Проводка

Растения образующие семена. Семенные растения

Растения образующие семена. Семенные растения

Электроны проводника свободно перемещаются в пределах его границ, а при поглощении достаточной энергии могут и выходить наружу, преодолев стенку потенциальной ямы у поверхности тела (рис. 10.6). Это явление называется эмиссией электронов (в отдельном атоме аналогичное явление называется ионизацией).

При Т = 0 энергия, необходимая для эмиссии, определяется разностью между уровнями W = 0 и уровнем Ферми Е Р (рис. 10.6) и называется работой выхода. Источником энергии могут быть фотоны (см. параграф 9.3), вызывающие фотоэмиссию (фотоэффект).

Рис. 10.6

Причиной термоэлектронной эмиссии является нагревание металла. При искажении функции распределения электронов (см. рис. 10.5, б) се «хвост» может выйти за пределы среза потенциальной ямы, т.с. у некоторых электронов хватает энергии, чтобы покинуть металл. Обычно этим пользуются для поставки электронов в вакуум.

Простейший прибор, использующий термоэмиссию, - электровакуумный диод (рис. 10.7, а). Его катод К накаляется от источника ЭДС ? и и испускает электроны, которые создают ток иод действием электрического ноля между анодом и катодом. Электровакуумный диод отличается от фотодиода в основном источником энергии, вызвавшей эмиссию электронов, поэтому их вольтамперные характеристики похожи. Чем больше напряжение U a между анодом и катодом, тем большую часть электронов из их облака у катода вытягивает электрическое поле в единицу времени. Поэтому с ростом напряжения U a ток I растет. При некоторых напряжениях ноле вытягивает уже все электроны, покидающие катод, и дальнейший рост напряжения к росту тока нс приводит - происходит насыщение.


Рис. 10.7

ВОПРОС. Почему ток насыщения при Т, больше, чем при Г, (рис. 10.7, б)? ОТВЕТ. При Т 2 > Г, больше электронов покидает катод в единицу времени.

При обратной полярности приложенного напряжения («минус» подключен к аноду, а «плюс» - к катоду) электроны не ускоряются, а тормозятся, поэтому электровакуумный диод способен пропускать ток только в одну сторону, т.е. он обладает односторонней проводимостью. Это позволяет применять его для выпрямления тока (рис. 10.7, в): во время действия положительной полуволны напряжения диод пропускает ток, а во время отрицательной - нет.

В 1907 г. американец Ли де Форест дополнил диод третьим электродом- сеткой, который позволил усиливать электрические сигналы. Такой триод стали затем дополнять и другими электродами, что позволило создавать разного рода усилители, генераторы и преобразователи. Это обусловило бурное развитие электротехники, радиотехники и электроники. Далее эстафету подхватили полупроводниковые приборы, вытеснившие электровакуумные лампы, но в ЭЛТ, рентгеновских трубках, электронных микроскопах и некоторых вакуумных лампах термоэмиссия ио-нрежнему актуальна.

Еще одним источником эмиссии электронов может быть бомбардировка поверхности материала различными частицами. Вторичная электрон-эле- ктронная эмиссия возникает в результате ударов внешних электронов, передающих часть своей энергии электронам вещества. Такую эмиссию используют, например, в фотоэлектронном умножителе (ФЭУ) (рис. 10.8, а). Его фотокатод 1 испускает электроны под действием света. Их ускоряют в направлении электрода (динода) 2, из которого они выбивают вторичные электроны, те ускоряются к диноду 3 и т.д. В результате первичный фототок умножается до такой степени, что ФЭУ способен регистрировать даже отдельные фотоны.

Рис. 10.8

Тот же принцип применили и в ЭОП (см. параграф 9.3) нового поколения. Он содержит сотни тысяч ФЭУ (по числу пикселей, формирующих изображения объектов), каждый из которых представляет собой металлизированный микроканал шириной ~ 10 мкм. По этому каналу так же зигзагообразно, как свет в оптоволокне и как электроны в ФЭУ, движутся электроны, размножаясь при каждом соударении со стенками канала вследствие вторичной эмиссии. Поскольку траектория электронов пренебрежимо мало отличается от прямолинейной (лишь в пределах ширины канала), то пакет таких каналов, расположенный между фотокатодом и экраном (рис. 10.8, б), избавляет от необходимости фокусировки фотоэлектронов (сравните с рис. 9.4). Каждый канал осуществляет не только размножение электронов, но и перенос их в требуемую точку, что обеспечивает четкость изображения.

При вторичной ионно-электронной эмиссии первичными частицами - носителями энергии являются ионы. В газоразрядных приборах они обеспечивают воспроизводство электронов из катода, которые затем размножаются путем ионизации молекул газа (см. параграф 5.9).

Существует и весьма экзотичный вид эмиссии, происхождение которого объясняется принципом неопределенности Гейзенберга. Если у поверхности металла есть электрическое поле, ускоряющее электроны, то на потенциальный уступ 1 накладывается прямая еЕх (2 на рис. 10.6), и уступ превращается в барьер 3. Если полная энергия электрона равна W, т.е. на АW меньше высоты барьера, то по классическим представлениям «взять» его, т.е. выйти наружу, он не может. Однако по квантовым представлениям электрон - это еще и волна, которая не только отражается от оптически более плотной среды, но и преломляется. При этом наличие функции у внутри барьера означает конечную вероятность обнаружить там электрон. На «классический» взгляд, это невозможно, так как полная энергия электрона W, а ее составляющая - потенциальная энергия - равна в этой области W + AVK, т.е. часть оказывается больше целого! В то же время существует некоторая неопределенность AVK энергии, которая зависит от времени At пребывания электрона внутри барьера: AWAt >h. С уменьшением At: неопределенность AW может достичь требуемой величины, и решение уравнения Шредингера дает конечные значения | р | 2 с внешней стороны барьера, т.е. существует вероятность того, что электрон выйдет наружу, не перепрыгивая через барьер! Она тем выше, чем меньше AW п At.

Эти выводы подтверждаются па практике наличием туннельного, или подбарьерного, эффекта. Он даже находит применение, обеспечивая эмиссию электронов из металла в полях напряженностью ~10 6 -10 7 В/см. Поскольку такая эмиссия происходит без нагревания, облучения или бомбардировки частицами, ее называют автоэлектронной. Обычно она происходит со всевозможных остриев, выступов и т.и., где напряженность ноля резко возрастает. Она может привести и к электрическому пробою вакуумного промежутка.

В 1986 г. Нобелевской премией по физике отмечено основанное на туннельном эффекте изобретение сканирующего электронного микроскопа. Ее лауреаты - немецкие физики Э. Руска и Г. Бинниг и швейцарский физик Г. Рорер. В этом приборе тонкая игла сканирует вдоль поверхности на малом от нее расстоянии. Возникающий при этом туннельный ток несет информацию об энергетических состояниях электронов. Таким образом удается получить изображение поверхности с атомной точностью, что особенно важно в микроэлектронике.

Туннельный эффект ответствен за рекомбинацию при ионно-электронной эмиссии (см. выше), за электризацию трением, при которой электроны из атомов одного материала туннелируют к атомам другого. Он определяет и обобществление электронов при ковалентной связи, ведущей к расщеплению энергетических уровней (см. рис. 10.5, а).

Пробега первичных электронов может превышать толщину эмиттера. В этом случае вторичная электронная эмиссия наблюдается как с бомбардируемой поверхности (вторичная электронная эмиссия на отражение), так и с противоположной стороны эмиттера (вторичная электронная эмиссия на прострел). Поток вторичных электронов состоит из упруго и неупруго отражённых первичных электронов и истинно вторичных электронов - электронов эмиттера, получивших в результате их возбуждения первичными или отражёнными неупруго электронами энергию и импульс, достаточные для выхода из эмиттера. Энергетич. спектр вторичных электронов лежит в диапазоне энергий от Е = 0 до энергии первичных электронов Еп (рис. 1). Тонкая структура энергетических спектра обусловлена оже-эффектом и характеристическими потерями энергии на возбуждение атомов эмиттера.

Рис. 1. Энергетический спектр вторичных электронов: (I) упруго отражённых, (II) неупруго отражённых, (III) истинно вторичных; тонкая структура спектров, обусловленная (а) оже-электронами и (б) характеристическими потерями энергии на возбуждение атомов эмиттера (Е - энергия электронов; Е макс и ΔЕ макс - максимальная энергия и полуширина максимума спектра истинно вторичных электронов; Е п - энергия первичных электронов).

Количественно вторичная электронная эмиссия характеризуется коэффициентом σ, равным:

σ = I 2 /I 1 =δ + η + r,

где I 1 и I 2 - токи, создаваемые первичными и вторичными электронами; δ - коэффициент истинной вторичной электронной эмиссия; η, r - коэффициенты соответственно неупругого и упругого отражения первичных электронов. Указанные коэффициенты зависят от параметров пучка первичных электронов (Е п, угла падения φ пучка на образец) и характеристик эмиттера (элементного состава, электронного строения, кристаллической структуры, состояния поверхности и др.).

Механизмы упругого отражения электронов различны в областях малых (0-100 эВ), средних (0,1-1 кэВ) и больших (1-100 кэВ) энергий Е п. В области малых Е п упругое отражение зависит от электронного строения приповерхностной области эмиттера, рассеяния электронов на отдельных атомах, резонансного упругого рассеяния электронов вблизи порогов коллективных и одночастичных возбуждений электронов твёрдого тела. Абсолютные значения коэффициента r в этой области максимальны (при E п ≤10 эВ r может достигать величины 0,5 для металлов и 0,7-0,8 для диэлектриков). В области средних Е п в большинстве случаев на зависимости r(Е п) наблюдается широкий максимум при значениях Ε п = Ζ 2 /8 (Ζ - атомный номер вещества эмиттера). Механизм упругого отражения в этом диапазоне Е п в значительной мере определяется упругим рассеянием электронов на атомах твёрдого тела; абсолютные значения r не превышают 0,05. Для монокристаллов зависимость r(Е п) в области средних Е п имеет ярко выраженную тонкую структуру, обусловленную дифракцией электронов на кристаллической решётке эмиттера. В диапазоне больших значений Е п r уменьшается с ростом Е п. Глубина выхода упруго отражённых электронов зависит от Е п и изменяется от долей до десятков нм.

Неупругое отражение электронов определяется рассеянием и торможением первичных электронов при их движении в веществе эмиттера. Зависимость η(Е п) различна для лёгких и тяжёлых веществ (рис. 2). Коэффициент η увеличивается с ростом φ; наиболее ярко эта закономерность выражена для веществ с малыми Ζ. Средняя энергия неупруго отражённых электронов Е н = 0,31 Е п и падает с уменьшением Е п, а их средняя глубина выхода не превышает половины глубины проникновения первичных электронов при данном значении Е п.

Эмиссия истинно вторичных электронов зависит от электронного строения эмиттера, существенно влияющего на потери энергии электронов и их выход из эмиттера. Вероятность выхода возбужденных истинно вторичных электронов зависит от высоты потенциального барьера на поверхности эмиттера, определяемого величиной работы выхода электронов. В металлах вследствие взаимодействия с электронами проводимости истинно вторичные электроны теряют много энергии и не могут преодолеть потенциальный барьер на поверхности. Для них характерна небольшая глубина выхода d истинно вторичных электронов и сравнительно малые значения коэффициента σ макс (0,4-1,8). В диэлектриках с широкой запрещённой зоной и малым сродством к электрону внутренние истинно вторичные электроны несут малые потери энергии, так как теряют её в основном только на взаимодействие с фотонами. Эти вещества имеют большие значения d (20-120 нм) и коэффициент σ макс (4-40). Наибольшие значения d (20-1500 нм) и σ макс ≥1000 имеют эмиттеры с отрицательным сродством к электрону. Создание сильного электрического поля (10 7 -10 8 В/м) в диэлектриках вызывает увеличение σ макс до 100 (вторичная электронная эмиссия, усиленная полем).

Вторичная электронная эмиссия широко используется в методах диагностики поверхности твёрдых тел. Сканирующая электронная микроскопия, используя различные группы вторичных электронов для визуализации исследуемого объекта, позволяет исследовать топографию, фазовый состав, кристаллическую структуру и другие свойства поверхности. Оже-электроны несут информацию об элементном составе, химическом состоянии поверхностных атомов.

Спектры электронов с характеристическими потерями энергии (в диапазоне единицы - сотни мэВ) дают информацию о фононных колебаниях в твёрдых телах, характеризуют колебательные моды адсорбированных атомов и молекул. Электроны с большими потерями энергии (обусловленными межзонными переходами, возбуждением плазменных колебаний в твёрдых телах и ионизацией атомов вещества эмиттера) используются для получения информации об элементном составе и электронном строении приповерхностной области эмиттеров.

Вторичная электронная эмиссия применяется для усиления электронных потоков в электронно-вакуумных приборах (вторичные и фотоэлектронные умножители, усилители яркости изображения и т.п.). Вторичная электронная эмиссия играет важную роль в работе ряда высокочастотных приборов.

Лит.: Бронштейн И. М., Фрайман Б. С. Вторичная электронная эмиссия. М., 1969; Шульман А.Р., Фридрихов С. А. Вторично-эмиссионные методы исследования твердого тела. М., 1977.

В узлах кристаллической решетки металлов находятся положительные ионы, а между ними свободно движутся электроны. Они как бы плавают по всему объему проводника, так как силы притяжения к положительным ионам решетки, действующие на свободные электроны, находящиеся внутри металла, в среднем взаимно уравновешиваются. Действие сил притяжения со стороны положительных ионов на электроны мешает последним выйти за пределы поверхности металла.

Лишь наиболее быстрые электроны могут преодолеть это притяжение и вылететь из металла. Однако совсем покинуть металл электрон не может, так как притягивается положительным поверхностным ионом и тем зарядом, который возник в металле в связи с потерей электрона. Равнодействующая этих сил притяжения не равна нулю, а направлена внутрь металла перпендикулярно его поверхности (рис. 1).

Через некоторое время электрон под действием этих сил может возвратиться в металл. Среди электронов, находящихся вблизи поверхности металла, найдется большое число таких, которые временно будут покидать металл, а затем возвращаться обратно. Этот процесс напоминает испарение жидкости. В конце концов устанавливается динамическое равновесие между покидающими и возвращающимися электронами. Таким образом, на границе металла с вакуумом возникает двойной слой электрических зарядов, поле которого подобно полю плоского конденсатора. Электрическое поле этого слоя можно считать однородным (рис. 2). Разность потенциалов в этом слое называется контактной разностью потенциалов между металлом и вакуумом.

Этот двойной электрический слой не создает поля во внешнем пространстве, но препятствует выходу электронов из металла.

Как показывают расчеты и специально поставленные опыты, толщина этого слоя мала и равна примерно 10 -10 м.

Таким образом, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу A в против сил притяжения со стороны положительного заряда металла и против сил отталкивания от отрицательно заряженного электронного облака. Она приблизительно равна A в = e, где e - заряд электрона. Для этого электрон должен обладать достаточной кинетической энергией.

Минимальную работу A в, которую должен совершить электрон за счет своей кинетической энергии для того, чтобы выйти из металла и не вернуться в него, называют работой выхода .

Работа выхода зависит только от рода металла и его чистоты. Работу выхода принято измерять в электронвольтах (эВ).

Для чистых металлов A в составляет несколько электронвольт. Так, например, для цезия ее значение равно 1,81 эВ, для платины 6,27 эВ.

Выход свободных электронов из металла называется эмиссией электронов . При нормальных внешних условиях электронная эмиссия выражена слабо, так как средняя кинетическая энергия хаотического теплового движения большинства свободных электронов в металлах гораздо меньше работы выхода. Для повышения интенсивности эмиссии следует увеличить кинетическую энергию свободных электронов до значений, равных или больших значения работы выхода. Этого можно достигнуть различными способами. Во-первых, созданием электрического поля очень большой напряженности (E ~ 10 6 В/см), способного вырвать электроны из металла, - холодная эмиссия . Такая эмиссия используется в электронных микропроекторах. Во-вторых, бомбардировкой металла электронами, предварительно разогнанными электрическим полем до очень большой скорости, - вторичная электронная эмиссия . В-третьих, интенсивным освещением поверхности металла - фотоэмиссия . На явлении фотоэмиссии основан внешний фотоэффект и устройство вакуумного фотоэлемента. В-четвертых, нагревание металла - термоэлектронная эмиссия . Электроны, испускаемые нагретым телом, называются термоэлектронами , а само это тело - эмиттером .

ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА

Глава XII

ЭЛЕКТРОВАКУУМНЫЕ ПРИБОРЫ

В связи с автоматизацией производственных процессов всех отраслей промышленности большое значение приобрела промышленная электроника - наука о техническом использовании электронных, ионных и полупроводниковых приборов.
Главная особенность электронных приборов (электронных ламп) состоит в том, что прохождение электрического тока в них связано с перемещением электронов в вакууме, а управление перемещающимися электронами осуществляется электрическим полем.
Ионными приборами называются устройства, в которых электрический ток представляет собой поток электронов и заряженных частиц - ионов в сильно разреженной газовой среде под действием сил электрического поля.
Полупроводниковыми приборами являются такие приборы, в которых электрический ток создается перемещающимися под действием электрического поля электронами и дырками (процессы, связанные с дырочной проводимостью, изложены в § 146 главы XIV) в полупроводниковой среде.

§ 126. Электронная эмиссия

Работа электронных и ионных приборов основана на использовании электронной эмиссии. Последняя заключается в выходе в вакуум или разреженный газ электронов с поверхности металлов. Движение этих электрически заряженных частиц создает ток в электронных и ионных приборах. Основные виды электронной эмиссии, используемые в электронике: термоэлектронная, вторичная электронная и фотоэлектронная.
Термоэлектронная эмиссия. В металлах вокруг каждого атома имеются электроны, слабо связанные с ним. Часть этих электронов, оторвавшихся от своих ядер, находится в беспорядочном движении. Скорость хаотического движения этих свободных электронов зависит от температуры металла: чем выше температура, тем быстрее перемещаются электроны.
При некоторых значениях температуры (900 - 1000° С и выше) скорость движения части электронов становится настолько значительной, что, преодолевая силы притяжения ядер атомов, они вырываются из металла и вылетают за его пределы. Это явление носит название термоэлектронной эмиссии .
У различных металлов количество испускаемых при одинаковой температуре электронов различно. Наибольшей термоэлектронной эмиссией обладают натрий, калий, цезий, барий и некоторые другие металлы.
При очень высоких температурах нагретый металл начинает испаряться и это ограничивает возможность увеличения термоэлектронной эмиссии путем повышения температуры.
Вторичная электронная эмиссия. Если в вакууме на некотором расстоянии от электрода, из которого вылетают электроны, поместить металлическую пластинку и подать на нее положительный потенциал, то вылетающие с поверхности электрода электроны, несущие отрицательный электрический заряд, будут притягиваться к пластине и с большой скоростью ударять в нее. Под действием ударов быстро летящих электронов с поверхности этой пластины будут выбиваться другие электроны, носящие название электронов вторичной эмиссии .
Одной из разновидностей вторичной эмиссии является эмиссия электронов под воздействием бомбардировки материала электрически заряженных частиц - ионов, масса которых значительно больше массы электронов. Вылет электронов с поверхности материалов под действием ионной бомбардировки используется в работе ионных приборов.
Фотоэлектронная эмиссия. Фотоэлектронная эмиссия происходит под воздействием световых, ультрафиолетовых и других лучей, попадающих на поверхность материалов.
Световой поток можно рассматривать как поток мельчайших частиц, носящих название фотонов .
Скорость движения фотонов (скорость света) составляет около 300 000 км/сек . Фотоны, ударяясь о поверхность материала, выбивают из него электроны.
Явление, при котором под воздействием световой энергии из материала вырываются электроны, называется фотоэффектом . Это явление используется в фотоэлементах.