Теория

Авральная сигнализация. Требования правил регистра к авральной сигнализации

Авральная сигнализация. Требования правил регистра к авральной сигнализации

Морской лёд -- лёд, образовавшийся в море (океане) при замерзании воды. Так как морская вода солёная, замерзание воды с солёностью, равной средней солёности Мирового океана происходит при температуре около?1,8°C.

Важнейшие свойства морского льда -- пористость и солёность, определяющие его плотность (от 0,85 до 0,94 г/смі). Из-за малой плотности льда льдины возвышаются над поверхностью воды на 1/7 -- 1/10 их толщины. Таяние морского льда начинается при температуре выше?2,3 °C. По сравнению с пресноводным он труднее поддаётся раздроблению на части и более эластичен.

Солёность морского льда зависит от солёности воды, скорости льдообразования, интенсивности перемешивания воды и его возраста. В среднем солёность льда в 4 раза ниже солёности образовавшей его воды, колеблясь от 0 до 15 ‰ (в среднем 3-8‰).

Морской лёд является сложным физическим телом, состоящим из кристаллов пресного льда, рассола, пузырьков воздуха и различных примесей. Соотношение составляющих зависит от условий льдообразования и последующих ледовых процессов и влияет на среднюю плотность льда. Так, наличие пузырьков воздуха (пористость) значительно уменьшает плотность льда. Солёность льда оказывает на плотность меньшее воздействие, чем пористость. При солёности льда 2 ‰ и нулевой пористости плотность льда составляет 922 кг/мі, а при пористости 6 % понижается до 867. В то же время при нулевой пористости увеличение солёности с 2 до 6 ‰ приводит к увеличению плотности льда только с 922 до 928 кг/мі.

Морские льды по степени своей подвижности подразделяются на неподвижные и дрейфующие. Основной формой неподвижного льда является припай, который может образовываться путем естественного замерзания воды или же в результате примерзания к берегу дрейфующего льда любой возрастной категории. К неподвижным льдам относятся такжестамухи - торосистые образования, сидящие на грунте на мелководье или у берега. Все остальные виды морского льда относятся к категории дрейфующих, которые перемещаются под действием ветра и течений. В результате неоднородности полей ветра и течений, различий в толщине и строении ледяных полей и сложного взаимодействия с берегами дрейф ледяных полей, льдин и кусков льда происходит неравномерно. Это приводит к их сталкиваниям, деформациям и разломам.

Дрейфующие льды по сплоченности подразделяются на отдельные льдины, редкий лед, сплоченный лед, очень сплоченный лед и сплошной лед. Движение сплоченных льдов сопровождается деформациями, включающими подвижки и сдвиги ледяных полей и льдин относительно друг друга, вращение льдин, образование торосов, трещин и разводий. В результате перемещений и деформации происходит перераспределение льдов на поверхности моря, изменяется их сплоченность, меняются строение и морфология ледяного покрова.

После сплочения льдов до 9-10 баллов, если вызвавшие его силы продолжают действовать, начинается сжатие, при котором происходят наслоение и торошение льдов. Процесс торошения заключается в разламывании ледяного покрова с последующим наклоном обломков, вплоть до вертикального положения, раздроблении кромок льдин, надвиге льдин одна на другую, нагромождении ледяных валов и гряд. При относительном перемещении ледяных полей образуются длинные прямые гряды торосов из мелкораздробленного льда. Гряды торосов сдвигового происхождения характерны для районов, где наблюдаются существенные различия скоростей дрейфа. На границе припая с подвижным льдом в зависимости от направления дрейфа могут возникать трещины или разводья или же образуются сдвиговые гряды торосов либо торосы сжатия. При малой глубине моря и интенсивном торосообразовании подошвы торосов могут достигать грунта. Такие торосы пропахивают борозды на дне.

В зависимости от причин, вызывающих поступательное движение льдов, выделяют несколько разновидностей дрейфа.Ветровой дрейф возникает под действием ветра. Такой дрейф продолжается некоторое время и после прекращения ветра, так как дрейфующий лед вовлекает в движение верхние слои воды. Скорость ветрового дрейфа морских льдов близка к 1:50 скорости ветра. Направление дрейфа обычно не совпадает с направлением ветра. В арктических морях под действием сил Кориолиса направление дрейфа отклоняется вправо от направления ветра на угол 28°, а в антарктических морях - в противоположную сторону. Во многих морях, например, в Белом, Баренцевом, Беринговом, Охотском и других, важную роль играет приливный дрейф льдов, обусловленный течениями при приливах и отливах.

На направление дрейфа большое влияние оказывают близость береговой линии, наличие островов и отмелей, рельеф дна. В результате одновременного влияния множества факторов дрейф льдов часто бывает неравномерным, отдельные массивы и скопления льдов могут дрейфовать в разных направлениях и с разными скоростями. Границы между ними называются дрейфоразделами, для которых характерно наличие полос тертого льда и поясов торосов.

По стадиям развития льда выделяют несколько так называемых начальных видов льда (в порядке времени образования):

ледяные иглы,

ледяное сало,

внутриводный (в том числе донный или якорный), образующийся на некоторой глубине и находящихся в воде предметах в условиях турбулентного перемешивания воды. Дальнейшие по времени образования виды льда -- ниласовые льды:

нилас, образующийся при спокойной поверхности моря из сала и снежуры (тёмный нилас до 5 см толщиной, светлый нилас до 10 см толщиной) -- тонкая эластичная корка льда, легко прогибающаяся на воде или зыби и образующая при сжатии зубчатые наслоения;

склянки, образующиеся в распреснённой воде при спокойном море (в основном, в заливах, около устьев рек) -- хрупкая блестящая корка льда, которая легко ломается под действием волны и ветра;

блинчатый лёд, образующийся при слабом волнении из ледяного сала, снежуры или шуги или вследствие разлома в результате волнения склянки, ниласа или так называемого молодого льда. Представляет собой пластины льда округлой формы от 30 см до 3 м в диаметре и толщиной 10 -- 15 см с приподнятыми краями из-за обтирания и ударов льдин. Дальнейшей стадией развития льдообразования являются молодые льды, которые подразделяются на серый (толщина 10 -- 15 см) и серо-белый (толщиной 15 -- 30 см) лёд. Морской лёд, развивающийся из молодого льда и имеющий возраст не более одного зимнего периода, называется однолетним льдом. Этот однолетний лёд может быть:

тонким однолетним льдом -- белый лёд толщиной 30 -- 70 см,

средней толщины -- 70 -- 120 см,

толстым однолетним льдом -- толщиной более 120 см. Если морской лёд подвергался таянию хотя бы в течение одного года, он относится к старым льдам. Старые льды подразделяются на:

остаточный однолетний -- не растаявший летом лёд, находящийся вновь в стадии замерзания,

двухлетний -- просуществовавший более одного года (толщина достигает 2 м),

многолетний -- старый лёд толщиной 3 м и более, переживший таяние не менее двух лет. Поверхность такого льда покрыта многочисленными неровностями, буграми, образовавшимися в результате неоднократного таяния. Нижняя поверхность многолетних льдов также отличается большой неровностью и разнообразием формы.

Распространение морских льдов.

Площадь распространения морских льдов меняется по сезонам от 9 до 18 млн кмІ в Северном полушарии и от 5 до 20 млн кмІ в Южном. Максимальное развитие ледяного покрова в Северном полушарии наблюдается в феврале-марте, а в Антарктике - в сентябре-октябре. В целом на земном шаре морские льды с учетом сезонных колебаний покрывают 26,3 млн кмІ при средней толщине покрова около 1,5 м. Морские льды образуются во всех морях Северного Ледовитого океана. Зимой они формируются также в Беринговом, Охотском, Азовском, Аральском и Белом морях, в Финском, Ботническом и Рижском заливах Балтийского моря, в северных частях Японского и Каспийского морей и временами на северо-западном побережье Черного моря.

В Арктике выделяют шесть градаций однолетних и многолетних льдов, различающихся по толщине и времени их существования. Однолетний лед называется тонким при толщине 30-70 см, средней толщины - от 70 до 120 см и толстым - более 120 см. Двухлетние льды имеют толщину 180-280 см, трех- и четырехлетние - 240-280 см. Толщина многолетних льдов достигает 280-360 см. В период максимального развития ледяного покрова в Северном Ледовитом океане многолетние льды занимают 28% общей площади, двухлетние - 25%, однолетние и молодые - 47%.

В Южном полушарии ледяной покров развивается с апреля по сентябрь концентрически вокруг Антарктиды. Многолетние льды там практически не встречаются, а двухлетние занимают менее 25% площади максимального развития льдов.

Ледниковая летопись

Снег, выпадающий на ледник, ложится слоем на его поверхность, причем зимние отложения по строению сильно отличаются от летних. Каждый год новый слой снега погребает под собой прошлогодний, и так - в течение десятков и сотен тысяч лет. Ледник растет, древние слои оказываются все глубже и глубже, и вся ледяная толща разбивается на годовые слои, похожие на годичные кольца деревьев. Так пишется ледниковая летопись, но, для того чтобы ее прочитать, необходимо по крайней мере научиться определять возраст каждого ледникового слоя.

В верхней части ледника, образовавшейся «совсем недавно» - за последние несколько тысяч лет, - возраст слоя определяется без особого труда. Для этого просто подсчитывают годовые слои, состоящие из зимних и летних отложений. С увеличением глубины сделать это становится все труднее, поскольку лед медленно течет. Поэтому при определении возраста древних слоев используют специальные расчеты, учитывающие это движение.

В ледниках записано гораздо больше подробных сведений о былых эпохах, чем в годовых кольцах деревьев. Они могут рассказать ученым о том, какой климат, температура воздуха, атмосфера были на нашей планете не 10 - 20, а 200 - 300 тысяч лет назад. Даже сведения о ветрах, дувших в те далекие эпохи, остаются в памяти ледников. Как же хранится в толще льда вся эта богатейшая информация? Известно, что вода состоит из двух химических элементов - водорода и кислорода. Но кислород и водород бывают разные - «легкие» и «тяжелые», Из так называемых легких изотопов образуется обычная вода, а из тяжелых - тяжелая. Среди множества молекул обычной воды всегда можно найти несколько молекул тяжелой - в природе они, как правило, неразлучны. Но дело в том, что содержание тяжелой воды во льду зависит от температуры, при которой он образовался. Чем выше температура, тем больше в составе льда молекул тяжелой воды. Поэтому, измерив количество тяжелой воды в толще льда, можно достаточно точно узнать, какая температура была в момент его образования. Вместе с водой в толще ледника хранится и атмосферная пыль, которая осела на поверхности льда много тысяч лет назад. Сделав ее анализ, можно узнать, чем был загрязнен воздух в те эпохи, откуда он принесен ветрами, не было ли тогда крупных извержений вулканов и многое другое.

Еще более интересные записи ледниковой летописи касаются состава древней атмосферы. Проблема загрязнения воздуха является одной из насущных проблем современного человечества. А узнать, насколько сильно испортилась атмосфера, можно лишь сравнив ее современный состав с тем, который она имела задолго до появления человека и промышленности. А где же найти древний воздух?

В ледниках. Выпав на поверхность, снег вначале превращается в фирн - рыхлый зернистый лед с большим количеством воздуха.

Уплотняясь и замерзая, фирн образует лед, и содержащиеся в нем пузырьки воздуха плотно закупориваются в ледниковой толще. Выделив эти мельчайшие пузырьки древнего воздуха, ученые делают их химический анализ и определяют, сколько в нем было углекислого газа, кислорода, метана и многих других атмосферных газов.

Самое важное и интересное заключается в том, что всю информацию, записанную в ледниковой летописи, можно читать шаг за шагом, год за годом, отдельно и по порядку анализируя каждый годовой слой льда. Двигаясь сверху вниз, можно проследить, как постепенно изменялись температура, загрязненность и состав земной атмосферы, как колебались климатические условия на Земле в течение сотен тысяч лет. Для того чтобы это узнать, надо пробурить тысячеметровую толщу ледников, достать пробы льда с разных глубин и потом подвергнуть их анализу в научных лабораториях.

Первая скважина во льду была сделана в Альпах в Альпах в 1841 году, а спустя полвека несколько альпийских скважин уже достигали ледникового ложа. В наше время бурение ледников стало обычным занятием исследователей. Глубина некоторых скважин в Гренландии и Антарктиде превысила 2 км.

Бурить лед очень нелегко из-за его пластичности: стоит вынуть буровой снаряд, как стенки скважины быстро смыкаются. Поэтому скважину приходится заполнять незамерзающей жидкостью, которая имеет ту же плотность, что и лед. Обычно для бурения применяют либо электромеханический, либо электротермический способ, когда лед плавят нагреваемой коронкой бура.

Колонка льда, вынимаемая во время бурения из толщи ледника, называется «керн». Его бережно отвозят в специальные лаборатории-холодильники, где подробно изучают, применяя самые современные методы анализа.

Самые интересные результаты пока принесло бурение на полярной станции «Восток» в Антарктиде, начатое еще в 70-х годах XX века. Станция «Восток» расположена в центральной части Восточной Антарктиды на высоте 3490 м. Средняя годовая температура здесь -56,б С, снега за год накапливается чуть больше 2 см. Толща ледника в 3500 м содержит лед, отложенный на протяжении сотен тысяч лет.

Морские льды классифицируются:

    по происхождению,

    по формам и размерам,

    по состоянию поверхности льда (ровный, торосистый),

    по возрасту (стадии развития и разрушения),

    по навигационному признаку (проходимость льдов судами),

    по динамическому признаку (неподвижные и плавучие льды).

По происхождению льды делятся на морские, речные и глетчерные.

Морские льды образуются из морской воды, имеет зеленоватый или белесоватый (при наличии пузырьков воздуха или снега) оттенок.

Пресноводные льды выносятся весной и летом из рек, имеет сероватый или коричневатый оттенок из- за вкраплений взвесей.

Глетчерные льды (материкового происхождения) образуются в результате откалывания ледников, спускающихся в море – айсберги, дрейфующие ледяные острова.

По виду и форме льды делятся на:

    ледяные иглы , образующиеся на поверхности или в толще воды,

    ледяное сало – скопление смерзшихся ледяных игл в виде пятен или тонкого слоя серовато свинцового цвета,

    снежура – вязкая кашеобразная масса, образующаяся при обильном снегопаде на охлажденную воду,

    шуга – скопление комков льда, снежуры и донного льда,

    нилас – тонкая эластичная ледяная корка толщиной до 10 см,

    склянка – тонкий прозрачный лед толщиной до 5 см, образующийся при спокойном море из ледяных кристаллов или сала,

    блинчатый лед – лед, обычно круглой формы диаметром от 30см до 3 м и толщиной до 10 см.

По возрасту лед бывает:

    молодой лед толщиной 15-30 см, имеет серый или серо-белый оттенок,

    однолетний лед – лед, просуществовавший не более одной зимы, толщиной от 30 см до 2 м,.

    двухлетний –лед, достигший к концу второй зимы толщины более 2 м,

    многолетний паковый лед – лед, просуществовавший более 2 лет, толщиной более 3 м, голубого цвета.

По навигационному признаку проходимость льда оценивается по 10 бальной шкале сплоченности льда. Сплоченность (густота) льда – это соотношение площади льдин и промежутков воды между ними в данном районе. Практика ледового плавания показала, что самостоятельное плавание морского судна обычного возможно при сплоченности дрейфующего льда 5-6 баллов.

По динамическому признаку льды делят на неподвижные и плавучие.

Неподвижные льды существуют в виде припая у берегов. Толщина многолетнего припая у берегов Гренландии более 3м, а у берегов Антарктиды десятки и даже сотни метров. Толщина однолетнего припая в Северно-Ледовитом океане около 2–3м, ширина до 500км (море Лаптевых).

Плавучие льды образуются или путём намерзания плавающего льда или в результате откалывания от припая.

Для обозначения любого вида плавучего морского льда применяется термин дрейфующий лед.

Размеры дрейфующих льдов различны: при размерах более 500м в поперечнике их называют ледяными полями, при размерах 100…500м - обломками ледяных полей , при размерах 200…100м - крупногабаритным льдом , при размерах меньше 20м - , мелкобитым льдом .

Движение льда происходит под влиянием ветра или течений, под воздействием которых они меняют свою сплоченность. При ветре, дующем на берег сплоченность дрейфующего льда увеличивается, при ветре, дующем с берега, льды разрежаются. С увеличением скорости течений льды разрежаются, с уменьшением скорости льды скапливаются. Скопление (сжатие) льдов приходится на время смены приливо-отливных течений, и продолжаются 1-2 ч, после чего наблюдается разрежение льдов. При подъеме уровня воды льды разрежаются, а при спаде сплачиваются.

Глетчерные льды – айсберги (ледяные горы) образуются в районах Северно-Ледовитого океана и у берегов Антарктиды. Течениями они выносятся в умеренные широты обеих полушариев. Айсберги достигают иногда огромных размеров. В 1854 г. в районе 44°Ю.Ш. 28°З.Д. встречен айсберг длиною 120км и высотой 90м. Только десятая часть айсберга высится над водою.

Судовая сигнализация является неотъемлемой частью многих систем: энергетической установки, вспомогательных механизмов, общесудовых систем, систем судовождения и др. Основная функция сигнализации – предупреждение обслуживающего персонала о достижении предельных значений некоторых параметров.
Разновидности судовой сигнализации, компоновка и расположение в зависимости от типа судна регламентируются Правилами классификации и постройки морских судов Регистра РФ.
Выделяют следующие системы сигнализации:
Авральная сигнализация . Оборудуется на судах, где объявление аврала голосом или громкоговорителем не может быть слышно одновременно во всех местах, где могут быть люди. Звуковые приборы устанавливаются в машинных помещениях, в общественных местах площадью более 150 кв.м., в коридорах жилых и общественных помещений, на открытых палубах в производственных помещениях. Звуковые приборы снабжаются также световой сигнализацией, и тональность авральной сигнализации отличается от тональности звуковых приборов другой сигнализации.
Система питается от аккумуляторной батареи, размещенной выше палубных перегородок и вне пределов машинных отделений. Действие авральной сигнализации проверяется не реже одного раза в 7 дней, и перед каждым выходом в рейс.
Пожарная сигнализация . В рулевой рубке устанавливается станция пожарной сигнализации с мнемосхемой, с помощью которой быстро определяется место пожара. Система снабжена датчиками — извещателями ручного и автоматического действия.
Автоматические извещатели устанавливаются во всех жилых и служебных помещениях, в кладовых взрывчатых, легковоспламеняющихся и горючих материалов, на постах управления, в помещениях для сухих грузов. В машинных и котельных отделениях с автоматизированным управлением при отсутствии в них постоянной вахты.
Ручные извещатели устанавливаются в коридорах жилых, служебных и общественных помещений, в вестибюлях, в общественных помещениях площадью более 150 кв.м., в производственных помещениях, на открытых палубах в районе расположения грузовых люков.
В системе должно быть предусмотрено два вида питания: основное – от судовой сети и резервное – от аккумуляторных батарей. Система пожарной безопасности должна постоянно находиться в действии. Вывод из действия системы для устранения неисправностей или выполнения технического обслуживания допускается с разрешения капитана и с предварительным уведомлением вахтенного помощника. Один раз в месяц проверяются по одному излучателю в каждом луче.
Предупредительная сигнализация объемного пожаротушения. Оборудуется в машинно-котельных отделениях, трюмах с сухими грузами, в которых находятся или могут находиться люди. С помощью звукового и светового сигналов персонал предупреждается о пуске в действие системы объемного пожаротушения. Сигналы подаются при ручном и дистанционном пуске системы. Система питается от той же аккумуляторной батареи, что и пожарная сигнализация. Система должна постоянно находиться в действии.
— Аварийно-предупредительная сигнализация (АПС). Оборудуется на всех самоходных судах и предназначена для сигнализации состояния энергетической установки, работы вспомогательных механизмов. Компонуется в зависимости от типа судна, уровня автоматизации и т.д. На автоматизированных судах применяют обобщенную аварийно-предупредительную сигнализации (ОАПС), которая подает сигналы не только в машинном отделении и в ЦПУ, но и на внешних объектах – рулевой рубке, каюте механиков и др. Проверяется перед каждым выходом судна и периодически в течении вахты.

— Сигнализация о наличии воды в льялах и сточных колодцах трюмов. Оборудуется на различных судах и обязательном порядке на электродах для сигнализации уровня воды под гребными электродвигателями. Постоянно находится в действии, проверяется не реже раза за вахту.
— Сигнализация закрытия водонепроницаемых дверей. Устанавливается на тех судах, на которых предусмотрено деление помещений судна на водонепроницаемые отсеки и имеются водонепроницаемые двери. Сигнализация проверяется вместе с проверкой дверей не реже одного раза в неделю, и перед каждым выходом в рейс.
— Бытовая сигнализация (каютная, медицинская). Устанавливается на тех судах, где она необходима, чаще пассажирских. Проверяется не реже раза в месяц.

Суда, на которых объявление аврала голосом или иным средством не может быть слышно одновременно во всех местах, где могут находиться люди, должны оборудоваться электрической авральной сигнализацией, обеспечивающей хорошую слышимость сигналов во всех таких местах.

По Правилам Регистра, звуковые приборы должны устанавливаться в следующих местах:

1. в машинных помещениях;

2. в общественных помещениях, если их площадь превышает 150 м2;

3. в коридорах жилых, служебных и общественных помещений;

4. на открытых палубах;

5. в производственных помещениях.

Система авральной сигнализации должна питаться от судовой сети, а также от шин аварийного распределительного щита.

Допускается питание авральной сигнализации от судовой сети и от отдельной аккумуляторной батареи при наличии устройств для автоматического переключения цепей авральной сигнализации на аккумуляторную батарею. В этом случае не требуется питания от аварийного и переходного источников электрической энергии. Емкость батареи должна соответствовать работе сигнализации в течение 15 мин

Система авральной сигнализации должна обеспечиваться непрерывным питанием независимо от того, находится батарея аккумуляторов в положении зарядки или разрядки.

Звуковые приборы авральной сигнализации должны располагаться таким образом, чтобы, сигнал был четко слышен при шуме в данном помещении. Звуковые приборы, установленные в помещениях с большой интенсивностью шумов, должны снабжаться световой сигнализацией. В машинно-котельных отделениях устанавливаются колокола громкого боя с дополнительной световой сигнализацией.

Тональность приборов авральной сигнализации должна отличаться от тональности приборов других видов сигнализации.

Звуковые сигналы (за исключением колокола) должны иметь частоту сигнала от 200 до 2500 Гц. Могут быть предусмотрены средства регулирования частоты звуковых сигналов в указанных пределах.

Авральная сигнализация должна приводиться в действие при помощи двухполюсного замыкателя с самовозвратом из рулевой рубки и из помещения, предназначенного для несения вахтенной службы при стоянке в порту, если оно имеется.

Электрические звонки бывают двух типов: работающие на «обрыв» цепи (типа ЗВОФ) и на короткое замыкание (типа ЗВКФ). На рисунке представлены схемы включения звонков обоих типов. При работе на обрыв (рис. а) контакт прерывателя 5 разрывает цепь электромагнита L звонка при притягивании якоря и опять замыкает его на возврате якоря в исходное положение. Для улучшения коммутации параллельно прерывателю включен конденсатор С. В звонке, работающем на короткое замыкание (рис. б), при притягивании якоря катушки электромагнита шунтируются контактом прерывателя. Цепь питания при этом замыкается накоротко. Вследствие этого звонки на короткое замыкание можно включать только последовательно с каким-либо резистором или сигнальной лампой.



Ревуны и трещетки устроены так же, как и звонки. Ревущий звук получается в результате частых ударов бойка о мембрану. Для усиления звука применяется рупор.

У трещетки частота ударов бойка о мембрану меньше, чем у ревуна. Это достигается насадкой медных гильз на сердечник электромагнитов.

В помещениях с высоким уровнем шума звуковая сигнализация дублируется световой. Дублирующая световая сигнализация, как правило, делается прерывистой, мигающей. Для этой цели в схемах сигнализации используются специальные световые прерыватели, принципиальная схема которых показана на рис.

При включении цепи акустического (звукового) сигнала получает питание электромагнитная катушка реле KV1, которое срабатывает и, замыкая свои кон- такты KV1, включает сигнальную лампу HL. Загорается световой сигнал. Одновременно получает питание электромагнитная ка- тушка реле KV2, которое сработает и разомкнет свой контакт KV2, обесточивая цепь электромагнитной катушки реле KV1. Реле KV1 разомкнет свои контакты в цепи сигнальной лампы HL и в цепи электромагнитной катушки реле KV2. Сигнальная лампа HL гаснет, но одновременно получает питание катушка реле KV1. Замыкающие контакты реле KV1 снова включат сигнальную лампу HL и подключат катушку реле KV2. Этот процесс будет повторяться до тех пор, пока включена цепь звукового сигнала.

Суда, на которых объявление аврала голосом или иным средством не может быть слышно одновременно во всех местах, где могут находиться люди, должны оборудоваться электрической авральной сигнализацией, обеспечивающей хорошую слышимость сигналов во всех таких местах.

Звуковые приборы должны устанавливаться в следующих местах:

В машинных помещениях;

В общественных помещениях, если их площадь превышает 150 м 2 ;

В коридорах жилых, служебных и общественных помещений;

На открытых палубах;

В производственных помещениях.

Система авральной сигнализации должна питаться от судовой сети, а также от шин аварийного распределительного щита.

Допускается питание авральной сигнализации от судовой сети и от отдельной аккумуляторной батареи при наличии устройств для автоматического переключения цепей ав­ральной сигнализации на аккумуляторную батарею. В этом случае не требуется питания от аварийного и переходного источников электрической энергии.

Система авральной сигнализации должна обеспечиваться непрерывным питанием не­зависимо от того, находится батарея аккумуляторов в положении зарядки или разрядки.

В случае применения отдельной аккумуляторной батареи для авральной сигнализации допускается питать от нее также другие устройства внутренней связи и сигнализации, если емкость батареи достаточна для одновременного питания всех потребителей в течение не менее 3 ч, а также, если эти устройства выполнены таким образом, что повреждение одной цепи ненарушает работы других цепей, если для этих устройств не предусмотрено более длительного времени питания.

Звуковые приборы авральной сигнализации должны располагаться таким образом, чтобы, сигнал был четко слышен при шуме в данном помещении. Звуковые приборы, установленные в помещениях с большой интенсивностью шумов, должны снабжаться световой сигнализацией.

Тональность приборов авральной сигнализации должна отличаться от тональности приборов других видов сигнализации.

Авральная сигнализация должна приводиться в действие при помощи двухполюсного замыкателя с самовозвратом из рулевой рубки и из помещения, предназначенного для несе­ния вахтенной службы при стоянке в порту, если оно имеется.

Если авральный сигнал не слышен из рулевой рубки или из поста, с которого он пода­ется, после замыкателя должна быть установлена сигнальная лампа, информирующая о при­ведении в действие авральной сигнализации. Замыкатели должны иметь надписи, указывающие их назначение.

В цепях системы авральной сигнализации не должны устанавливаться другие комму­тационные устройства, кроме замыкателя. При установке на распределительном щите систе­мы авральной сигнализации выключатель должен иметь блокировку во включенном положе­нии или предохраняться другим способом от доступа к нему посторонних лиц.


Допускается использование промежуточных контакторов, включаемых замыкателем, но не более одного контактора в каждом луче.

Звуковые приборы, замыкатели и распределительные устройства системы авральной сигнализации должны иметь хорошо видимые отличительные обозначения.

При установке на судне звуковых приборов авральной сигнализации необходимо, чтобы сеть состояла не менее чем из двух лучей, включаемых одним замыкателем, с таким расположением звуковых приборов, чтобы в помещениях с большей площадью (машинных и котельных помещениях, цехах по обработке продуктов промысла и лова и других) устанав­ливались звуковые приборы от разных лучей.

Правила технической эксплуатация систем служебной внутренней связи и авральной сигна­лизации

В перерывах между телефонными соединениями аппараты безбатарейной телефонной связи должны находиться в положении готовности к приему вызова всеми сигналами, уста­новленными в данном телефонном пункте.

Все переключатели должны находиться в исходном положении, а микротелефонные трубки должны быть установлены на аппараты. Натяжение и перекручивание шнуров не до­пускаются.

Действие телефонов парной связи «мостик-машина» необходимо проверять ежеднев­но; остальных телефонов безбатарейной связи - не реже одного раза в месяц.

Во время стоянок судна старший электромеханик должен принять меры по подключению судовой автоматической телефонной станции (АТС) к береговой телефонной сети (при наличии соответствующих береговых устройств для подключения).

Действие звонковой сигнализации необходимо проверять:

Авральной - не реже одного раза в 10 дней и перед выходом судна в рейс с предваритель­ным уведомлением вахтенного помощника.

Обиходной и вахтенной - не реже одного раза в месяц.

Примечание. Использование авральной сигнализации не по прямому назначению за­прещается;

Требования Правил Регистра к сигнализация обнаружения пожара и сигнализация предупреждения о пуске системы объемного пожаротушения

Автоматической сигнализацией обнаружения пожара должны быть оборудованы сле­дующие суда: пассажирские; грузовые валовой вместимостью 500 рег. т и более; все суда, на которых в машинных помещениях категории А отсутствует постоянная вахта.

В помещениях, защищенных спринклерной системой, установка сигнализации обнаружения пожара не требуется.

На судах, указанных выше, автоматической сигнализацией обнаружения пожара должны быть оборудованы следующие помещения (кроме помещений, в которых полностью отсутствует горючая среда):

Все жилые и хозяйственные (кроме сангигиенических, саун и провизионных кла­довых);

Кладовые судовых запасов взрывчатых веществ, кладовые легко воспламеняющихся и горючих материалов, сварочные мастерские;

Посты управления (за исключением ЦПУ, аккумуляторных и агрегатных);

Недоступные грузовые помещения на пассажирских судах;

Грузовые помещения судов, перевозящих не навалочные опасные грузы, включая суда валовой вместимостью менее 500 рег. т;

Помещения специальной категории;

Закрытые грузовые помещения с горизонтальным способом погрузки и выгрузки (типа ро-ро);

Закрытые грузовые помещения, приспособленные для перевозки автотранспорта с топливом в баках;

Коридоры, трапы и пути эвакуации в районе жилых помещений на пассажирских судах со спринклерной системой и на грузовых судах при конструктивной противопожарной защите по способам 1С и II С;

Помещения инсинераторов (устройств для сжигания жидких и твердых отходов);

Пожароопасные зоны (такие, как места расположения или выгородки сепараторов, установок жидкого топлива и т.п.), не находящиеся под непрерывным наблюдением с места несения вахты в машинных помещениях категории А с постоянной вахтой;

В системах автоматической сигнализации обнаружения пожара могут применяться извещатели, срабатывающие под влиянием теплового или дымового эффекта либо дейст­вующие на других принципах, одобренных Регистром.

Световые извещатели могут приме­няться только в дополнение к дымовых или тепловым.

Тепловые извещатели в помещениях с нормальной температурой воздуха должны срабатывать в интервале температур 54...78°С, а в помещениях с высокой температурой воздуха, таких, как некоторые районы машинных помещений категории А, сушильные, камбузы, сауны и т.п. - в интервале 80...100°С при скорости повышения температуры не более 1 °С/мин.

Извещатели, устанавливаемые в дымоходах и воздуховодах котлов, должны срабаты­вать при температуре, превышающей максимальную рабочую температуру дымовых газов на 100° С.

Тепловые извещатели должны надежно работать при температуре по крайней мере на 5 °С выше температуры настройки чувствительного элемента.

В помещениях, указанных в п. .9, должны устанавливаться дымовые извещатели, сра­батывающие до того, как плотность дыма достигнет значения, при котором ослабление света превысит 12,5% на 1м, но не раньше, чем плотность дыма достигнет значения, при котором ослабление света превысит 2% на 1м.

Дымовые извещатели, устанавливаемые в машинных помещениях категории А, должны срабатывать при такой плотности дыма, при которой ослабление света достигает не более 50% на 1 м.

В машинных помещениях категории А могут также применяться извещатели, обна­руживающие очаг пожара по появлению пульсаций температуры (теплоимпульсные). Изве­щатели должны быть настроены на частоту пульсаций температуры от 1,9 - 2,3 Гц и выше и срабатывать при превышении амплитуды на (2±0,5)°С независимо от температуры помеще­ния.

Автоматические извещатели должны быть такого типа, чтобы после испытаний на срабатывание они возвращались в режим нормальной работы без замены каких-либо элемен­тов.

Извещатели должны устанавливаться в каждом защищаемом помещении, ограничен­ном переборками, палубами и выгородками, в верхней части таким образом, чтобы обеспе­чивался беспрепятственный приток к ним продуктов сгорания. Эти извещатели должны быть защищены от ударов и подобных повреждений. Извещатели, установленные на подволоке, должны отстоять от переборок не менее чем на 0.5 м.

При защите машинных помещений теплоимпульсными извещателями максимальная площадь палубы, обслуживаемая извещателем, должна составлять 50 м, а расстояние между центрами- не более 6 м.