирной цели с точностью 1-2 мм можно выполнить лишь с помощью оптического центрира. Второй способ заключается в непосредственном измерении элементов l и И, l1 и И1, вычислении поправок c и r по формулам (4.18) и (4.20) и исправлении результатов измерений этими поправками по формулам (4.19) и (4.21). Методика измерений элементов центрировки теодолита и визирной цели описана в .

Существует несколько способов измерения горизонтальных углов: способ приемов, способ круговых приемов, способ повторений, способ всех комбинаций. Наиболее простым и распространенным является способ приемов. Способ круговых приемов используется тогда, когда на одной точке требуется измерить несколько углов. Способ повторений рекомендуется использовать, если точность теодолита недостаточна и требуется измерить угол с более высокой точностью. Измерение горизонтального угла способом повторений может быть выполнено только повторительным теодолитом. Способ комбинаций характеризуется трудоемкостью и применяется только при высокоточных измерениях нескольких углов в одной точке, когда ошибки измерения углов должны находиться в пределах 1".

Измерение угла способом приемов состоит в его измерении двумя полуприемами. Каждый полуприем заключается в выполнении следующих действий:

  • 1) наведение вертикальной нити сетки нитей на правую визирную цель;
  • 2) взятие отсчета я, по горизонтальному кругу;
  • 3) запись в журнал отсчета я,;
  • 4) наведение вертикальной нити сетки нитей на левую визирную цель;
  • 5) взятие отсчета Ь ] по горизонтальному кругу;
  • 6) запись в журнал отсчета Ь{,
  • 7) вычисление значения горизонтального угла = а { - Ь { .

Визирные цели представляют собой

Вид сверху

Рис. 5.11. Визирный цилиндр

предмет или устройство, на которое наводят зрительную трубу. При наблюдении на пункты триангуляции визирной целью обычно является малофазный визирный цилиндр (рис. 5.11) геодезического знака. На данном рисунке представлено изображение, видимое в поле зрения трубы теодолита с прямым изображением. Вертикальную нить сетки нитей при этом наводят на воображаемую ось симметрии визирного цилиндра. При наблюдении на точки теодолитного хода в качестве визирных целей используют вертикально устанавливаемые на этих точках вехи или шпильки из комплекта мерного прибора для измерения расстояний.

После измерения угла первым полуприемом изменяют положение лимба. Изменить положение лимба горизонтального угломерного круга можно двумя способами:

  • 1) сделать 2-3 оборота наводящим винтом лимба, положение лимба при этом может измениться на 2-3°;
  • 2) при закрепленном закрепительном винте алидады открепить закрепительный винт лимба, повернуть лимб на произвольный угол (рекомендуется примерно на 90°), закрепить закрепительный винт лимба.

После выполнения описанных действий трубу переводят через зенит и выполняют измерение угла вторым полуприемом (при другом положении вертикального круга). Вычисление значения горизонтального угла из второго полуприема осуществляется аналогичным образом:

Р2 = я2 - Ь2.

Таким образом, угол будет измерен дважды. Результаты измерения угла двумя полуприемами соответственно равны р| и р 2 . Р ас_

хождение значений угла из двух полуприемов не должно превышать удвоенной погрешности измерения угла данным теодолитом, т.е. должно выполняться условие

где t - среднеквадратическая погрешность измерения угла одним приемом. Для теодолита 2Т30 данный допуск составляет Г.

Измерение углов двумя полуприемами осуществляется в целях:

  • 1) контроля измерений ;
  • 2) повышения точности измерений: ошибка среднего значения из нескольких измерений всегда меньше ошибки отдельного измерения.

Результаты измерения горизонтальных углов фиксируются в соответствующем журнале (табл. 5.1).

Таблица 5.1

Журнал измерения горизонтальных углов

по горизонтальному

Значение

в полуприеме

значение

При измерении горизонтальных углов важно понимать различие между наводящими винтами лимба и алидады. При вращении любого из этих винтов зрительная труба поворачивается в горизонтальной плоскости, или, как говорят, «по горизонту». Хотя со стороны действия наблюдателя при этом кажутся совершенно одинаковыми, различие между ними принципиальное. Если лимб закреплен и наведение зрительной трубы на различные точки осуществляется только с помощью винтов алидады, то отсчеты будут различаться, так как лимб при этом остается неподвижным. Если действовать противоположным образом, т.е. закрепить алидаду, и при наведении трубы на различные точки использовать только винты лимба, отсчет на любые точки будет один и тот же, так как лимб и находящаяся на нем алидада со зрительной трубой будут поворачиваться вместе с лимбом как единое целое. Отсюда следует, что если при измерении горизонтального угла трубу навели на правую точку и взяли отсчет, а при наведении на левую точку случайным образом повернули наводящий или закрепительный винт лимба, то дальнейшие действия выполнять не имеет смысла, так как нулевой диаметр горизонтального круга изменит свое положение. И в таком случае необходимо начинать выполнение полуприема заново. Путаница между винтами лимба и винтами алидады является наиболее распространенной ошибкой начинающих изучение теодолита.

Если точность измерения углов одним приемом с помощью имеющегося теодолита несколько ниже требуемой, то возможны два варианта действий:

  • воспользоваться теодолитом более высокой точности;
  • измерять угол не одним приемом, а п приемами. Тогда в качестве окончательного значения угла берется среднее из п приемов, среднеквадратическая погрешность М измерения угла при этом будет равна

где т - среднеквадратическая погрешность измерения угла одним приемом.

Следует обратить внимание, что погрешность многократного измерения угла убывает пропорционально квадратному корню из числа измерений. Например, чтобы уменьшить ошибку измерения угла в 3 раза, необходимо измерить угол девятью приемами. Поэтому многократное измерение угла в целях повышения точности измерений оправдано только тогда, когда требуемая точность незначительно отличается от точности используемого прибора.