Теория

Охарактеризуйте основные методы селекции растений. Основы селекции

Охарактеризуйте основные методы селекции растений. Основы селекции

Селекция - это эволюция, управляемая человеком

Н. И. Вавилов

Селекция -- наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов с целью увеличения их продуктивности, повышения устойчивости к болезням, вредителям, приспособления к местным условиям и другое. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. Основными методами селекции являются отбор и гибридизация, а также мутагенез (образующий метод в селекции высших растений и микроорганизмов, который позволяет искусственно получать мутации с целью увеличения продуктивности), полиплоидия (кратное увеличение диплоидного или гаплоидного набора хромосом, вызванное мутацией), клеточная (совокупность методов конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции) и генная инженерия (наука, создающая новые комбинации генов в молекуле ДНК). Как правило, эти методы комбинируют. В зависимости от способа размножения вида применяют массовый или индивидуальный отбор. Скрещивание разных сортов растений и пород животных - основа повышения генетического разнообразия потомства

Методы селекции растений

Основные методы селекции растений в частности -- отбор и гибридизация. Для перекрестно-опыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Если же желательно получение чистой линии -- то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестно-опыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого -- переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают.

Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестно-опыляемых растений для получения гомозиготных ("чистых") линий с нужными признаками. Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса (гетерозис - мощное развитие гибридов, полученных при скрещивании "чистых" линий, одна из которых гомозиготная по доминантным, другая - по рецессивным генам): гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина -- объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

— создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами. Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции служит генетика.

Основные методы селекции — отбор, гибридизация, полиплоидия, мутагенез, а также клеточная и генная инженерия.

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательный и методический. Бессознательный отбор проявляется в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенный сорт или породу. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор , который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
Признак Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существование Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Отбор бывает массовый и индивидуальный. Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства. Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдаленную) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведет к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, а с другой приводит к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрестное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом . Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдаленная) гибридизация — скрещивание разных видов. Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы и осла, лошак — гибрид коня и ослицы). Обычно отдаленные гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдаленных гибридов растений удается с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия — увеличение числа хромосомных наборов. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины:

  1. удвоение хромосом в неделящихся клетках,
  2. слияние соматических клеток или их ядер,
  3. нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом.

Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используют индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации. Делают это с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

У растений оно осуществляется путем принудительного самоопыления перекрестноопыляющихся форм (инцухт ). У животных — это скрещивание особей, имеющих близкую степень родства и, следовательно, генетическое сходство. Инбридинг используется для получения чистых или гомозиготных линий. Сами по себе эти линии не обладают селективной ценностью, поскольку инбридинг сопровождается депрессией развития. Негативный эффект инбридинга объясняют переходом в гомозиготное состояние многих вредных рецессивных генов. Подобное явление, в частности, наблюдается у человека при родственных браках, на основании чего они запрещены. В то же время в природе существуют виды растений и животных, для которых автогамия является нормой (пшеница, ячмень, горох, фасоль), что можно объяснить, только предположив у них наличие механизма, препятствующего выщеплению вредных комбинаций генов.

В селекции инбредные линии растений и животных широко используются для получения межлинейных гибридов. Такие гибриды обладают ярко выраженным гетерозисом, в том числе и в отношении генеративной сферы. В частности, таким способом получают гибридные семена кукурузы, которыми засевают большую часть мировых площадей, отведенных под эту культуру.

На основе инцухта известным саратовским селекционером Е.М. Плачек был создан выдающийся сорт подсолнечника Саратовский 169.

Противоположностью инбридингу является аутбридинг — неродственное скрещивание организмов. Наряду с межпородным и межсортовым скрещиваниями, к нему относят также внутрипородное и внутрисортовое скрещивания, если родители не имели общих предков в 4-6 поколениях. Это наиболее распространенный тип скрещиваний, поскольку гибриды оказываются более жизнеспособными и устойчивыми к вредным воздействиям, т.е. проявляют ту или иную степень гетерозиса. Явление гетерозиса было впервые описано выдающимся немецким гибридизатором XVIII в. И. Кельрейтером. Однако природа этого явления до сих пор полностью не разгадана. Считают, что гетерозис обусловлен преимуществом гетерозиготного состояния по многим генам, а также большим числом благоприятных доминантных аллелей и их взаимодействием.

Существенным моментом, осложняющим использование гетерозиса в селекции, является его затухание в последующих поколениях. В связи с этим перед селекционерами стоит задача разработки способов закрепления гетерозиса у гибридов. Одним из них генетики считают перевод гибридных растений на апомиктичный способ размножения.

Еще одним типом скрещивания, которое используется в селекции, является отдаленная гибридизация . К ней относятся скрещивания между разновидностями, видами и родами. Скрещивание отдаленных в генетическом отношении форм затруднено из-за их несовместимости, которая может проявляться на разных уровнях. Например, у растений при отдаленной гибридизации может отсутствовать рост пыльцевых трубок на рыльце пестика, у животных препятствием могут служить несовпадение сроков размножения или различия в строении органов размножения. Тем не менее, несмотря на существование барьеров, межвидовая гибридизация осуществляется как в природе, так и в эксперименте. Для преодоления нескрещиваемости видов селекционеры разрабатывают специальные методы. Например, гибриды между кукурузой и ее апомиктичным дикорастущим сородичем — трипсакумом получают, укорачивая рыльца кукурузы до длины пыльцевых трубок трипсакума. При отдаленной гибридизации плодовых И.В. Мичуриным были разработаны такие методы преодоления нескрещиваемости, как метод предварительного вегетативного сближения (прививки), метод посредника, опыление смесью пыльцы разных видов и др. Например, чтобы получить гибрид персика с холодоустойчивым монгольским миндалем, он предварительно скрестил миндаль с полукультурным персиком Давида. Получив гибридный посредник, он скрестил его с персиком.

В 20-х гг. ХХ в. в Научно-исследовательском институте сельского хозяйства Юго-Востока в Саратове Г.К. Мейстером были получены первые пшенично-ржаные гибриды, которые высевались на довольно значительных площадях. Здесь же выдающимся селекционером А.П. Шехурдиным на основе скрещивания мягкой и твердой пшеницы получены высококачественные сорта мягкой пшеницы Саррубра, Сарроза, которые послужили донорами генов для других замечательных сортов и возделывались в Поволжье на огромных площадях. В 1930 г. Н.В. Цициным впервые в мире было осуществлено скрещивание пшеницы с пыреем, а вскоре С.М. Верушкиным были получены гибриды между пшеницей и элимусом. Уже к середине 30-х гг. саратовские ученые стали в нашей стране лидерами в области селекции пшеницы и подсолнечника. И в настоящее время сортами пшеницы и подсолнечника, выведенными саратовскими селекционерами, засеваются сотни тысяч гектаров. Созданный Н.Н. Салтыковой сорт твердой озимой пшеницы Янтарь Поволжья удостоен золотой и серебряной медалей ВВЦ.

Методом отдаленной гибридизации в разных странах были получены устойчивые к болезням и вредителям сорта картофеля, табака, хлопка, сахарного тростника.

Отрицательным моментом отдаленной гибридизации является частичная или полная стерильность отдаленных гибридов, вызываемая, в основном, нарушениями мейоза при образовании половых клеток. Нарушения могут возникать как при совпадении, так и при различии чисел хромосом у исходных форм. В первом случае причиной нарушений является отсутствие гомологии хромосомных наборов и нарушение процесса конъюгации, во втором — к этой причине добавляется также образование гамет с несбалансированными числами хромосом. Если даже такие гаметы являются жизнеспособными, то от их слияния в потомстве возникают анеуплоиды, которые часто оказываются нежизнеспособными и подвергаются элиминации. Например, при скрещивании 28-хромосомных и 42-хромосомных видов пшеницы образуются гибриды с 35-ю хромосомами. У гибридов F2 числа хромосом варьируют от 28 до 42. В последующих поколениях растения с несбалансированными числами постепенно элиминируются, и в конце концов остаются только две группы с родительскими кариотипами.

При отдаленной гибридизации в процессе становления гибридов идет формообразовательный процесс: образуются гибридные формы с новыми признаками. Например, в потомстве пшенично-пырейных гибридов появляются многоцветковые формы, ветвистые колосья и др. Эти формы, как правило, генетически неустойчивы, и для их стабилизации требуется длительный период времени. Однако именно отдаленная гибридизация позволяет селекционерам решать задачи, неразрешимые другими методами. Например, все сорта картофеля сильно поражаются различными болезнями и вредителями. Получить устойчивые сорта можно было, только позаимствовав это свойство у дикорастущих видов.

Обязательным этапом любого селекционного процесса, в том числе и с использованием метода гибридизации, является отбор , с помощью которого селекционер закрепляет признаки, необходимые для создания нового сорта или породы.

Ч. Дарвин различал два вида искусственного отбора: бессознательный и методический. На протяжении многих тысячелетий люди вели отбор бессознательно, отбирая лучшие экземпляры растений и животных по интересующим их признакам. Именно благодаря такому отбору были созданы все культурные растения.

При методическом отборе человек заранее ставит себе цель, какие признаки и в каком направлении он будет изменять. Эту форму отбора стали применять с конца XVIII в. и достигли выдающихся результатов в совершенствовании домашних животных и культурных растений.

Отбор может быть массовым и индивидуальным. Массовый отбор — более простой и доступный. При массовом отборе одновременно отбирается большое число особей популяции с нужным признаком, остальные выбраковываются. У растений семена всех отобранных особей объединяют и высевают на одном участке. Массовый отбор может быть однократным и многократным, что определяется, в первую очередь, способом опыления растений: у перекрестников отбор обычно ведется на протяжении нескольких поколений, пока не будет достигнута однородность потомства. Иногда отбор продолжается непрерывно, чтобы избежать потери ценных признаков. Массовым отбором создано большое количество старых сортов сельскохозяйственных растений, например, сорт гречихи Богатырь, созданный в начале ХХ в., и сейчас остается одним из лучших у этой культуры.

Метод индивидуального отбора более сложен и трудоемок, но гораздо более эффективен. Новый сорт при индивидуальном отборе создается из одного единственного элитного экземпляра. Метод предусматривает отбор в потомстве этого растения на протяжении ряда поколений, что делает процедуру создания сорта очень длительной.

Индивидуальный отбор широко используется в селекции животных. В этом случае используют метод проверки производителя по потомству, при которой генетическая ценность производителя определяется на основании качества потомства. Например, качество быков-производителей оценивается на основании продуктивности их дочерей. Другой способ оценки называется сибселекцией. В этом случае оценку производят по продуктивности родственных особей — братьев и сестер.

Наиболее эффективным будет отбор, который осуществляется на фоне среды, максимально выявляющей наследственные возможности организма. Нельзя вести отбор на засухоустойчивость во влажном климате. Часто отбор специально производится в искусственно созданных крайних условиях, т.е. на провокационном фоне.

Отбор и гибридизация являются традиционными методами селекции, которые длительное время играли основную роль в селекционных схемах. Однако успешное развитие генетики в ХХ в. привело к значительному обогащению арсенала селекционных методов. В частности, нашли свое место в селекционных схемах такие генетические явления, как полиплоидия, гаплоидия, цитоплазматическая мужская стерильность (ЦМС) .

Автополиплоиды у многих культур, например у ржи, клевера, мяты, турнепса, используются в качестве исходного материала для создания новых сортов. В ГДР и Швеции в I половине ХХ в. были получены тетраплоидные короткостебельные сорта ржи, имеющие более крупное зерно по сравнению с диплоидными сортами. Академиком Н.В. Цициным была создана тетраплоидная ветвистоколосая рожь, обладающая высокой продуктивностью. В.В. Сахаровым и А.Р. Жебраком получены крупносемянные, с большим содержанием нектара тетраплоидные формы гречихи.

На основе полиплоидии наибольшие результаты достигнуты в селекции сахарной свеклы. Созданы гибридные триплоидные сорта, которые сочетают высокую урожайность с повышенным содержанием сахара в корнеплодах. Одновременно созданы высокоурожайные тетраплоидные сорта и гибриды сахарной и кормовой свеклы. Японским генетиком Г. Кихарой путем скрещивания тетраплоидной и диплоидной форм арбуза был получен бессемянный арбуз, отличающийся высокой урожайностью и превосходными вкусовыми качествами.

В селекции ряда растений нашла применение и другая форма полиплоидии — аллополиплоидия . Аллополиплоиды — это межвидовые гибриды, у которых в два раза и более увеличен набор хромосом. При удвоении диплоидного набора хромосом гибрида, полученного от скрещивания двух разных видов или родов, образуются плодовитые тетраплоиды, которые называются амфидиплоидами. Им свойствен резко выраженный гетерозис, сохраняющийся в последующих поколениях. Амфидиплоидом, в частности, является новая зерновая культура — тритикале. Она получена В.Е. Писаревым путем скрещивания мягкой озимой пшеницы (2n = 42) с озимой рожью (2n = 14). Для удвоения набора хромосом у межродового 28-хромосомного гибрида использовалась обработка растений колхицином — клеточным ядом, блокирующим расхождение хромосом в мейозе. Полученные 56-хромосомные амфидиплоиды тритикале характеризуются высоким содержанием белка, лизина, крупным колосом, быстрым ростом, повышенной устойчивостью к болезням, зимостойкостью. Еще большую селекционную ценность имеют 42-хромосомные Triticale. Они еще более продуктивны и устойчивы к вредным воздействиям.

Использование для искусственного получения полиплоидов колхицина произвело подлинную революцию в области экспериментальной полиплоидии. С его помощью триплоидные и тетраплоидные формы получены более чем у 500 видов растений. Полиплоидизирующим эффектом обладают также некоторые дозы ионизирующих излучений.

Использование явления гаплоидии открыло большие перспективы в области разработки технологии для быстрого создания гомозиготных линий путем удвоения у гаплоидов набора хромосом. Частота спонтанной гаплоидии у растений очень низкая (у кукурузы — один гаплоид на тысячу диплоидов), в связи с чем разработаны способы массового получения гаплоидов. Одним из них является получение гаплоидов через культуру пыльников. Пыльники на стадии микроспор высаживают на искусственную питательную среду, содержащую стимуляторы роста — цитокинины и ауксины. Из микроспор образуются зародышеподобные структуры — эмбриоиды с гаплоидным числом хромосом. Из них в дальнейшем развиваются проростки, дающие после пересадки на новую среду нормальные гаплоидные растения. Иногда развитие сопровождается образованием каллуса с очагами морфогенеза. После пересадки на оптимальную среду из них также формируются эмбриоиды и проростки, вырастающие в нормальные гаплоидные растения.

Путем создания из гаплоидов гомозиготных диплоидных линий и их скрещивания получены ценные гибридные сорта кукурузы, пшеницы, ячменя, рапса, табака и других культур. Использование гаплоидов позволяет сократить срок создания гомозиготных линий в 2-3 раза.

В селекционных схемах по производству гибридных семян кукурузы, пшеницы и ряда других культур использовано явление ЦМС, что позволило упростить и удешевить этот процесс, т.к. была устранена ручная процедура кастрации мужских соцветий при получении гибридов F 1 .

Использование новейших достижений генетики и создание эффективных технологий позволило во много раз повысить продуктивность сортов культурных растений. В 70-х гг. появился термин “зеленая революция“, который отразил значительный скачок в урожайности важнейших сельскохозяйственных культур, достигнутый с помощью новых технологий. По расчетам экономистов вклад генетических методов в прибавку урожая составил 50%. Остальное приходится на использование усовершенствованных приемов обработки земли и достижений агрохимии. Внедрение сложных технологий привело к масштабному культивированию отдельных видов ограниченного числа культур. Это вызвало проблемы, связанные с болезнями и эпидемиями в результате поражения растений разными вредителями. Именно устойчивость растений к этим вредным факторам вышла на первое место в списке признаков для отбора.

Основа успеха любой селекционной работы - генетическое разнообразие материала и методы селекции. Использование таких исходных материалов позволяет получать новые гибриды и сорта, с самыми разнообразными характеристиками и свойствами. Основы селекции заложили известнейшие ученые мира:

Н. К. Кольцов (создал основы для молекулярной генетики).

Н. И. Вавилов (открыл закон гомологических рядов);

И. В. Мичурин (вывел множество плодовых гибридов).

Основные методы селекции растений и животных были разработаны на основе всех предыдущих открытий и совершенствуются до сих пор. Селекционеры в своей работе используют различные способы селекции: инбридинг, искусственный мутагенез, полиплоидию, отдаленную гибридизацию. Ниже приведены наиболее часто применяемые способы выведения новых растений и пород животных.

Основные методы селекции растений: гибридизация и отбор. Перекрестно-опыляемые растения селекционируют путем тех особей, которые имеют желательные свойства. Для получения наиболее чистых линий, то есть генетической однородности сорта, используют индивидуальный отбор, в ходе которого путем самоопыления достигается получение потомства от единственной особи, обладающей всеми самыми лучшими признаками. Недостатком такого метода является то, что при этом нередко наблюдаются неблагоприятные проявления Основной причиной этого является переход большого числа генов в состояние гомозиготы. Со временем накопление рецессивных мутантных генов, переходящих в гомозиготное состояние, может вызвать неблагоприятные наследственные изменения. В природных условиях у самоопыляемого растения рецессивные гены переходят в состояние гомозиготы, и такое растение быстро погибает.

При использовании метода самоопыления часто снижается урожайность. Для ее повышения проводят перекрестное опыление разных самоопыляющихся линий растений и получают высокоурожайные гибриды. Такие методы селекции называются межлинейной гибридизацией. Самой высокой урожайностью обладают гибриды первого поколения. При этом наблюдается известный эффект гетерозиса, согласно которому при скрещивании «чистых» линий получаются мощные гибриды. Они устойчивы к неблагоприятным воздействиям, поскольку в них устранено вредное влияние рецессивных генов, а объединение сильных родительских растений усиливает эффект.

Нередко в селекции различных растений используется экспериментальная полиплоидия. Полученные таким путем растения обладают крупными размерами, дают хороший урожай и быстро растут. Получаются искусственные полиплоиды под воздействием химических веществ, разрушающих веретено деления. В результате этого удвоившиеся хромосомы остаются в одном ядре.

Новые сорта выводят и при помощи искусственного мутагенеза. Организм, который в результате мутации получил новые свойства, имеет слабую жизнеспособность, поэтому при отсеивается. Для селекции и эволюции новых сортов и пород необходимы редкие особи, имеющие нейтральные или благоприятные мутации.

Методы селекции животных практически не отличаются от основных методов селекции растений. Особенности работы с ними - их половое размножение и небольшое потомство. Отбор родителей и тип скрещивания проводятся с определенными целями, поставленными селекционером. Все животные получают оценку не только по своим внешним признакам, а и по качеству потомства и происхождению. Поэтому так важно знать их родословную. В селекции чаще всего применяют 2 способа скрещивания:

Инбридинг (близкородственное) - скрещиваются родители, сестры, братья. Такое скрещивание нельзя проводить бесконечно. Его используют, как правило, для улучшения свойств породы;

Аутбридинг (неродственное) - скрещивание представителей одной или разных пород и строгий отбор потомков с лучшими свойствами.

Отдаленная гибридизация животных значительно менее эффективна, чем гибридизация растений. Такие межвидовые гибриды часто оказываются бесплодными.

Методы селекции растений и животных, отбор и гибридизация, формы отбора

Введение

1. Формы отбора

2. Методы отбора и гибридизации в селекции самоопыляющихся растений.

Заключение

Список литературы

ВВЕДЕНИЕ

Селекция - наука о выведении новых сортов растений и пород животных и об улучшении уже существующих. Ее название происходит от латинского слова selectio - отбор и правильно отражает основную особенность селекции; различные формы отбора являются главной основой деятельности всех селекционеров. Выделению селекции как самостоятельной науки предшествовала практическая селекция, в течение длительного времени проводившаяся чисто эмпирическим путем, а сначала даже совершенно бессознательно.

Селекция растений - одно из самых ранних достижений человека. Селекция началась тогда, когда человек стал одомашнивать растения, выращивая их в контролируемых условиях и отбирая те формы, которые обеспечивали надежный источник пищи. Эта первобытная селекция растений, как и селекция животных, становилась все более продуктивной, вокруг этих источников пищи постепенно оседали группы людей. С развитием деревень и городов количество рабочей силы увеличивалось и люди могли уже находить время для занятий искусствами и религиями. Следовательно, с одомашниванием растений и животных связана одна из самых важных фаз в переходе человека от кочевого, во многом индивидуалистического образа жизни, к тому сложно организованному обществу, которое существует сегодня. Почти все современные продовольственные культуры представляют собой прямой результат человеческой деятельности в эпоху примитивного сельского хозяйства.

На этом раннем этапе селекция шла медленно и успехи ее носили случайный характер. Она оставалась искусством, а не наукой до тех пор, пока в начале ХХ в. не были открыты и использованы в селекции растений менделевские законы наследственности. Однако, несмотря на это, селекция всегда будет в какой-то мере искусством. Как искусство, селекция опирается на знание самого растения, его морфологических особенностей и реакций на условия внешней среды.

Как наука, селекция растений основывается на принципах генетики. Генетика объяснила наследственность, и ее законы позволили заранее предвидеть результаты селекции. Вначале внимание генетиков было сосредоточено на генах, влияющих на качественные признаки: окраску, морфологические особенности, устойчивость к болезням. Позже генетики стали изучать количественные признаки: урожайность, высоту растения, раннеспелость и другие.

Селекция растений и животных - это одна из форм эволюции, которая во многих отношениях подчиняется тем же принципам, что и эволюция видов в природе, но с одним важным отличием: естественный отбор заменен здесь, по крайней мере, частично, сознательным отбором, проводимым человеком.

Основными методами селекции являются отбор и гибридизация, наряду с новыми методами, основанными на достижениях генетики: методом выведения самоопыленных линий и последующего получения линейных гибридов, методом экспериментальной полиплоидии, методом экспериментального мутагенеза. Целесообразность применения тех или иных методов селекции к определенным живым организмам во многом зависит от способов их размножения. Это самоопыляющиеся, перекрестноопыляющиеся, вегетативно размножаемые растения, животные и микроорганизмы.

1. ФОРМЫ ОТБОРА

Селекция как наука создана трудами Чарльза Дарвина (1809-1882), который произвел тщательный анализ деятельности селекционеров и на основании этого анализа создал учение об искусственном отборе. Книга Дарвина «Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь» была опубликована 24 ноября 1859 г., и эту дату считают временем появления селекции как науки, т. к. учение об искусственном отборе в развернутой форме было изложено именно в этом труде Дарвина.

Дарвин выделил три формы отбора, имеющих место у культурных растений и домашних животных: методический, бессознательный и естественный отбор. Естественный отбор создал те формы растений и животных, которые затем были введены человеком в культуру и подвергнуты одомашниванию, и продолжал и продолжает действовать на них и после их одомашнивания человеком. Это воздействие естественного отбора происходит помимо воли и желания человека, вызывая изменения, связанные с приспособлением к новым условиям, которые созданы человеком в процессе одомашнивания. Многие особенности сортов растений и пород животных, нередко совсем нежелательные для человека, созданы таким воздействием естественного отбора. Бессознательный отбор производился человеком давно и выражался в сохранении на племя лучших экземпляров и уничтожении худших без сознательного намерения вывести улучшенную породу. Многие особенности домашних животных созданы в результате такого бессознательного отбора, проводившегося в течение десятков тысячелетий. Методический отбор отличается от бессознательного тем, что человек сознательно и систематически стремится к изменению породы (сорта) в сторону известного и заранее установленного идеала.

В глубокой древности, а в настоящее время у экономически отсталых народностей методический отбор имел и имеет сравнительно примитивную форму, но уже в Древнем Риме он приобрел довольно сложный и совершенный характер. Наиболее широкое распространение и совершенную форму методический отбор получил после развития капиталистических отношений в сельском хозяйстве некоторых стран Западной Европы. В этих странах широкое распространение получили сельскохозяйственные выставки, на которых лучшие представители пород и сортов получали ценные призы и золотые медали, что стало очень выгодным делом и проводилось в широких масштабах многими предприятиями и фирмами и приняло промышленный характер.

В результате за короткий период (менее 100 лет) были достигнуты выдающиеся успехи в деле улучшения культурных растений и животных, и новые породы, выведенные в Англии, не только значительно увеличили производительность сельского хозяйства, но и пользовались широким спросом на международном рынке и приносили большие прибыли английским селекционерам и заводчикам. В этот же период во Франции была выведена новая порода тонкорунных овец, а в России А. Т. Болотовым - новые сорта яблони.

Приемы и методы, разработанные отдельными селекционерами, обеспечивающие максимальную эффективность искусственного отбора. Это:

    правильность выбора исходного материала для селекции;

    правильная постановка цели селекции;

    проведение селекции в достаточно широких масштабах и возможно более жесткая трактовка материала на всех этапах селекции;

    проведение отбора только по одному основному свойству, а не сразу по многим.

Учение об искусственном отборе послужило теоретической основой для практической деятельности целого поколения селекционеров и значительно повысило эффективность их работы. Так, в частности, учение Ч. Дарвина оказало сильное влияние на деятельность крупнейшего русского селекционера в области селекции плодовых и ягодных культур И. В. Мичурина, который вывел сорта, имеющие огромное экономическое значение для средней полосы нашей страны.

2. МЕТОДЫ ИНДИВИДУАЛЬНОГО ОТБОРА И ГИБРИДИЗАЦИИ В СЕЛЕКЦИИ САМООПЫЛЯЮЩИХСЯ РАСТЕНИЙ. РАБОТЫ А. П. ШЕХУРДИНА И В. Н. МАМОНТОВОЙ

Среди культурных растений есть большая группа самоопыляющихся, имеющих разнообразные приспособления, содействующие самоопылению и предотвращающие возможность перекрестного опыления. Так, у ячменя, пшеницы, овса есть нераскрывающиеся, или клейстогамные, цветки, у которых самоопыление происходит нередко еще до того, как колос появится из влагалища. У хлопчатника тычиночные нити образуют колонку, через которую и продвигается достигший зрелости пестик, захватывая при этом пыльцу. Существуют и другие приспособления к постоянному самоопылению. Преобладание самоопыления накладывает резкий отпечаток на биологию размножения, физиологию и генотипические особенности таких растений. Самоопыление приводит к тому, что все рецессивные мутации подвергаются воздействию естественного отбора. Полезные изменения закрепляются и получают широкое распространение, а вредные - уничтожаются. Вследствие этого в генофонде самоопылителей отсутствуют вредные (летальные или полулетальные) гены; вместе с тем у самоопылителей не бывает гетерозиса (гибридная мощность), связанного с гетерозиготностью.

Популяции самоопыляющихся растений, сложившиеся под влиянием естественного отбора и бессознательного искусственного отбора, представляют собой сложные смеси различных гомозиготных линий.

Методический отбор вначале имел форму массового отбора и состоял в выделении, сохранении и использовании для посева семян лучших растений и использовании для потребительских целей средних и худших.

Деятельность первых селекционных станций и семеноводческих фирм начиналась с массового отбора, проводившегося внутри местных сортов. Отбор селекционеры-специалисты проводили в широких масштабах и тщательно, по большому количеству хозяйственно ценных признаков. В результате улучшение местных сортов происходило значительно быстрее, и сорта, созданные массовым отбором, существенно превосходили исходные местные по ряду хозяйственно ценных признаков.

Все же такие селекционные сорта по своим основным особенностям качественно не отличались от местных. Они, как и местные сорта, представляли собой смесь многих различных гомозиготных линий, были недостаточно однородны и довольно быстро «вырождались» в результате усиленного размножения линий с менее ценными свойствами. Эти недостатки сортов, получаемых при помощи массового отбора, уже давно заставляли селекционеров искать другие способы селекции самоопыляющихся растений.

Еще до опубликования трудов Ч. Дарвина английский селекционер Ле-Кутер (1836) успешно применил индивидуальный отбор, основанный на получении и размножении потомства от единичных отборных растений. Но он довел этот метод до крайности; он искал не просто лучшие растения, а лучшие колосья на лучших растениях и лучшие зерна на лучших колосьях. Это очень осложняло отбор и надолго задерживало его применение в селекции растений-самоопылителей. Яльмар Нильсон (1901) устранил крайности Ле-Кутера, остановившись на отборе отдельных лучших растений на том основании, что все семена в пределах одного растения у самоопылителей наследственно равноценны, и сделал индивидуальный отбор в такой форме основным методом селекции растений-самоопылителей.

Индивидуальный отбор у самоопыляющихся растений дает возможность разделить исходный местный сорт на составляющие его гомозиготные линии, сравнить их между собой, выделить среди них наиболее ценные с хозяйственной точки зрения, а затем размножить лучшие для использования в качестве лучших сортов.

Выведенные при помощи индивидуального отбора сорта качественно отличаются от местных сортов-популяций и селекционных сортов, полученных при помощи массового отбора. Они обладают высокой однородностью и устойчивостью, а опасность вырождения при длительном размножении без дополнительных отборов минимальна. Исследования В. И. Иогансена и его учение о чистых линиях создало теоретическую основу для метода индивидуального отбора, после чего этот метод под названием линатной селекции получил очень широкое распространение во всех странах мира. Индивидуальный отбор и в настоящее время незаменим, когда нужно улучшить местный сорт путем выделения из него чистых линий, наиболее ценных с хозяйственной точки зрения.

Систему индивидуального отбора в России можно представить следующим образом. Семена исходного местного сорта в возможно более однородных условиях высеваются в питомнике исходного материала. В этом питомнике ведется наблюдение за растениями, выделяются лучшие и с каждого в отдельности собираются семена. На следующий год они высеваются в селекционном питомнике первого года на отдельных делянках, делянки сравниваются между собой, худшие бракуются, а семена с лучших образуют семенной фонд селекционного питомника второго года. В этом питомнике также проводится сравнение лучших семей на отдельных делянках (в 2-3 повторностях), худшие бракуются, а семена лучших передаются в предварительное сортоиспытание, где они высеваются в большем числе повторностей, чем в селекционном питомнике. Семена наиболее выдающихся семей могут быть сразу переданы в конкурсное станционное сортоиспытание, в которое потом поступают и семена семей, оказавшихся лучшими в предварительном сортоиспытании.

Потомства семей, показавших себя лучшими в конкурсном сортоиспытании, рассматриваются как новые сорта, получают названия и передаются в Госсортсеть. Сорта, прошедшие здесь успешно трехлетнее испытание, допускаются к использованию в определенных регионах страны.

Успех такой селекции зависит главным образом от качества исходного местного сорта, размеров отбора в питомниках, правильности браковки на всех этапах селекционного процесса. Такая селекция не создает новые сорта, а только выявляет уже существующие.

В ряде случаев перед селекционерами стоит задача выведения новых сортов самоопыляющихся растений, обладающих свойствами, которые отсутствуют у местных сортов-популяций. В таких случаях возникает необходимость применения других методов селекции.

Одним из таких методов является систематическая селекция, основанная на скрещивании исходных форм, каждая из которых обладает признаками, желательными для селекционера. В этом и заключается метод гибридизации. Применение и разработку метода гибридизации можно показать на примере работ известных селекционеров нашей страны А. П. Шехурдина и В. Н. Мамонтовой, которые всю свою жизнь посвятили работе в области селекции яровой пшеницы на Саратовской селекционной опытной станции (ныне НИИСХ Юго-Востока).

А. П. Шехурдин пришел работать на опытную станцию с первых дней ее организации, имея за плечами только низшую сельскохозяйственную школу. (Он один из своей многодетной семьи, имеющей пятерых детей, получил образование). Испытывая недостаток образования, А. П. Шехурдин в 36 лет заканчивает вечернюю школу и поступает в Саратовский сельскохозяйственный институт. Через четыре года он его заканчивает и получает диплом агронома, хотя, по сути дела, он им давно уже является. Несмотря на трудности личного характера (у А. П. Шехурдина в тяжелые годы гражданской войны умерла жена, и он остался один с тремя детьми), он продолжал активно работать и вместе с Г. К. Мейстером стал автором особого метода селекции - сложной ступенчатой гибридизации.

Этот метод заключается в скрещивании двух далеких географических форм, отличающихся друг от друга по ряду хозяйственно ценных признаков, проведение среди гибридов старших поколений отбора в широких масштабах и создании таким путем нового сорта, соединяющего положительные свойства исходных форм. Затем такой сорт используется в качестве одного из родителей для скрещивания с далекой формой, которая обладает отсутствующими у него хозяйственно ценными признаками. Путем проводимого в широких масштабах отбора выделяется сорт, соединяющий положительные свойства родительских форм. Этот сорт снова используется в качестве одного из родителей для скрещивания с далекой от него формой и т. д. При такой ступенчатой гибридизации происходит непрерывное улучшение вновь выводимых сортов, которые все время приобретают новые и новые положительные хозяйственно ценные свойства. Путем ступенчатой гибридизации А. П. Шехурдин к 1937 г. вывел невиданный в то время сорт мягкой пшеницы стекловидная-1 (альбидум 1264), имевшей макаронные, крупяные и другие качества зерна, сходные со свойствами зерна твердых пшениц и даже превышающие их. Этот сорт послужил исходным для создания большой группы новых сортов сильных мягких пшениц, полученных как самим А. П. Шехурдиным, так и В. Н. Мамонтовой и их учениками.

В 1936 г. за выдающиеся заслуги в развитии селекции и создании сортов яровой пшеницы А. П. Шехурдину была присуждена ученая степень доктора сельскохозяйственных наук, а в 1945 г. он стал профессором, в 1946 г. - заслуженным деятелем науки РСФСР (он награжден орденом Ленина, двумя орденами Трудового Красного Знамени), а в 1942 г. (год войны) за создание сортов яровой пшеницы, высокоурожайных и устойчивых к бурой ржавчине, А. П. Шехурдину было присуждено звание лауреата Государственной премии.

Но была и другая, оборотная сторона у этой нашедшей признание титанической работы. Всех, кто знал А. П. Шехурдина, поражало его неиссякаемое трудолюбие. Его рабочий день начинался нередко еще до восхода солнца и заканчивался глубоким вечером. Часами он просиживал в лаборатории, занимаясь выбраковкой зерна. Итог его работы таков: под его руководством было выведено более 28 сортов яровой пшеницы, только за годы войны - 4 новых сорта. Перед Великой Отечественной войной сортами, выведенными Шехурдиным, было занято 10 млн гектаров, что составляло 44 % всех посевных площадей яровой пшеницы в стране. В 1977 г. площадь, занятая сортами, полученными в Саратове, составляла свыше 27 млн гектаров.

Так о А. П. Шехурдине отзывался директор Саратовской опытной станции: «...Специалист А. П. Шехурдин - человек редких знаний и исключительных дарований, беззаветный труженик и в то же время поразительно скромный человек. Вся его жизнь - это селекция пшеницы, неугасимое стремление дать для сельского хозяйства лучшие, наиболее совершенные сорта...»

Сам А. П. Шехурдин в своей научной деятельности выделял три этапа: с 1911 по 1918 гг., когда селекционеры пользовались в основном методом индивидуального отбора; с 1918 по 1927 гг., когда доминирующее значение приобрел метод гибридизации; с 1927 и, условно, по 1933 г. - велась разработка метода сложной ступенчатой гибридизации. Этот метод используется до сих пор; он стал венцом научной деятельности Шехурдина, дал сельскому хозяйству немало выдающихся сортов.

На первом этапе работы методом индивидуального отбора из местных стародавних сортов были получены новые сорта. В работе анализировалось огромное количество растений. О трудоемкости работы говорит такой факт: для выведения только одного сорта лютесценс-62 было изучено потомство 15 тыс. отдельных растений, испытывавшихся в течение ряда лет.

Очень пригодилась Шехурдину его природная наблюдательность: он замечал самые мельчайшие изменения, недоступные даже опытному глазу. Он мог не только по колосу, его форме, чешуйкам, но и по зерну определить разновидность сорта, часами бродил он среди своих посевов с записной книжкой, - и на глаз, и всеми прочими методами проверял зерно, раскусывал его.

В результате индивидуального отбора наиболее крепких растений («элиты») на основе местного сорта полтавка был отобран известный сорт лютесценс-62 и два сорта редко встречающейся тогда формы с белым зерном - альбидум-604 и альбидум-721. Из местного сорта селивановский русак тем же путем был выведен сорт остистой мягкой пшеницы эритроспермум-341, из белотурки в 1929 г. был создан сорт твердой пшеницы гордеиформе-432. Эти сорта были более засухоустойчивы, чем местные. Урожайность их выше на 10-26 %.

Кроме того, зерно альбидум-604 обладало исключительно высокими мукомольно-хлебопекарными качествами.

Из выведенных сортов особенно большое народнохозяйственное значение имел сорт лютесценс-62.

А. П. Шехурдин и его коллеги отлично понимали, что методом отбора невозможно вывести сорта, обладающие сложным комплексом ценных биологических и хозяйственных свойств. Селекционеры пришли к выводу, что для создания более совершенных сортов следует применять новый для того времени метод гибридизации в сочетании с индивидуальным направленным отбором.

В процессе работы А. П. Шехурдин разработал методику и технику искусственного скрещивания; он заметил и доказал на практике, что опыление цветков лучше производить не заготовленной ранее пыльцой, а непосредственно из созревших пыльников отцовских колосьев в тот момент, когда пыльца наиболее жизнеспособна. А. П. Шехурдин первым в истории отечественной селекции осуществил оригинальные скрещивания: внутривидовые - между близкими сортами пшеницы, межвидовые - скрещивал твердую пшеницу с мягкой, и даже межродовые - скрещивал пшеницу с рожью, пыреем, житняком, по сути дела, проводя отдаленную гибридизацию. В это время уже работала с Шехурдиным его ученица и продолжательница дела Валентина Николаевна Мамонтова, выпускница Высших женских сельскохозяйственных курсов им. И. А. Стебута в Петербурге.

Впоследствии, как и А. П. Шехурдин, В. Н. Мамонтова заочно заканчивает Саратовский сельскохозяйственный институт, ученую степень кандидата и доктора наук Валентина Николаевна получила без защиты диссертации - за выведение новых сортов пшеницы.

За сорта саратовская-29, 210, 35 и 38 в 1968 г. Мамонтовой В. Г. была присуждена Ленинская премия. В 1965 г. за большие успехи в селекции и семеноводстве и в связи с 70-летием со дня рождения Мамонтова В. Н. удостоена звания Героя Социалистического труда, ей присвоили звание почетного гражданина г. Саратова.

Но, возвращаясь к периоду 20-х гг., можно сказать о таких успехах: путем непрерывного отбора из восьмого поколения скрещивания твердой пшеницы белотурки с мягкой полтавской были созданы сорта саррубра (саратовская красная) и сарроза (саратовская розовая). Эти сорта превосходили родительские формы по урожаю на 2-2,5 ц с га, были уникальными по качеству сырья.

В 1935 г. академик Н. И. Вавилов писал: «Из наиболее крупных практических достижений Саратовской станции отметим безостый гибрид твердой и мягкой пшеницы саррубра, полученной от скрещивания полтавки и белотурки. Этот гибрид ныне занимает сотни тысяч гектаров в культуре и является наиболее крупным практическим достижением в мировой межвидовой гибридизации».

Применяя метод обычной гибридизации, Шехурдин и его сотрудники поняли, что, несмотря на значительный объем и длительный период работ по гибридизации, однократные скрещивания все-таки незначительно повышают урожайность и засухоустойчивость.

Применяя повторные скрещивания гибридов с одним из лучших родительских сортов или с другой ценной формой, Шехурдин таким образом разработал метод сложной, ступенчатой гибридизации. Особое значение здесь играл подбор родителей нового сорта. Так были созданы выдающиеся сорта альбидум-43, альбидум-24, саратовская-210, саратовская-29, саратовская-36, саратовская-38, саратовская-39.

Новые сорта выгодно отличались от родительских форм, так, альбидум-43 в среднем за 20 лет превысил урожайность родительского сорта на 35 %, созревает он на 4-5 дней раньше, чем полтавка и лютесценс-62.

Применение метода сложной ступенчатой гибридизации приносит ощутимые результаты, но этот процесс может быть очень длинным. Так, сорт альбидум-43 вошел в производство через 33 года после начала работы и получен путем сложного ступенчатого скрещивания 12 форм.

А. П. Шехурдин и его сотрудники широко применяли скрещивание географически отдаленных форм. Первое такое скрещивание было осуществлено еще в 1913 г. соединением пшеницы грекум, происходящей из Средней Азии, и местного сорта полтавки. Тем же способом был создан ряд высокоурожайных сортов яровой пшеницы. С местными выведенными сортами скрещивались канадские пшеницы кейченер и маркиз, наиболее ценными из полученных оказались сорта лютесценс-758 и саратовская-33, имеющие прочную соломину и не полегающие в условиях орошения при урожае 30-35 ц с га.

Много внимания уделялось выведению сортов, устойчивых к грибным болезням, - пыльной и твердой головке, к бурой, митовой и стеблевой ржавчине, мучнистой росе. После смерти А. П. Шехурдина (1951) его исследования успешно продолжила В. Н. Мамонтова. Она плодотворно использовала в своей селекционной работе отдаленную гибридизацию и метод ступенчатой гибридизации. В трудный период 1948 г., когда метод ступенчатой гибридизации подвергался резкой критике, она проявила большую твердость и принципиальность и продолжала работать в этом направлении. В результате ей удалось получить 13 очень ценных новых сортов яровой пшеницы, которые в 1964 г. занимали площадь в 16,5 млн га. А в 70-х гг. пшеница, выведенная Шехурдиным и Мамонтовой, заняла на полях страны 21 млн га. Такого еще не бывало. Первые огромные потоки зерна с казахстанской целины шли как раз за счет сорта, который получил всемирно известное имя - саратовская-29. Столь популярной она стала не только потому, что дает высокие урожаи и стойко переносит засушливые условия открытых всем ветрам степей. Содержание белка в зерне в благоприятные годы достигает огромной цифры - 21 %. Хлеб из ее муки получается высоким и пышным. Саратовская-29 среди сильных пшениц по качеству муки не имеет равных.

Согласно справочнику: пшеница считается отличной, если сила муки у нее превышает 400 джоулей, хорошей, когда этот показатель равен 350-400 джоулям, и слабой, если он меньше 180. У саратовской-29 сила муки, в зависимости от погодных условий и агротехники возделывания, колеблется от 640 до 1000 джоулей! Лондонская технологическая лаборатория Кент-Джонса дала такую оценку этому сорту: «Сорт саратовская-29 обладает необыкновенно высокой силой муки и является совершенно выдающимся сортом».

Сортами В. Н. Мамонтовой засевались земли Казахстана, поля Башкирии, Сибири. Для небывалых урожаев целинной пшеницы не хватало элеваторов. За 57 лет работы в Научно-исследовательском институте сельского хозяйства Юго-Востока (г. Саратов) В. Н. Мамонтова создала одна и в соавторстве 20 районированных в стране сортов. Янтарное зерно знаменитого сорта саратовская-29 закупали зарубежные страны для выпечки хлеба.

ЗАКЛЮЧЕНИЕ

Знаменитые сорта, созданные А. П. Шехурдиным и В. Н. Мамонтовой, еще раз закрепили славу Саратовской земли, которая всегда была знаменита отменными на всю Россию калачами, крупными, пышными, с румяной, нависающей грибом корочкой. Если в начале века пекари добивались улучшения качества хлеба простым механическим смешиванием муки из различных местных сортов, то саратовские селекционеры решили эту проблему, когда им удалось создать новые сорта яровой пшеницы, обладающие достаточно высокой силой муки.

На базе прекрасных сортов, созданных А. П. Шехурдиным и В. Н. Мамонтовой, в настоящее время селекционеры выводят новые сорта, отвечающие современным требованиям агропромышленного производства и мирового рынка. И это стало возможно благодаря существованию таких методов, как сложная ступенчатая гибридизация и индивидуальный отбор.

СПИСОК ЛИТЕРАТУРЫ

    Гужов Ю. Л., Фукс А., Валичек П. Селекция и семеноводство культивируемых растений. М.: Изд-во РУДН, 1999.

    Сеятели и хранители. М.: Современник, 1992.

    Жизнь в науке. Саратов: Приволжское кн. изд-во, 1979.

    А. П. Шехурдин. Избранные сочинения. М.: Изд-во сельскохозяйственной лит-ры, 1961.

    Н. И. Вавилов. Теоретические основы селекции. Т. II. 1935.