Теория

Частицы и античастицы. Частицы и античастицы Что происходит при взаимодействии частицы и античастицы

Частицы и античастицы. Частицы и античастицы Что происходит при взаимодействии частицы и античастицы

Совокупность элем. частиц, имеющих те же значения масс и прочих физ. хар-к, что и их «двойники» - ч-цы, но отличающихся от них знаком нек-рых хар-к вз-ствий (напр., электрич. заряда, магн. момента). Название «ч-ца» и «А.» в известной мере условны: можно было бы называть антиэлектрон (положительно заряж. эл-н) ч-цей, а эл-н - А. Однако атомы в-ва в наблюдаемой части Вселенной содержат эл-ны с отрицат. зарядом, а протоны - с положительным. Поэтому для известных к нач. 20-х гг. 20 в. элем. ч-ц - эл-на и протона (и позднее нейтрона) было принято название «частица».

Вывод о существовании А. впервые был сделан в 1931 англ. физиком П. Дираком. Он вывел релятив. квант. ур-ние для эл-на (Дирака уравнение), к-рое оказалось симметричным относительно знака электрич. заряда: наряду с отрицательно заряж. эл-ном оно описывало положительно заряж. ч-цу той же массы - антиэлектрон. Согласно теории Дирака, столкновение ч-цы и А. должно приводить к их аннигиляции - исчезновению этой пары, в результате чего рождаются две или более других ч-ц, напр. фотоны.

В 1932 антиэлектроны были экспериментально обнаружены амер. физиком К. Андерсоном. Он фотографировал ливни, образованные космическими лучами в камере Вильсона, помещённой в магн. поле. Заряж. ч-ца движется в магн. поле по дуге окружности, причём ч-цы с зарядами разных знаков отклоняются полем в противоположные стороны. Наряду с хорошо известными тогда следами быстрых эл-нов Андерсон обнаружил на фотографиях совершенно такие же по внеш. виду следы положительно заряж. ч-ц той же массы. Эти ч-цы были названы позитронами.Открытие позитрона явилось блестящим подтверждением теории Дирака. С этого времени начались поиски других А.

В 1936 также в косм. лучах были обнаружены отрицат. и положит. мюоны (m- и m+), являющиеся ч-цей и А. по отношению друг к другу. В 1947 было установлено, что мюоны косм. лучей возникают в результате распада несколько более тяжёлых ч-ц - пи-мезонов (p-, p+). В 1955 в опытах на ускорителе были зарегистрированы первые антипротоны. Физ. процессом, в результате к-рого образовались антипротоны, было рождение пары протон - антипротон. Несколько позже были открыты антинейтроны. К 1981 экспериментально обнаружены А. практически всех известных элем. ч-ц.

Общие принципы квантовой теории поля позволяют сделать ряд глубоких выводов о св-вах ч-ц и А.: масса, спин, изотопический спин, время жизни ч-цы и её А. должны быть одинаковыми (в частности, стабильным ч-цам отвечают стабильные А.); одинаковыми по величине, но противоположными по знаку должны быть не только электрич. заряды (и магн. моменты) ч-цы и А., но и все остальные квант. числа, к-рые приписываются ч-цам для описания закономерностей их вз-ствий: барионный заряд, лептонный заряд, странность, «очарование» и др. Ч-ца, у к-рой все хар-ки, отличающие её от А., равны нулю, наз. истинно нейтральной; ч-ца и А. таких ч-ц тождественны. К ним относятся, напр., фотон, p0- и h-мезоны, J/y- и Y-частицы.

До 1956 считалось, что имеется полная симметрия между ч-цами и А. Это означает, что если возможен к.-л. процесс между ч-цами, то должен существовать точно такой же процесс и между А. В 1956 было обнаружено, что такая симметрия имеется только в сильном и эл.-магн. вз-ствии. В слабом вз-ствии было открыто нарушение симметрии частица-А. (см. ЗАРЯДОВОЕ СОПРЯЖЕНИЕ). Из А. в принципе может быть построено антивещество точно таким же образом, как в-во из ч-ц. Однако возможность аннигиляции при встрече с ч-цами не позволяет А. сколько-нибудь длит. время существовать в в-ве. А. могут долго «жить» только при условии полного отсутствия контакта с ч-цами в-ва. Свидетельством о наличии антивещества где-нибудь «вблизи» от Вселенной было бы мощное аннигиляц. излучение, приходящее на Землю из области соприкосновения в-ва и антивещества. Но пока астрофизике не известны данные, к-рые говорили бы о существовании во Вселенной областей, заполненных антивеществом.

Физический энциклопедический словарь. - М.: Советская энциклопедия ..1983 .

АНТИЧАСТИЦЫ

Элементарные частицы, имеющие те же значения масс, спинов и др. физ. характеристик, что и их "двойники" - "частицы", но отличающиеся от них знаками нек-рых характеристик взаимодействия ( зарядов, напр. знаком электрич. заряда).

Существование А. было предсказано П. A. M. Дираком (P. A. M. Dirac). Полученное им в 1928 квантовое релятивистское ур-ние движения электрона (см. Дирака уравнение )с необходимостью содержало решения с отрицат. энергиями. В дальнейшем было показано, что исчезновение электрона с отрицат. энергией следует интерпретировать как возникновение частицы (той же массы) с положит. энергией и с положит. электрич. зарядом, т. е. А. по отношению к электрону. Эта частица - позитрон - открыта в 1932.

В последующих экспериментах было установлено, что не только электрон, но и все остальные частицы имеют свои А. В 1936 в космич. лучах были открыты мюон и его А. , а в 1947 - - и -мезоны, составляющие пару частица А.; в 1955 в опытах на ускорителе зарегистрирован антипротон, в 1956 - антинейтрон и т. д. К наст. времени наблюдались А. практически всех известных частиц, и не вызывает сомне-" ния, что А. имеются у всех частиц.

Существование и свойства А. определяются в соответствии с фундам. принципом квантовой теории поля - её инвариантностью относительно СРТ -преобразования (см. Теорема CPT). Из CPТ -теоремы следует, что масса, спин и время жизни частицы и её А. должны быть одинаковыми. В частности, стабильным (относительно распада) частицам соответствуют стабильные А. (однако в веществе сколько-нибудь длительное существование их невозможно из-за аннигиляции с частицами вещества). Состояния частиц и их А. связаны операцией зарядового сопряжения.

Поэтому частица и А. имеют противоположные знаки электрич. зарядов (и магн. моментов), имеют одинаковый изотопический спин, но отличаются знаком его третьей проекции, имеют одинаковые по величине, но противоположные по знаку странность, очарование, красоту и т. д. Преобразование комбинированной инверсии (CP )связывает спиральные состояния частицы с состояниями А. противоположной спиральности. Частицам и их А. приписываются одинаковые по величине, но противоположные по знаку барионное и лептонное числа.

Вследствие инвариантности относительно зарядового сопряжения ( С -инвариантности) сильного и эл.-магн. взаимодействий связанные соответствующими силами составные объекты из частиц (атомные ядра, атомы) и из А. (ядра и атомы антивещества )должны иметь идентичную структуру. По той же причине совпадает структура адронов и их А., причём в рамках модели кварков состояния антибарионов описываются точно так же, как состояния барионов с заменой составляющих кварков на соответствующие им антикварки. Состояния мезонов и их А. отличаются заменой составляющих кварка и антикварка на соответствующие антикварк и кварк. Для истинно нейтральных частиц состояния частицы и А. совпадают. Такие частицы обладают определёнными зарядовой чётностью (С-чёт-ностью) и СР -чётностью. Все известные истинно нейтральные частицы - бозоны (напр., -мезоны - со спином - со спином 1), однако в принципе могут существовать и истинно нейтральные фермионы (т. н. майорановские частицы).

Слабое взаимодействие не инвариантно относительно зарядового сопряжения и, следовательно, нарушает симметрию между частицами и А., что проявляется в различии нек-рых дифференц. характеристик их слабых распадов.

Если к.-л. из квантовых чисел электрически нейтральной частицы не сохраняется строго, то возможны переходы (осцилляции) между состояниями частицы и её А. В этом случае состояния с определённым несохраняющимся квантовым числом не являются собств. состояниями оператора энергии-импульса, а представляют собой суперпозиции истинно нейтральных состояний с определ. значениями массы. Подобное явление может реализовываться в системах и т. п.

Само определение того, что называть "частицей" в паре частица-А., в значит. мере условно. Однако при данном выборе "частицы" её А. определяется однозначно. Сохранение барионного числа в процессах слабого взаимодействия позволяет по цепочке распадов барионов определить "частицу" в любой паре барион-антибарион. Выбор электрона как "частицы" в паре электрон-позитрон фиксирует (вследствие сохранения лептонного числа в процессах слабого взаимодействия) определение состояния "частицы" в паре электронных нейтрино-антинейтрино. Переходы между лептонами разл. поколений (типа ) не наблюдались, так что определение "частицы" в каждом поколении лептонов, вообще говоря, может быть произведено независимо. Обычно по аналогии с электроном "частицами" называют отрицательно заряж. лептоны, что при сохранении лептонного числа определяет соответствующие нейтрино и антинейтрино. Для бозонов понятие "частица" может фиксироваться определением, напр., гиперзаряда.

Рождение А. происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-А. (см. Рождение пар). В лаб. условиях А. рождаются во взаимодействиях частиц на ускорителях; хранение образующихся А. осуществляют в накопительных кольцах при высоком вакууме. В естеств. условиях А. рождаются при взаимодействии первичных космич. лучей с веществом, напр., атмосферы Земли, а также должны рождаться в окрестностях пульсаров и активных ядер галактик. Теоретич. астрофизика рассматривает образование А. (позитронов, антинуклонов) при аккреции вещества на чёрные дыры. В рамках совр. космологии рассматривают рождение А. при испарении первичных чёрных дыр малой массы.

При темп-pax, превышающих энергию покоя частиц данного сорта (использована система единиц = 1), пары частица-А. присутствуют в равновесии с веществом и эл.-магн. излучением. Такие условия могут реализовываться для электрон-позитронных пар в горячих ядрах массивных звёзд. Согласно теории горячей Вселенной, на очень ранних стадиях расширения Вселенной в равновесии с веществом и излучением находились пары частица-А. всех сортов. В соответствии с моделями великого объединения эффекты нарушения C- и СР-инвариантности в неравновесных процессах с несохранением барионного числа могли привести в очень ранней Вселенной к барионной асимметрии Вселенной даже в условиях строгого начального равенства числа частиц и А. Это даёт физ. обоснование отсутствию наблюдат. данных о существовании во Вселенной объектов из А.

Лит.: Дирак П. A. M., Принципы квантовой механики, пер. с англ., 2 изд., M., 1979; Нишиджима К., Фундаментальные частицы, пер. с англ., , 1965; Ли Ц., Ву Ц., Слабые взаимодействия, пер. с англ., M., 1968; 3ельдович Я. В., Новиков И. Д., Строение и эволюция Вселенной, M., 1975. M. Ю. Хлопов.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия .Главный редактор А. М. Прохоров .1988 .



В соответствии с уравнением Дирака встреча электрона с позитроном имеет для них фатальные последствия — обе частицы исчезают. Столь удивительный прогноз и его экспериментальные подтверждения произвели сильное впечатление и на физиков, и на нефизиков — как-никак это был первый пример полной трансформации вещества в излучение. Новооткрытый эффект назвали аннигиляцией, что по латыни означает полное уничтожение

Пока никому не удалось обнаружить космический антигелий и гамма-излучение со специфическим спектром, обусловленное аннигиляцией на границах скоплений материи и антиматерии

На самом деле утверждение о том, что взаимодействие частиц и античастиц неизменно влечет за собой рождение фотонов, неверно даже по отношению к электронам и позитронам. Свободная электронно-позитронная пара аннигилирует с образованием электромагнитных квантов лишь в том случае, если ее энергия не слишком велика. Очень быстрые электроны и позитроны способны порождать положительные и отрицательные пи-мезоны (они же пионы), плюс- и минус-мюоны, протоны и антипротоны, и даже еще более тяжелые частицы — хватило бы только энергии. Медленные протоны и антипротоны при аннигиляции дают начало заряженным и нейтральным пионам (а быстрые — и другим частицам), которые распадаются на гамма-кванты, мюоны и нейтрино. В принципе, столкновение частицы и ее антикопии может дать на выходе любую из комбинаций частиц, не запрещенных принципами симметрии и законами сохранения.

В соответствии с уравнением Дирака, встреча электрона с позитроном имеет для них фатальные последствия — обе частицы исчезают. Столь удивительный прогноз и его экспериментальные подтверждения произвели сильное впечатление и на физиков, и на нефизиков — как никак, это был первый пример полной трансформации вещества в излучение. Новооткрытый эффект назвали аннигиляцией, что по‑латыни означает полное уничтожение.

Может показаться, что аннигиляция ничем не отличается от прочих межчастичных взаимодействий, однако одна принципиальная особенность у нее имеется. Чтобы стабильные частицы, такие как протоны или электроны, при встрече породили ливень из экзотических обитателей микромира, их нужно как следует разогнать. Медленные протоны при встрече просто изменят свою скорость — этим дело и закончится. А вот протон и антипротон, сблизившись, либо претерпят упругое рассеяние и разойдутся, либо аннигилируют и произведут на свет вторичные частицы.

Все вышеописанное относится к аннигиляции свободных частиц. Если хотя бы одна из них входит в состав квантовой системы, в принципе ситуация остается прежней, но альтернативы изменяются. Например, аннигиляция свободного электрона и свободного позитрона никогда не может породить всего один квант — не позволяет закон сохранения импульса. Это легче всего увидеть, если работать в системе центра инерции сталкивающейся пары, — тогда начальный импульс будет равен нулю и потому никак не сможет совпасть с импульсом единичного фотона, куда бы тот ни улетел. Если же позитрон встретится с электроном, входящим, скажем, в состав атома водорода, возможна и однофотонная аннигиляция — в этом случае часть импульса передастся атомному ядру.


Основные пути поиска антиматерии — это регистрация излучения с энергией, характерной для аннигиляции, либо непосредственно регистрация античастиц по массе и заряду. Поскольку антипротоны и ядра антигелия не могут пролететь сквозь атмосферу, их регистрация возможна лишь с помощью инструментов, поднятых в высокие слои атмосферы на аэростатах, или орбитальных инструментов, таких как магнитный альфа-спектрометр AMS-01, доставленный на станцию «Мир» в 1998 году, или его значительно усовершенствованный собрат AMS-02 (на фотографии), который начнет свою работу на МКС в 2010 году.

Как насчет антиграва?

Английский физик Артур Шустер полагал, что антиматерия гравитационно отталкивается от обычной материи, но современная наука считает это маловероятным. Из самых общих принципов симметрии законов микромира следует, что античастицы должны притягиваться друг к другу силами тяготения, подобно частицам без приставки «анти». Вопрос о том, каково гравитационное взаимодействие частиц и античастиц, до конца еще не решен, однако ответ на него почти очевиден.

Для начала обратимся к эйнштейновской общей теории относительности. Она основана на принципе строгого равенства гравитационной и инертной масс, причем для обычного вещества это утверждение экспериментально подтверждено множеством точнейших измерений. Поскольку инертная масса частицы точно равна массе ее античастицы, представляется очень вероятным, что их гравитационные массы тоже равны. Однако это все-таки предположение, пусть и очень правдоподобное, и средствами ОТО оно недоказуемо.


Еще один аргумент против гравитационного отталкивания между веществом и антивеществом следует из квантовой механики. Вспомним, что адроны (частицы, принимающие участие в сильных взаимодействиях) сложены из кварков, склеенных глюонными связями. В состав каждого бариона входят три кварка, в то время как мезоны состоят из парных комбинаций кварков и антикварков, причем не всегда одних и тех же (мезон, в состав которого входят кварк и его собственный антикварк, является истинно нейтральной частицей в том смысле, что он полностью тождественен своему антимезону). Однако эти кварковые структуры нельзя считать абсолютно стабильными. Протон, например, скомпонован из двух u-кварков, каждый из которых несет элементарный электрический заряд +2/3, и одного d-кварка с зарядом -1/3 (поэтому заряд протона равен +1). Однако эти кварки в результате взаимодействия с глюонами могут на очень короткое время менять свою природу — в частности, превращаться в антикварки. Если частицы и античастицы гравитационно отталкиваются, вес протона (а также, естественно, нейтрона) должен давать слабые осцилляции. Однако до сих пор ни в единой лаборатории подобный эффект не обнаружили.

Антиматерия и млечный путь

В 1970-х годах астрономы при помощи гамма-телескопов, установленных на высотных аэростатах, обнаружили гамма-кванты с энергией 511 кэВ, приходящие из самого центра нашей Галактики — Млечного пути. Именно такая энергия характерна для аннигиляции свободных электронов и позитронов, что позволило предположить наличие облака антиматерии размерами около 10 000 световых лет.

Можно не сомневаться, что когда-нибудь на этот вопрос ответит Его Величество Эксперимент. Нужно-то немного — накопить побольше антивещества и посмотреть, как оно поведет себя в поле земного тяготения. Однако технически эти измерения невероятно сложны, и трудно предсказать, когда их удастся осуществить.

Так в чем же разница?

После открытия позитрона в течение четверти века почти все физики были уверены, что природа не видит различий между частицами и античастицами. Конкретнее, считалось, что любому физическому процессу с участием частиц соответствует точно такой же процесс с участием античастиц и осуществляются они оба с одинаковой вероятностью. Наличные экспериментальные данные свидетельствовали, что этот принцип соблюдается для всех четырех фундаментальных взаимодействий — сильного, электромагнитного, слабого и гравитационного.

А потом как-то сразу все резко изменилось. В 1956 году американские физики Ли Дзун-дао и Янг Дженьнин опубликовали удостоенную Нобелевской премии работу, в которой они обсуждали затруднения, связанные с тем, что две, казалось бы, одинаковые частицы, тэтамезон и таумезон, распадаются на разное число пионов. Авторы подчеркнули, что эту проблему можно разрешить, если предположить, что такие распады связаны с процессами, характер которых изменяется при переходе от правого клевому, иначе говоря, при зеркальном отражении (чуть позже физики поняли, что в общем виде нужно говорить об отражениях в каждой из трех координатных плоскостей — или, что то же самое, о смене знаков всех пространственных координат, пространственной инверсии). Это означает, что зеркально отраженный процесс может оказаться под запретом или происходить с иной вероятностью, нежели до отражения. Годом позже американские экспериментаторы (принадлежащие двум независимым группам и работавшие разными методами) подтвердили, что такие процессы действительно существуют.


Это было только начало. Тогда же физики-теоретики из СССР и США осознали, что нарушение зеркальной симметрии делает возможным и нарушение симметрии относительно замены частиц на античастицы, что тоже было неоднократно доказано в экспериментах. Стоит отметить, что незадолго до Ли и Янга, но все в том же 1956 году возможность нарушения зеркальной симметрии обсуждали физик-экспериментатор Мартин Блок и великий теоретик Ричард Фейнман, но они так и не опубликовали этих соображений.

Физики традиционно обозначают зеркальное отражение латинской буквой Р, а замену частиц на их античастицы — буквой С. Обе симметрии нарушаются только в процессах с участием слабого взаимодействия, того самого, что несет ответственность за бета-распад атомных ядер. Отсюда следует, что именно благодаря слабым взаимодействиям существуют различия в поведении частиц и античастиц.


Во время одной из последних миссий шаттлов (STS-134) в 2010 году на МСК будет доставлен новый научный прибор — магнитный альфа-спектрометр (AMS-02, Alpha Magnetic Spectrometer). Его прототип AMS-01 был доставлен на борт космической станции «Мир» в 1998 году и подтвердил работоспособность концепции. Основной целью научной программы будет изучение и измерение с высокой точностью состава космических лучей, а также поиск экзотических форм материи — темной материи, странной материи (частиц, в составе которых есть странные (s) кварки), а также антиматерии — в частности, ядер антигелия.

Странное нарушение зеркальной симметрии вызвало к жизни попытки чем-то ее компенсировать. Уже в 1956 году Ли и Янг и независимо от них Лев Ландау предположили, что природа не делает различий между системами, которые получаются друг из друга совместным применением преобразований С и Р (так называемая СР-симметрия). С точки зрения теории эта гипотеза выглядела очень убедительной и к тому же хорошо ложилась на экспериментальные данные. Однако всего через восемь лет сотрудники Брукхейвенской национальной лаборатории обнаружили, что один из незаряженных К-мезонов (или, как их еще называют, каонов) может распадаться на пионную пару. При строгом соблюдении СР-симметрии такое превращение невозможно — и следовательно, эта симметрия не универсальна! Правда, доля вроде бы запрещенных распадов не превышала 0,2%, но они все же имели место! Это открытие принесло руководителям брукхейвенской команды Джеймсу Кронину и Вэлу Фитчу Нобелевскую премию по физике.

Симметрия и антиматерия

Нарушения СР-симметрии непосредственно связаны с отличием материи от антиматерии. В конце 1990-х годов в ЦЕРН провели очень красивый эксперимент с нейтральными каонами К0, каждый из которых состоит из d-кварка и более массивного странного антикварка. Законы природы позволяют антикварку потерять часть энергии и превратиться в анти-d. Высвободившаяся энергия может пойти на распад каона, однако не исключено, что соседний d-кварк поглотит ее и превратится в странный кварк. В результате этого возникнет частица, состоящая из анти-d-кварка и странного кварка, то есть нейтральный антикаон. Формально это превращение можно описать как результат применения к каону СР-преобразования!

Таким образом, если СР-симметрия соблюдается абсолютно строго, то нейтральные каоны К0 переходят в свои античастицы с точно такой же вероятностью, с какой те претерпевают обратные превращения. Любое нарушение СР-симметрии повлечет за собой изменение одной из этих вероятностей. Если приготовить пучок из равного числа нейтральных каонов и антикаонов и проследить динамику концентрации тех и других частиц, можно выяснить, уважают ли их квантовые осцилляции СР-симметрию.


Именно это и сделали физики из ЦЕРН. Они выяснили, что нейтральные антикаоны становятся каонами чуть-чуть быстрее, чем превращаются в антикаоны. Иначе говоря, был обнаружен процесс, в ходе которого антиматерия превращается в материю быстрее, чем материя — в антиматерию! В смеси с изначально равными долями вещества и антивещества со временем образуется пусть небольшой, но все же поддающийся измерению избыток вещества. Такой же эффект был выявлен в экспериментах и с другими тяжелыми нейтральными частицами — D0-мезонами и B0-мезонами.

Таким образом, к концу ХХ века экспериментаторы убедительно доказали, что слабые взаимодействия по‑разному влияют на частицы и античастицы. Хотя эти различия сами по себе очень малы и выявляются лишь в ходе некоторых превращений весьма экзотических частиц, они все совершенно реальны. Это и означает наличие физической асимметрии между материей и антиматерией.

Для полноты картины стоит отметить еще одно обстоятельство. В 1950-х годах было доказано важнейшее положение релятивистской квантовой механики — СРТ-теорема. Она гласит, что частицы и античастицы строго симметричны по отношению к СР-преобразованию, за которым следует обращение времени (строго говоря, эта теорема верна лишь без учета гравитации, в противном случае вопрос остается открытым). Следовательно, если в каких-то процессах не соблюдается СР-симметрия, их скорость в «прямом» и «обратном» направлениях (что считать тем и другим, конечно, вопрос соглашения) должна быть неодинаковой. Именно это и доказали эксперименты в ЦЕРН с нейтральными каонами.


Миссия AMS-02 продлится около семи лет. Семитонный модуль, пристыкованный к МКС, как ожидается, зарегистрирует более 1 млрд ядер гелия и несколько ядер антигелия. Предшественник этого детектора, AMS-01, зарегистрировал около 1 млн ядер гелия, но антигелия не обнаружил.

Где же антимиры?

В 1933 году Поль Дирак был уверен, что в нашей Вселенной существуют целые острова антивещества, о чем и упомянул в своей нобелевской лекции. Однако современные ученые считают, что таких островов нет ни в нашей Галактике, ни за ее пределами.

Конечно, антиматерия как таковая существует. Античастицы порождаются многими высокоэнергетическими процессами — скажем, термоядерным горением звездного топлива и взрывами сверхновых звезд. Они возникают в облаках замагниченной плазмы, окружающих нейтронные звезды и черные дыры, во время столкновений быстрых космических частиц в межзвездном пространстве, при бомбардировке земной атмосферы космическими лучами и, наконец, в экспериментах на ускорителях. Кроме того, распад некоторых радионуклидов сопровождается образованием античастиц- а именно позитронов. Но все это лишь античастицы, а отнюдь не антивещество. До сих пор никому не удалось обнаружить даже космический антигелий, не говоря уж об элементах потяжелее. Не увенчался успехом и поиск гамма-излучения со специфическим спектром, обусловленного аннигиляцией на границах космических скоплений материи и антиматерии.


В научной литературе периодически появляются сообщения об открытии нестандартных первичных источников космических античастиц непонятного происхождения. В апреле 2009 года были опубликованы данные о загадочном избытке чрезвычайно быстрых позитронов, зарегистрированном детекторным комплексом PAMELA. Эта аппаратура размещена на борту российского спутника «Ресурс-ДК1», 15 июня 2006 года отправленного на околоземную орбиту с космодрома Байконур. Некоторые эксперты интерпретировали этот результат как возможное свидетельство аннигиляции гипотетических частиц темной материи, но вскоре появилось и не столь экзотическое объяснение. Эту гипотезу прокомментировал для «ПМ» известный специалист по космическим лучам Вениамин Березинский из Национальной лаборатории Гран-Сассо, входящей в состав итальянского Национального института ядерной физики: «Стандартная модель рождения галактических космических лучей покоится на трех положениях. Первым и основным источником заряженных частиц считают остатки сверхновых. Вторая идея — частицы ускоряются до ультрарелятивистских скоростей на фронтах послевзрывных ударных волн, причем в этом ускорении очень велика роль их собственного магнитного поля. Третье положение заключается в том, что космические лучи распространяются диффузионно. Мой бывший студент, а ныне профессор Национального института астрофизики Паскуале Блази показал, что избыток позитронов, обнаруженный комплексом PAMELA, вполне согласуется с этой моделью. Разогнанные в ударных волнах протоны сталкиваются с частицами космического газа и именно в этой зоне своего ускорения превращаются в положительные пионы, которые распадаются с образованием позитронов и нейтрино. Согласно вычислениям Блази, этот процесс вполне может дать именно такую концентрацию позитронов, которую выявила PAMELA. Подобный механизм генерации позитронов выглядит абсолютно естественно, однако почему-то до сих пор он никому не приходил в голову. Блази показал также, что эти же процессы должны генерировать и избыточные антипротоны. Однако поперечное сечение их рождения много меньше соответствующей величины для позитронов, из-за чего их можно зарегистрировать лишь при более высоких энергиях. Думаю, что со временем это станет возможным».

Мир или антимир?

Вообразим, что мы летим на межзвездном корабле, который приближается к планете с разумной жизнью. Как узнать, из чего сделаны наши братья по разуму — из вещества или из антивещества? Можно отправить разведывательный зонд, но если он взорвется в атмосфере, нас могут счесть за космических агрессоров, как это происходит в фантастическом романе Кшиштофа Боруня «Антимир». Этого можно избежать с помощью все тех же нейтральных каонов и антикаонов. Как уже говорилось, они способны не только превращаться друг в друга но и распадаться, причем разными способами. В частности, в подобных распадах могут рождаться нейтрино в сопровождениии либо положительных пионов и электронов, либо отрицательных пионов и позитронов. В силу асимметрии между материей и антиматерией темпы таких реакций несколько различны. Это обстоятельство и можно использовать в качестве «лакмусовой бумаги». Для проверки чужой планеты на антиматериальность удобно взять не чистые каоны и антикаоны, а их смешанные состояния, которые принято обозначать как Ks и Kl (s — short, а l — long). Дело в том, что во состоянии L жизненный срок частицы в 570 раз длиннее, нежели в состоянии S (5,12х10^-8 сек против 8,95х10^-11 сек). В долгоживущей версии каонов симметрия материи и антиматерии проявляется гораздо сильнее — на каждые 10 тысяч распадов нужного типа примерно 5015 производят позитроны, а 4985 — электроны. Кстати, заметим, что исторический эксперимент Кронина и Финча тоже сделан на Kl-мезонах. А теперь начнем беседу с братьями по разуму. Каоны обладают характерной массой, чуть превышающей половину массы протона. Давайте объясним партнерам по переговорам, что нам нужна нестабильная нейтральная частица, масса которой немного больше массы ядра простейшего из атомов. Инопланетные физики уразумеют, о чем речь, изготовят Kl-мезоны и определят интересующие нас характеристики их распадов. Когда они в этом преуспеют, мы спросим, совпадает ли знак электрического заряда самой легкой из заряженных частиц, порождаемой в этих распадах чуть-чуть чаще, чем аналогичная частица противоположного знака, со знаком частиц, входящих в состав атомов их мира. В случае положительного ответа нам станет ясно, что в состав их атомов входят позитроны и, следовательно, инопланета состоит из антиматерии. А если ответ будет отрицательным — можно готовиться к посадке!

В общем, пока все говорит за то, что в космосе нет ни антизвезд, ни антипланет, ни даже самых крохотных антиметеоров. С другой стороны, общепринятые модели Большого взрыва утверждают, что вскоре после рождения наша Вселенная содержала одинаковое количество частиц и античастиц. Так почему же первые сохранились, а вторые исчезли?.. Ответ на этот вопрос читайте в одном из следующих материалов.

Статья «Война частиц и античастиц: за кем осталось поле боя» опубликована в журнале «Популярная механика» (

АНТИЧАСТИЦЫ

АНТИЧАСТИЦЫ

Совокупность элем. частиц, имеющих те же значения масс и прочих физ. хар-к, что и их «двойники» - ч-цы, но отличающихся от них знаком нек-рых хар-к вз-ствий (напр., электрич. заряда, магн. момента). Название «ч-ца» и «А.» в известной мере условны: можно было бы называть антиэлектрон (положительно заряж. эл-н) ч-цей, а эл-н - А. Однако атомы в-ва в наблюдаемой части Вселенной содержат эл-ны с отрицат. зарядом, а протоны - с положительным. Поэтому для известных к нач. 20-х гг. 20 в. элем. ч-ц - эл-на и протона (и позднее нейтрона) было принято название «частица».

Вывод о существовании А. впервые был сделан в 1931 англ. физиком П. Дираком. Он вывел релятив. квант. ур-ние для эл-на (Дирака уравнение), к-рое оказалось симметричным относительно знака электрич. заряда: наряду с отрицательно заряж. эл-ном оно описывало положительно заряж. ч-цу той же массы - антиэлектрон. Согласно теории Дирака, столкновение ч-цы и А. должно приводить к их аннигиляции - исчезновению этой пары, в результате чего рождаются две или более других ч-ц, напр. фотоны.

В 1932 антиэлектроны были экспериментально обнаружены амер. физиком К. Андерсоном. Он фотографировал ливни, образованные космическими лучами в камере Вильсона, помещённой в магн. . Заряж. ч-ца движется в магн. поле по дуге окружности, причём ч-цы с зарядами разных знаков отклоняются полем в противоположные стороны. Наряду с хорошо известными тогда следами быстрых эл-нов Андерсон обнаружил на фотографиях совершенно такие же по внеш. виду следы положительно заряж. ч-ц той же массы. Эти ч-цы были названы позитронами. Открытие позитрона явилось блестящим подтверждением теории Дирака. С этого времени начались поиски других А.

В 1936 также в косм. лучах были обнаружены отрицат. и положит. (m- и m+), являющиеся ч-цей и А. по отношению друг к другу. В 1947 было установлено, что мюоны косм. лучей возникают в результате распада несколько более тяжёлых ч-ц - пи-мезонов (p-, p+). В 1955 в опытах на ускорителе были зарегистрированы первые антипротоны. Физ. процессом, в результате к-рого образовались антипротоны, было протон - . Несколько позже были открыты антинейтроны. К 1981 экспериментально обнаружены А. практически всех известных элем. ч-ц.

Общие принципы квантовой теории поля позволяют сделать ряд глубоких выводов о св-вах ч-ц и А.: масса , спин, изотопический спин , время жизни ч-цы и её А. должны быть одинаковыми (в частности, стабильным ч-цам отвечают стабильные А.); одинаковыми по величине, но противоположными по знаку должны быть не только электрич. заряды (и магн. ) ч-цы и А., но и все остальные квант. числа, к-рые приписываются ч-цам для описания закономерностей их вз-ствий: барионный заряд , лептонный заряд, странность , « » и др. Ч-ца, у к-рой все хар-ки, отличающие её от А., равны нулю, наз. истинно нейтральной; ч-ца и А. таких ч-ц тождественны. К ним относятся, напр., p0- и h-мезоны, J/y- и Y-частицы.

До 1956 считалось, что имеется полная между ч-цами и А. Это означает, что если возможен к.-л. процесс между ч-цами, то должен существовать точно такой же процесс и между А. В 1956 было обнаружено, что такая симметрия имеется только в сильном и эл.-магн. вз-ствии. В слабом вз-ствии было открыто нарушение симметрии частица-А. (см. ЗАРЯДОВОЕ СОПРЯЖЕНИЕ). Из А. в принципе может быть построено точно таким же образом, как в-во из ч-ц. Однако возможность аннигиляции при встрече с ч-цами не позволяет А. сколько-нибудь длит. существовать в в-ве. А. могут долго «жить» только при условии полного отсутствия контакта с ч-цами в-ва. Свидетельством о наличии антивещества где-нибудь «вблизи» от Вселенной было бы мощное аннигиляц. , приходящее на Землю из области соприкосновения в-ва и антивещества. Но пока астрофизике не известны данные, к-рые говорили бы о существовании во Вселенной областей, заполненных антивеществом.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

АНТИЧАСТИЦЫ

Элементарные частицы, имеющие те же значения масс, спинов и др. физ. характеристик, что и их "двойники" - "частицы", но отличающиеся от них знаками нек-рых характеристик взаимодействия ( зарядов, напр. знаком электрич. заряда).

Существование А. было предсказано П. A. M. Дираком (P. A. M. Dirac). Полученное им в 1928 квантовое релятивистское ур-ние движения электрона (см. Дирака уравнение )с необходимостью содержало решения с отрицат. энергиями. В дальнейшем было показано, что исчезновение электрона с отрицат. энергией следует интерпретировать как возникновение частицы (той же массы) с положит. энергией и с положит. электрич. зарядом, т. е. А. по отношению к электрону. Эта частица - позитрон - открыта в 1932.

В последующих экспериментах было установлено, что не только , но и все остальные частицы имеют свои А. В 1936 в космич. лучах были открыты мюон и его А. , а в 1947 - - и -мезоны, составляющие пару частица А.; в 1955 в опытах на ускорителе зарегистрирован антипротон, в 1956 - антинейтрон и т. д. К наст. времени наблюдались А. практически всех известных частиц, и не вызывает сомне-" ния, что А. имеются у всех частиц.

Существование и свойства А. определяются в соответствии с фундам. принципом квантовой теории поля - её инвариантностью относительно СРТ -преобразования (см. Теорема CPT). Из CPТ -теоремы следует, что , спин и время жизни частицы и её А. должны быть одинаковыми. В частности, стабильным (относительно распада) частицам соответствуют стабильные А. (однако в веществе сколько-нибудь длительное существование их невозможно из-за аннигиляции с частицами вещества). Состояния частиц и их А. связаны операцией зарядового сопряжения.

Поэтому частица и А. имеют противоположные знаки электрич. зарядов (и магн. моментов), имеют одинаковый изотопический спин, но отличаются знаком его третьей проекции, имеют одинаковые по величине, но противоположные по знаку странность, очарование , красоту и т. д. Преобразование комбинированной инверсии (CP )связывает спиральные частицы с состояниями А. противоположной спиральности. Частицам и их А. приписываются одинаковые по величине, но противоположные по знаку барионное и лептонное числа.

Вследствие инвариантности относительно зарядового сопряжения ( С -инвариантности) сильного и эл.-магн. взаимодействий связанные соответствующими силами составные объекты из частиц (атомные ядра, атомы) и из А. (ядра и атомы антивещества )должны иметь идентичную структуру. По той же причине совпадает структура адронов и их А., причём в рамках модели кварков состояния антибарионов описываются точно так же, как состояния барионов с заменой составляющих кварков на соответствующие им антикварки. Состояния мезонов и их А. отличаются заменой составляющих кварка и антикварка на соответствующие и кварк. Для истинно нейтральных частиц состояния частицы и А. совпадают. Такие частицы обладают определёнными зарядовой чётностью (С-чёт-ностью) и СР -чётностью. Все известные - бозоны (напр., -мезоны - со спином - со спином 1), однако в принципе могут существовать и истинно нейтральные фермионы (т. н. майорановские частицы).

Слабое взаимодействие не инвариантно относительно зарядового сопряжения и, следовательно, нарушает симметрию между частицами и А., что проявляется в различии нек-рых дифференц. характеристик их слабых распадов.

Если к.-л. из квантовых чисел электрически нейтральной частицы не сохраняется строго, то возможны переходы (осцилляции) между состояниями частицы и её А. В этом случае состояния с определённым несохраняющимся квантовым числом не являются собств. состояниями оператора энергии-импульса, а представляют собой суперпозиции истинно нейтральных состояний с определ. значениями массы. Подобное явление может реализовываться в системах и т. п.

Само определение того, что называть "частицей" в паре частица-А., в значит. мере условно. Однако при данном выборе "частицы" её А. определяется однозначно. Сохранение барионного числа в процессах слабого взаимодействия позволяет по цепочке распадов барионов определить "частицу" в любой паре барион-антибарион. Выбор электрона как "частицы" в паре электрон-позитрон фиксирует (вследствие сохранения лептонного числа в процессах слабого взаимодействия) определение состояния "частицы" в паре электронных нейтрино-антинейтрино. Переходы между лептонами разл. поколений (типа ) не наблюдались, так что определение "частицы" в каждом поколении лептонов, вообще говоря, может быть произведено независимо. Обычно по аналогии с электроном "частицами" называют отрицательно заряж. , что при сохранении лептонного числа определяет соответствующие и антинейтрино. Для бозонов понятие "частица" может фиксироваться определением, напр., гиперзаряда.

Рождение А. происходит в столкновениях частиц вещества, разогнанных до энергий, превосходящих порог рождения пары частица-А. (см. Рождение пар). В лаб. условиях А. рождаются во взаимодействиях частиц на ускорителях; хранение образующихся А. осуществляют в накопительных кольцах при высоком вакууме. В естеств. условиях А. рождаются при взаимодействии первичных космич. лучей с веществом, напр., атмосферы Земли, а также должны рождаться в окрестностях пульсаров и активных ядер галактик. Теоретич. рассматривает образование А. (позитронов, антинуклонов) при аккреции вещества на чёрные дыры. В рамках совр. космологии рассматривают рождение А. при испарении первичных чёрных дыр малой массы.

При темп-pax, превышающих энергию покоя частиц данного сорта (использована = 1), пары частица-А. присутствуют в равновесии с веществом и эл.-магн. излучением. Такие условия могут реализовываться для электрон-позитронных в горячих ядрах массивных звёзд. Согласно теории горячей Вселенной, на очень ранних стадиях расширения Вселенной в равновесии с веществом и излучением находились пары частица-А. всех сортов. В соответствии с моделями великого объединения эффекты нарушения C- и СР-инвариантности в неравновесных процессах с несохранением барионного числа могли привести в очень ранней Вселенной к барионной асимметрии Вселенной даже в условиях строгого начального равенства числа частиц и А. Это даёт физ. обоснование отсутствию наблюдат. данных о существовании во Вселенной объектов из А.

Лит.: Дирак П. A. M., Принципы квантовой механики, пер. с англ., 2 изд., M., 1979; Нишиджима К., Фундаментальные частицы, пер. с англ., , 1965; Ли Ц., Ву Ц., Слабые взаимодействия, пер. с англ., M., 1968; 3ельдович Я. В., Новиков И. Д., Строение и эволюция Вселенной, M., 1975. M. Ю. Хлопов.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "АНТИЧАСТИЦЫ" в других словарях:

    Элементарные частицы, имеющие те же массу, спин, время жизни и некоторые другие внутренние характеристики, что и их двойники частицы, но отличающиеся от частиц знаками электрического заряда и магнитного момента, барионного заряда, лептонного… … Большой Энциклопедический словарь

    АНТИЧАСТИЦЫ, двойники элементарных частиц, у которых массы и другие физические характеристики имеют те же величины, что и у частиц, а некоторые характеристики, например электрический заряд или магнитный момент, противоположны по знаку. Почти все… … Современная энциклопедия

    Античастицы - АНТИЧАСТИЦЫ, “двойники” элементарных частиц, у которых массы и другие физические характеристики имеют те же величины, что и у частиц, а некоторые характеристики, например электрический заряд или магнитный момент, противоположны по знаку. Почти… … Иллюстрированный энциклопедический словарь

    АНТИЧАСТИЦЫ - совокупность элементарных и многих фундаментальных частиц, масса и (см.) которых точно равны массе и спину данной частицы, а электрический заряд, магнитный момент и др. подобные характеристики одинаковы с теми же характеристиками частицы, но… … Большая политехническая энциклопедия

    Античастица частица двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от неё знаками некоторых характеристик взаимодействия (зарядов, таких как электрический и цветовой заряды, барионное и… … Википедия

– двойники обычных элементарных частиц, которые отличаются от последних знаком электрического заряда и знаками некоторых других характеристик. У частицы и античастицы совпадают массы, спины, времена жизни. Если частица характеризуется и другими внутренними квантовыми характеристиками, имеющими знак, то у античастицы величины этих характеристик те же, но знаки противоположны. Если частица нестабильна (испытывает распад), то нестабильна и античастица, причём времена жизни у них совпадают и совпадают способы распада (с точностью до замены в схемах распада частиц на античастицы).
Обычное вещество состоит из протонов (р), нейтронов (n) и электронов (е -). Антивещество состоит из их античастиц – антипротонов (), антинейтронов () и антиэлектронов (позитронов е +). Выбор того, какие частицы считать частицами, а какие античастицами, условен и определяется соображениями удобства. Античастицей античастицы является частица. При столкновении частица и античастица исчезают (аннигилируют), превращаясь в гамма-кванты.
В некоторых случаях (например, фотон или π 0 -мезон и др.) частица и античастица полностью совпадают. Это связано с тем, что фотон и π 0 -мезон не имеет электрического заряда и других внутренних характеристик со знаком.

Характеристика Частица Античастица
Масса M M
Электрический заряд +(-)Q -(+)Q
Спин J J
Магнитный момент +(-)μ -(+)μ
Барионное число +B -B
Лептонное число +L e , +L μ , +L τ -L e , -L μ , -L τ
Странность +(-)s -(+)s
Очарование (Charm) +(-)c -(+)c
Bottomness +(-)b -(+)b
Topness +(-)t -(+)t
Изоспин I I
Проекция изоспина +(-)I 3 -(+)I 3
Четность +(-) -(+)
Время жизни T T

Схема распада


Зарядово сопряженная

Антивещество состоит из античастиц – антипротонов , антинейтронов и антиэлектронов - позитронов е + . Частицы и античастицы равноправны. Выбор того, какие частицы считать частицами, а какие античастицами, условен и определяется соображениями удобства. В наблюдаемой части Вселенной вещество состоит из отрицательно заряженных электронов, положительно заряженных протонов и нейтронов.
При столкновении электрона и позитрона они исчезают (аннигилируют), превращаясь в гамма-кванты. При аннигиляции сильновзаимодействующих частиц, например, протона и антипротона, образуется несколько мезонов π + , π - , π 0 , K + , K - , K 0 .

Антивещество - материя, построенная из античастиц. Существование античастиц было впервые предсказано в 1930 году английским физиком П. Дираком. Из уравнения Дирака для релятивистского электрона следовало второе решение для его двойника, имеющего ту же массу и положительный электрический заряд. В то же время была известна лишь одна положительно заряженная частица - протон, резко отличавшийся по своим свойствам от электрона. Теоретики стали придумывать хитроумные объяснения этих различий, но вскоре выяснилось, что протон не имеет ничего общего с частицей, предсказанной Дираком. В 1932 году положительно заряженные позитроны обнаружил в космических лучах американский физик К. Андерсон. Это открытие явилось блестящим подтверждением теории Дирака.

В 1955 году на новом ускорителе в Беркли Э. Сегре, О. Чемберлен и другие обнаружили антипротоны, рожденные в столкновении протонов с ядрами медной мишени. До этого протон с отрицательным зарядом долго и безуспешно разыскивался в космических лучах. В 1956 году был открыт и антинейтрон. Сейчас известно уже множество частиц, и почти всем им соответствуют античастицы.

Частицы и античастицы имеют одинаковую массу, время жизни, спин, но различаются знаками всех зарядов: электрического, барионного, лептонного и т. д. Это следует из общих принципов квантовой теории поля и подтверждается надежными экспериментальными данными.

С современной точки зрения элементарные частицы разбиваются на две группы. Первая из них - частицы с полуцелым спином: заряженные лептоны e - , m - , t - , соответствующие им нейтрино и кварки u, d, c, b, t. Все эти частицы обладают и античастицами. Другая группа - это кванты полей с целым спином, переносящие взаимодействия: фотон, промежуточные бозоны слабых взаимодействий, глюоны сильных взаимодействий. Некоторые из них истинно нейтральны (g , Z 0), то есть все их квантовые числа равны нулю и они идентичны своим античастицам; другие (W + , W -) также образуют пары частица - античастица. Легко теперь увидеть, что все барионы, состоящие из трех кварков, должны иметь античастицы, например: нейтрон имеет состав (), антинейтрон - (). Мезоны состоят из кварка и антикварка и, вообще говоря, также имеют античастицы, например: p - - мезон состоит из кварков (), а p + мезон состоит из кварков (). В то же время имеются мезоны, симметричные относительно замены кварков на антикварки (например, p 0 , r , h - мезоны, куда входят пары кварков , и ); также мезоны будут истинно нейтральными.

Характерная особенность поведения частиц и античастиц - их аннигиляция при столкновении. Еще Дирак предсказал процесс аннигиляции электронов и позитронов в фотоны: е - + е + ® g + g . Процессы аннигиляции идут, разумеется, с сохранением энергии, импульса, электрического заряда и т. п. При этом могут рождаться не только фотоны, но и другие частицы; очевидно, что вследствие законов сохранения различных зарядов одновременно рождаются и соответствующие античастицы, как, например, в реакции аннигиляции электрона и позитрона в пару мюонов: е - + е + ® m - + m + . В таких реакциях были открыты “очарованные” и “прелестные” частицы. В аналогичном процессе е - + е + ® t - + t + открыли тяжелый t - лептон. В последние годы процесс аннигиляции все чаще используется как один из самых совершенных методов исследования микромира.

Операция замены частиц на античастицы получила название зарядового сопряжения. Так как истинно нейтральные частицы тождественны своим античастицам, то при операции зарядового сопряжения они переходят сами в себя.

В сильных и электромагнитных взаимодействиях имеется полная симметрия между частицами и античастицами: если возможен какой-то процесс с частицами, то возможен и имеет те же характеристики аналогичный процесс с соответствующими античастицами. Подобно тому как протоны и нейтроны благодаря сильному взаимодействию связываются в ядра, из соответствующих античастиц будут образовываться антиядра.

В 1965 году на ускорителе в США был получен антидейтрон. В 1969 году в Протвино на ускорителе Института физики высоких энергий советские физики открыли ядра антигелия-3, состоящие из двух антипротонов и антинейтрона. Затем были открыты и ядра антитрития - тяжелого антиводорода, состоящие из одного антипротона и двух антинейтронов. В принципе можно представить себе и антиатомы, и даже большие скопления антивещества. Свидетельством присутствия антивещества во Вселенной было мощное аннигиляционное излучение, приходящее из областей соприкосновения вещества с антивеществом.

Ведь аннигиляция только 1 грамма вещества и антивещества приводит к выделению 10 14 Дж энергии, что эквивалентно взрыву средней атомной бомбы в 10 килотонн. Однако астрофизика таких данных пока не имеет, и даже в космических лучах антипротоны встречаются довольно редко. Сейчас уже практически нет сомнений, что Вселенная в основном состоит из обычного вещества.

Но так было не всегда. На ранней стадии развития Вселенной при очень больших температурах около 10 13 К количество частиц и античастиц почти совпадало: на большое количество антипротонов (примерно на каждые несколько миллиардов) приходилось столько же протонов и еще один “лишний” протон. В дальнейшем при остывании Вселенной все частицы и античастицы проаннигилировали, породив в конечном итоге фотоны, а из ничтожного в прошлом избытка частиц возникло все, что нас теперь окружает. Аннигиляционные фотоны, постепенно охлаждаясь, дожили до наших дней в виде реликтового излучения. Отношение современной плотности протонов к плотности реликтовых фотонов (10 -9) и дало сведения о величине избытка частиц над античастицами в прошлом. Если бы этого избытка не было, то произошла бы полная взаимная аннигиляция частиц и античастиц и в результате возникла бы довольно унылая Вселенная, заполненная холодным фотонным газом.

Откуда же взялся этот избыток? Одна из гипотез предполагает, что в начальном состоянии число частиц и античастиц совпадало, но затем из-за особенностей в динамике их взаимодействия возникла асимметрия.

Аннигиляция - это единственный процесс, в котором исчезает обе начальные частицы и вся их масса полностью переходит, например, в энергию фотонов. Никакая другая реакция, используемая в энергетике, таким свойством не обладает. И при делении урана, и в процессах термоядерного синтеза в энергию превращается лишь небольшая часть (порядка десятых долей процента) массы покоя частиц, участвующих в реакции. Поэтому аннигиляция антивещества с веществом даёт в тысячу раз больше энергии, чем при делении такогоже количества урана. Если бы в нашем распоряжении была небольшая планетка из антивещества, то все проблемы с энергетическим кризисом сразу отпали. Предположим мы научились бы переводить всю энергию аннигиляции в электрическую. Тогда для того, чтобы обеспечить планету годовым запасом электроэнергии, надо отколоть от планеты и подвергнуть аннигиляции всего лишь 1000-килограммовый кусок антивещества. Сравните эти 1000 килограмм с сотнями миллионов тонн угля и нефти, которые мы добываем ежегодно, чтобы решить ту же самую задачу!

Сколько энергии выделяется на 1 грамм топлива

1. Аннигиляция вещества и антивещества 10 14 джоулей

2. Деление урана 10 11 джоулей

3. Сжигание угля 2,9 ž 10 4 джоулей

Антивещество было бы идеальным топливом ещё и потому, что оно не загрязняет окружающую среду. После аннигиляции в конечном счёте остаются только фотоны высокой энергии и нейтрино.

Нашу Землю регулярно бомбардирует поток космических лучей - частиц высоких энергий, которые генерируются при различных процессах, происходящих в нашей Галактике. Большую часть этих частиц составляют протоны и ядра гелия.

Но недавно, в 1979 году, в космических лучах были найдены и антипротоны. Об этом сообщили сразу две группы: советские физики из Ленинградского физико-технического института имени А. И. Иоффе и американские учёные из Центра космических полётов имени Л. Джонсона. Позитрон был обнаружен в космических лучах в 1932 году. Такой большой промежуток времени между открытием в космических лучах позитрона и антипротона объясняется тем, что антипротон намного сильнее взаимодействует с веществом, чем позитрон. антипротоны из космоса не успевают дойти до поверхности Земли, они аннигилируют уже в самых верхних слоях атмосферы. Именно поэтому поиск антипротонов в космических лучах представляет собой сложную техническую задачу. Надо поднять детектор как можно выше, к границе атмосферы. Все эксперименты по поиску античастиц в космических лучах были выполнены на аэростатах. Например, в опытах Р. Голдена воздушный шар поднимал на высоту 36 километров примерно 2 тонны аппаратуры.

Но можно ли считать, что эти антипротоны прилетели к нам из Антимира? Вообще говоря, нельзя. В космических лучах есть протоны достаточно высокой энергии, и при столкновении с частицами, например, межзвёздного газа они могут рождать антипротоны в той же самой реакции, что идёт на ускорителях:

Таким образом, сам факт обнаружения антипротонов в космических лучах можно объяснить, не привлекая гипотезы об антимире,

В космических лучах наблюдались обычные ядра многих элементов таблицы Менделеева, вплоть до Урана. Однако ни одного антиядра в космических лучах до сих пор обнаружено не было. Правда пределы, которые были получены в опытах по поиску антиядер ещё не настолько низки, чтобы можно уверенно исключить возможность их существования. Сторонники Антимира считают, что поток ядер антигелия должен быть в 10 раз меньше той величины, которую удалось измерить на сегодняшний день. Предсказываемое значение не слишком мало и в принципе достижимо уже в ближайшем будущем.

Надо сказать, что если бы удалось обнаружить хотя бы одно ядро антигелия, а ещё лучше - антиуглерода, то это бы стало исключительно серьёзным подтверждением гипотезы о существовании Антимира. Дело в том, что вероятность создать антигелий за счет столкновения протонов космических лучей с веществом межзвёздного газа пренебрежимо мала, меньше 10 -11 . В то же время если существуют антизвёзды, то в них антиводород должен перегорать в антигелий, а затем в антиуглерод.

Как бы то ни было, антиядер пока не зарегистрировано, хотя с большой уверенностью отрицать их присутствие в космических лучах нельзя.

У нас нет надёжных доказательств того, что какие-либо частицы Антимира прилетают к нам на Землю. Пока мы не наблюдали ни одного антиядра; результаты по измерению потока антипротонов не могут расцениваться как доказательство существования Антимира - слишком много для этого требуется предположений, которые нуждаются в объяснении и проверки. Вместе с тем наши экспериментальные результаты не настолько полны и точны, чтобы совсем закрыть возможность существования Антимира.

Однако данные по космическим лучам могут наложить некоторые ограничения на примесь антивещества в нашей Галактике. Считается, что почти все космические лучи генерируются в процессах, которые происходят “внутри” нашей Галактики. Поэтому доля антивещества, возможно существующего в Галактике, не должна превышать доли антипротонов и антиядер в космических лучах. Известно, что в космических лучах отношение числа антипротонов к числу протонов приблизительно равно 10 -4 , а отношение числа ядер антигелия к числу протонов по крайней мере меньше 10 -5 .

Отсюда делается вывод: примесь антивещества в Галактике меньше 10 -4 - 10 -5 . Это означает, что экспериментальные данные по космическим лучам не противоречат наличию, грубо говоря, одной антизвезды на каждые 10 - 100 тысяч обычных звёзд. Подчеркнём, что такая оценка отнюдь не является доказательства существования антизвёзд. Совершенно неясно, как могли такие антизвёзды образоваться в нашей Галактике.

Свет от антизвезды нельзя отличить от видимого света обычных звёзд. Однако процессы термоядерного синтеза, который обеспечивает “горение” звёзд, идут по-разному для звёзд и антизвёзд. Если в первом случае реакции термоядерного синтеза сопровождаются испусканием нейтрино, например в таких процессах:

То в антизвёздах аналогичные реакции приводят к вылету антинейтрино:

С экспериментальной точки зрения более выгодно искать громадные потоки антинейтрино, которые могут возникать на последней стадии эволюции антизвёзд. Дело в том, что когда звезда исчерпывает все свои запасы термоядерного топлива, она начинает катастрофически быстро сжиматься под действием своих гравитационных сил. Если масса звезды составляет одну-три массы Солнца, то это сжатие продолжается до тех пор, пока электроны не “вдавятся” внутрь атомных ядер, из которых состоит звезда. Пи этом происходит превращение протонов ядер в нейтроны и испускаются нейтрино:

Когда звезда почти целиком будет состоять из нейтронов, сжатие прекратится, так как силы гравитационного притяжения будут уравновешены мощными силами отталкивания, которые происходят между нейтронами. Происходит образование так называемой нейтронной звезды - стабильного объекта с исключительно большой плотностью и малыми размерами. Радиус нейтронной звезды с массой Солнца порядка 10 километров (радиус Солнца порядка 700 000 километров).

Ясно, что при коллапсе антизвезды должны образоваться антинейтроны, и процесс образования антинейтронной звезды будет сопровождаться испусканием антинейтрино:

Поток таких антинейтрино должен быть исключительно велик, ведь при коллапсе практически каждый из громадного числа протонов звезды, превращаясь в нейтрон, даёт одно нейтрино: число антинейтрино » число антипротонов в антизвезде @ 10 57 .

Уже существующие нейтринные телескопы могут зарегистрировать возникновение такой колоссальной нейтринной вспышки, если она произошла в нашей Галактике.

Используемая литература:

1. Физическая энциклопедия т.1 М.: 1990.

2. М. Саплжников “Антимир реальность?” М.: 1983