Проводка

Проверка заземления электробезопасность на панели варочной гост. Контур заземления гост

Проверка заземления электробезопасность на панели варочной гост. Контур заземления гост

Определение значений нормативной температуры обратной сетевой воды в нерасчетном режиме

к.т.н., доцент В.И. Рябцев, Г.А. Рябцев, инженер, Курский ГТ

Рациональное использование энергии является актуальной задачей для всех времен. Но это не всегда удается, особенно при нерасчетных и переходных процессах. А переменные тепловые режимы сетей почти совсем не освещены в технической литературе.

В настоящее время теплоснабжение большинства городов осуществляется с температурой сетевой воды в подающих магистралях, заниженной относительно директивного графика 150°/70° или 130°/70°. В таких условиях эксплуатационный персонал лишен возможности определять нормативную температуру возвращаемой обратной сетевой воды (t н о бр). И в силу этого создаются условия бесконтрольного использования теплоты.

Предлагается методика подсчета температуры обратной сетевой воды для переменных и нерасчетных тепловых режимов на основе графика 150°/70°, по которому запроектированы все теплоприемники потребителей и здания. Она наглядно представлена на рисунке, где график 150°/70° трансформирован как зависимость не только температуры воды на подающей магистрали (t пр), но и разности температур подающей и обратной сетевой воды (?t) от температуры наружного воздуха

Из графика видно, что для каждой температуры поступающей сетевой воды соответствует своя нормативная величина (?t H = t пр - t обр), которая также определяется еще и температурой наружного воздуха (t нв). Но как отмечалось выше, очень часто в действительности t пр не совпадает с требуемой по графику t нв. Точки 1 - это начальные условия -фактически температура подающей сетевой воды и реальный мороз. Этим двум точкам по нижней кривой соответствуют свои значения?t! и?t 2 . Обе величины не реальные, т.к. для?t 2 не соблюдено условие фактического более сильного мороза, а?t! не имеет такую высокую температуру t н. Поэтому искомая величина?t H находится между ними?t 2

теплоснабжение вода температура

T 2 - разность температур по графику 150°/70° для фактической температуры подающей сетевой воды;

t н б - температура сетевой воды в отопительной батарее потребителя, определенная по графику 150°/70° для фактического значения t ср нв;

t вн - температура воздуха внутри помещения, принимаемая за + 18 °С;

tф вн - фактическая температура наружного воздуха;

tф б - температура сетевой воды в батарее потребителя, определенная по графику 150°/70°для фактической температуры подающей сетевой воды;

V нв - температура наружного воздуха, взятая по

графику 150°/70° по фактической температуре подающей сетевой воды.

Проверка формулы показала практическое совпадение результатов.

Таким образом, удалось впервые показать, что в любом режиме работы теплосети для любой температуры воды в подающем теплопроводе существует своя нормативная температура возвращаемой обратной сетевой воды. Сравнение с нормативной и фактической температурой обратной сетевой воды является главнейшим рычагом в деле более полного и эффективного использования теплоты сетевой воды и основой глубокого анализа режима работы сети.

Литература

Е.Я.Соколов. Тепловые сети. Москва, 1982 г.

Справочник по теплоснабжению и вентиляции. Под. ред.Щекина. Киев, 1996 г.

Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

График температуры 95-70:

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.

При этом, на выходе они будут иметь 70°C.

Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка


Регулятор отопления

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство , выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.

Таблица с температурным графиком

Режим работы котлов зависит от погоды окружающей среды.

Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:

Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
+10 70 55
+9 70 54
+8 70 53
+7 70 52
+6 70 51
+5 70 50
+4 70 49
+3 70 48
+2 70 47
+1 70 46
0 70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

СНиП

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.

Тепловая нагрузка на отопление и вентиляцию изменяется в за­висимости от температуры наружного воздуха. Расход теплоты на го­рячее водоснабжение не зависит от температуры наружного воздуха. В этих условиях необходимо регулировать параметры и расход тепло­носителя в соответствии с фактической потребностью абонентов.

4.1. Температурный график сетевой воды

При наличии разнородной нагрузки (отопление, вентиляция и ГВС) в общей тепловой сети расчет и построение температурного графика сетевой воды проводят по преобладающей тепловой нагрузке и для самой распространенной схемы присоединения абонентских ус­тановок. Преобладающей, как правило, является отопи­тельная нагрузка. Предпочтительной системой регулирования тепловой нагрузки является качественное регулирование, когда изменение тепловой нагрузки на отопление при изменении температуры наружного воздуха производится за счет изменения температуры сетевой воды при неизменном расходе. Такое регулирование производится на источнике теплоты.

Расчетные температуры сетевой воды в подающем и обратном трубопроводе ( - температуры теплоносителя в подающем и обратном трубопроводе и в системе отопления при ее зависимом присоединении соответственно) на коллекторах источника теплоты соответствуют расчетной температуре наружного воздуха и задаются при проектировании системы теплоснабжения , например, 150/70, 130/70 и т.д. Если тепловая нагрузка однородна, в частности, отопительная, то во всем диапазоне наружных температур можно проводить качественное регулирование. При этом тепловая нагрузка прямо пропорциональна температуре теплоносителя в подающем трубопроводе и обратно пропорциональна температуре наружного воздуха. Поэтому на температурном графике зависимости температур сетевой воды в подающем и обратном трубопроводе изображаются при однородной нагрузке и качественном регулировании прямыми линиями. За начальную точку этих прямых принимают температуру наружного воздуха +20 0 С (+18), когда тепловая нагрузка равна нулю. Тогда температуры сетевой воды в подающем и обратном трубопроводе тоже будет +20 0 С (+18). Конечными точками будут соответственно . При зависимом присоединении системы отопления на графике будет третья прямая, соединяющая начальную точку с расчетной температурой .

При наличии нагрузки горячего водоснабжения (гвс) температура воды в подающем трубопроводе не может быть снижена ниже 60 0 С при присоединении системы гвс по открытой схеме и ниже 70 0 С при присоединении по закрытой схеме, т. к. температура воды в водоразборных приборах должна быть от 55 0 С до 65 0 С, а в теплообменнике гвс теряется порядка 10 0 С. Таким образом, на температурном графике производится отсечка, как показано на рис.4 и 5. На графике регулирования закрытой схемы системы теплоснабжения температура наружного воздуха, соответствующая отсечке, , делит график на две области: область качественного регулирования II и область количественного регулирования I. На графике регулирования открытой системы теплоснабжения в зоне качественного регулирования появляется зона III, когда температура воды в обратном трубопроводе достигает 60 0 С и разбор воды на горячее водоснабжение производится только из него.

Рисунок 4. Температурный график регулирования открытой зависимой системы теплоснабжения

Рис.5 Температурный график регулирования закрытой независимой системы теплоснабжения

Наличие или отсутствие на графике регулирования ломаной зависит от того, является ли система теплоснабжения зависимой (рис. 4) или независимой (рис. 5).

Если , то регулирование рационально проводить по совместной нагрузке на отопление и горячее водоснабжение. При этом строится так называемый повышенный температурный график регулирования, позволяющий компенсировать повышенный расход тепла на горячее водоснабжение за счет увеличения разности температур прямой и обратной воды по сравнению с графиком регулирования по отопительной нагрузке.

При построения повышенного графика расход тепла на горячее водоснабжение принимается балансовым:

где - балансовый коэффициент, принимаемый обычно равным величине 1.2.

Вид графика представлен на рис.6.

Рисунок 6. Повышенный температурный график регулирования.

На рисунке: - температуры теплоносителя на коллекторах ТЭЦ; - температуры теплоносителя по отопительному графику; - температура теплоносителя в системах отопления.

Величины

Связаны уравнениием

(10)

Здесь, расчетная разность температур сетевой воды по отопительному графику

В начале определяется величина из уравнения

. (11)

Температура водопроводной воды после первой ступени подогревателя системы гвс где =5…10 о C – величина недогрева воды в подогревателе.

4.2. Расчет и построение графиков расхода сетевой воды

4.2.1. Расчетный расход сетевой воды на отопление:

(12)

где с=4,19 кДж/(кг×К) - теплоемкость воды.

В зоне качественного регулирования II расход теплоносителя на отопление постоянный, в зоне количественного регулирования I падает с ростом температуры наружного воздуха до 0 при +20 (18) 0 С (рис. 5 и 6).

4.2.2. Расчетный расход сетевой воды на вентиляцию:

определяется по (13):

(13)

Характер графика расхода на вентиляцию повторяет ход графика расхода на отопление (рис. 6 и 7).

4.3.3 Расход сетевой воды на горячее водоснабжение:

В открытых сетях теплоснабжения средний часовой расход воды на горячее водоснабжение будет:

(14)

В закрытых системах теплоснабжения средний часовой расход на горячее водоснабжения определяется по (13, 14).

При параллельной схеме присоединения водоподогревателей

(15)

Температура воды после параллельно включенного водоподогревателя горячего водоснабжения в точке излома графика температур воды; рекомендуется принимать = 30 °С.

При двухступенчатых системах присоединения водоподогревателей

, (16)

где - температура воды после первой ступени подогрева при двухступенчатых схемах присоединения водоподогревателей, °С.

По отношению к зонам регулирования температурного графика системы теплоснабжения расходы ведут себя следующим образом.

В зоне количественного регулирования I при постоянной температуре в подающем трубопроводе с учетом средней нагрузки на горячее водоснабжение расход сетевой воды на горячее водоснабжение остается постоянным и при открытой, и при закрытой системе теплоснабжения (рис. 5 и 6).

Эти расходы сетевой воды определяются следующим образом.

В зоне качественного регулирования (II, III – при открытой схеме и II – при закрытой) характер кривых существенно различается.

При открытой схеме в зоне II сетевая вода на горячее водоснабжение разбирается из подающего и обратного трубопроводов. Из подающего трубопровода расход сетевой воды уменьшается от максимальной величины при температуре наружного воздуха до нуля при температуре наружного воздуха . Наоборот, расход сетевой воды из обратного трубопровода меняется от нуля до максимального значения при тех же температурах наружного воздуха. В зоне III разбор сетевой воды на горячее водоснабжение идет только из обратного трубопровода и несколько падает по мере роста температуры воды от 60 до 70 0 С (рис. 5).

При закрытой схеме присоединения системы горячего водоснабжения теплообмен между системами теплоснабжения и горячего водоснабжения происходит в одноступенчатом (на подающей магистрали) или в двухступенчатом (на обеих магистралях) теплообменнике. В зоне II расход сетевой воды на горячее водоснабжение уменьшается от максимального при до нуля при для двухступенчатого теплообменника (рис. 6, сплошная линия) и до величины

(17)

(рис. 6, штриховая линия).

Затем, для наглядности, строится график суммарных расходов сетевой воды (рис. 7 и 8) согласно условию

. (18)

Рисунок 7. График расходов открытой тепловой сети

Рисунок 8. График расходов закрытой тепловой сети (сплошная линия – двухступенчатый подогрев горячей воды: штриховая – одноступенчатый).

Необходимый для гидравлического расчета тепловой сети расчетный расход сетевой воды в двухтрубной сети в открытых и закрытых системах теплоснабжения определяется по формуле (19):

. (19)

Коэффициент, учитывающий долю среднего расхода воды при регулировании по отопительной нагрузке., принимаемый из следующих соображений:

· открытая система: 100 и более МВт =0.6, менее 100МВт, =0.8;

· закрытая система: 100 и более МВт =1.0, менее 100МВт, =1.2.

При регулировании по совмещенной нагрузке отопления и горячего водоснабжения при корректированном графике регулирования коэффициент принимают равным 0.

При проектировании тепловых сетей в задачу гидравлического расчета входит определение диаметров трубопроводов и падения дав­ления по участкам и в целом по магистрали. Расчет ведется в два этапа: предварительный и поверочный.

5.1. Порядок проведения гидравлического расчета

Исходными данными для расчета являются: расчетная схема (см. рис. 1); расчетные расходы сетевой воды по участкам; вид и коли­чество местных сопротивлений на каждом участке.

Одним из основных параметров, определяющих гидравлическое сопротивление, является скорость воды в трубопроводах. В магист­ральных сетях скорость воды рекомендуют принимать в пределахl¸2 м/с, а в распределительных трубопроводах - 3¸5 м/с.

На первом, предварительном, этапе определяется расчетный ди­аметр трубопровода по принятым значениям скорости воды w и удельного падения давления . Для магистральных трубопрово­дов значение £ 80 Па/м, для распределительных сетей и ответв­лений =100¸300 Па/м. Условный диаметр рассматриваемого участка определяется с помощью номограммы для гидравлического расчета трубопровода (Приложение П) по расходу воды и принятому удельному падению давления . Т. к. точка пересечения на номограмме не попадает на какую-либо линию стандартного диаметра, то необходимо сместиться по линии расходов вверх или вниз до пересечения с линией стандартного диаметра. Если смещаться вверх, то выбирается меньший стандартный диаметр, но реальное удельное линейное сопротивление оказывается больше, а если вниз – то диаметр больше, а сопротивление меньше. Обычно, на участках трубопровода, близких к теплоисточнику переходят на большие диаметры, а ближе к концу магистрали – на меньшие. Необходимо также отслеживать, чтобы скорости воды на участке трубопровода не вышли за указанные пределы. Полученные фактические значения удельного линейного сопротивления и скорости движения воды заносятся в таблицу 2.

Таблица 2

Гидравлический расчет теплосети

Продолжение таблицы 2

Гидравлический расчет теплосети

По расчетной схеме и выбранной трассе трубопроводов опреде­ляются типы и количество местных сопротивлений: арматуры, отво­дов, компенсаторов и пр. По приложению П8 в зависимости от услов­ного диаметра и типа местных сопротивлений определяется эквива­лентная длина местных сопротивлений и заносится в таблицу 2. Расчетная длина участка трубопровода определяется суммированием фактической и эквивалентной длины.

Падение давления на расчетном участке вычисляется по формуле (20), Па:

(20)

где - длина расчетного участка, м;

Суммарная эквивалентная длина местных сопротивлений на дан­ном участке.

Потери напора на участке составят:

где =975 кг/м 3 - плотность воды при температуре 100 °С;

g =9,81 м/с 2 - ускорение свободного падения.

Полученные величины заносятся в графы поверочного расчета (таб. 2). Аналогично рас­считываются все участки магистрали.

Расчет ответвлений проводится так же, как участок магистрали, нос заданным падением давления (напора), определяемым после построения пьезометрического графика как разность напоров в подающей и обратной магистрали в точке присоединения ответвлеиия.

Также, как и для магистрали, для конкретного рассчитываемого ответвления измеряется длина трубопроводов от точки ответвления до самого дальнего потребителя (абонента) - l отв , м. Для этого ответвления протяженностью l отв предварительно удельное линейное падение давления, Па/м:

(22)

где ; Z - опытный коэффициент местных сопротивлений для ответвлений (для водоводов Z =0,03¸0,05); G отв - расчетный рас­ход теплоносителя на начальном участке ответвления, кг/с; - разность располагаемой падения давления на ответвлении и требуемого перепада давлений у последнего абонента, Па; - фактическая длина ответвления в двухтрубном исполнении.

При сложной схеме распределительных сетей ответвление делит­ся на участки аналогично разделению на участки магистральной сети.

4.2. Построение пьезометрического графика

Пьезометрический график строится на основании гидравлическо­го расчета (таб. 2). Пьезометрический график сети позволяет уста­новить взаимное соответствие рельефа местности, высоты абонент­ских систем и потерь напора в трубопроводах. По пьезометрическому графику можно определить напор в любой точке сети, располагаемый напор в местах ответвлений и на вводе в абонентские системы, а также провести корректировку схем присоединения абонентских сис­тем и действующие напоры в прямой и обратной магистралях сети.

Пьезометрический график строится в масштабе в координатах L-H (L - длина трассы, м; Н - напор, м). За начало координат при­нимается точка 0 , соответствующая установке сетевых насосов (рис. 6). Вправо от точки 0 вдоль оси L (линия I-I , отметка 0.0) нано­сится профиль трассы в соответствии с рельефом местности вдоль основной магистрали и ответвлений. Здесь принимается, что профиль трассы совпадает с рельефом местности. При несложной схеме теп­лоснабжения и небольшом числе абонентских вводов (не более 20) на ответвлениях и магистрали наносятся высоты зданий (абонентских систем). По оси ординат из точки 0 откладывается напор в метрах.

Построение пьезометрического графика начинают с гидростати­ческого режима, когда циркуляция воды в системе отсутствует, а вся система теплоснабжения, включая системы отопления или тепло­обменники систем отопления, заполнена водой с температурой до 100°С. Статическое давление в тепловой сети H ст обеспечивается подпиточными насосами. Линию статического напора S-S на графике проводят из условия прочности чугунных радиаторов, т.е. 60 м. Статическое давление должно быть выше высоты присоединенных зда­ний к системе теплоснабжения, а также обеспечить невскипание воды в тепловой сети. Если хотя бы одно из условий для абонентских вводов не соблюдается, необходимо предусмотреть разделение тепло­вой сети на зоны с поддержанием в каждой зоне своего статического давления.

Необходимый подпор современных сетевых насосов находится в пределах 10¸25 м из условия подавления кавитации на всасе в на­сос, а полный напор подпиточных насосов H ст =40¸60 м. Данное значение

Н ст откладывается по оси Н от точки 0 до А. От точки А начинается построение пьезометрического графика для обратной магистрали в динамическом режиме на основании данного гидравлического расчета. С точки А откладывается длина первого расчетного участка 0 – I (0 I). Далее по оси Н откладывается расчетная величина гидравлических потерь Δ Н І (точка 0 1 ). Выполняя описанные действия, определяем последовательно все точки пьезометрического графика обратной магистрали (точки 0 , 0 1 , 0 2 и т.д.).

От последней точки пьезометрического графика обратной ма­гистрали (точка 0 4 ) откладывается необходимый располагаемый напор у последнего абонентаDH аб » 15¸20 м при наличии элеватора или DH аб » 10м+H зд - при безэлеваторном подключении (точка П 4 ). Пьезометрический график прямой магистрали строится от точки П 4 в обратной последовательности по участкам сети. Соединяя все найденные точки (А,0 1 ,0 2 , ... ) получим пьезометрический график обратной магистрали. При правильных расчетах и построении пьезометрический график должен быть прямолинейным. В точке П , соответс­твующей месторасположению источника теплоты, вверх откладывается потеря напора в сетевых подогревателяхDH П =10¸20 м или в водо­грейном котлеDH П =15¸30 м.

Рисунок 9. Пьезометрический график и схема тепловой сети:

I - сетевой насос; II - подпиточный насос; III - теплоподготови-тельная установка; IV - регулятор давления; V - подпиточный бак.

5. ВЫБОР СХЕМ ПРИСОЕДИНЕНИЯ АБОНЕНТСКИХ СИСТЕМ ОТОПЛЕНИЯ К ТЕПЛОВОЙ СЕТИ

Пьезометрический график позволяет выбрать схему присоедине­ния абонентских установок к теплосети с учетом располагаемого пе­репада давлений и ограничений по избыточному давлению в трубопро­водах.

На рис. 10 представлены схемы присоединения абонентских отопительных систем к тепловой сети. Схемы (а), (б) и (в) представляют собой зависимые присоединения. Схема (а) используется в том случае, когда имеется центральный или групповой тепловой пункт, где готовится теплоноситель с требуемыми параметрами и перед системой отопления необходимо отрегулировать только давление. Рис.10б - элеваторная схема присоединения применяется при условии, что напор в обратной магистрали не превышает допус­тимого для местных отопительных систем, а располагаемый напор на вводе достаточен для работы элеватора (15¸18 м).

Если напор в обратной магистрали не превышает допустимого, а располагаемый напор недостаточен для работы элеватора, применяют зависимую схему со смесительным насосом (Рис.10в).

Если напор в обратной магистрали в статическом или динами­ческом режиме превышает допустимый напор для местных систем отоп­ления, применяют независимую схему с установкой водоводяного теплообменника (Рис.10г).

Обозначения на схеме:

ПК – пиковый котел; ТП – теплофикационный подогреватель; СН – сетевой насос; ПН – подпиточный насос; РР – регулятор расхода; Д – диафрагма; В - воздушник (кран Маевского); Э – элеватор; Н – смесительный насос; РТ – регулятор температуры; ТО – теплообменник системы отопления; ЦН – циркуляционный насос; РБ – расширительный бак.

На рис. 11 представлены схемы присоединения системы горячего водоснабжения к системе теплоснабжения.




Рисунок 11. Присоединение систем горячего водоснабжения к системе теплоснабжения


6. ВЫБОР НАСОСОВ

6.1. Выбор сетевых насосов

Сетевые насосы устанавливаются на источнике теплоты, их ко­личество должно быть не менее двух, из которых один резервный. Производительность всех рабочих насосов принимается равной сум­марному расходу сетевой воды с учетом коэффициента запаса насоса по производительности (1,05-1,1).

Напор сетевых насосов определяется по пьезометрическому гра­фику и равен, м:

H с.н. =H ст +DH п +DH о +DH аб,

где H ст - потери напора на станции, м;

DH п - потери напора в подающей линии, м;

DH аб - располагаемый напор у абонента,м;

DH о - потери напора в обратной линии, м.

Выбор насосов выполняется для отопительного и неотопительно­го периодов. При наличии подкачивающих насосов в сети напор сете­вых насосов уменьшается на напор подкачивающих насосов.

6.2. Выбор подпиточных насосов

Производительность подпиточных насосов определяется величи­ной потерь сетевой воды в системе теплоснабжения. В закрытых сис­темах потери сетевой воды составляют 0,5 % объема воды в сетях, м 3 /ч:

G подп. =0,005×V+G гвс,

где V=Q×(V с +V м) - объем воды в системе теплоснабжения, м 3 ; Q - тепловая мощность системы теплоснабжения, МВт; V с , V м - удельные объемы сетевой воды, находящейся в наружных сетях с подогрева­тельными установками и в местных системах, м 3 /МВт (V с =10¸20, V м =25).

Список литературы

1. Айзенберг И.И., Баймачев Е.Э., Выгонец А.В. и др. Учебное пособие по дипломному проектированию для студентов специальности 270109 – ТВ. – Иркутск: Иркутский дом печати, 2007, - 104 с.


Cтраница 1


Снижение температуры обратной воды против графика не лимитируется.  

Таким образом, первой задачей является снижение температуры обратной воды из систем отопления в расчетной точке до 60 С.  

Очень большую экономию тепловой энергии и снижение температуры обратной воды дает эта схема при работе тепловой сети со срезкой графика для горячего водоснабжения, так как позволяет при постоянной температуре сетевой воды в подающей магистрали получать переменную температуру приточного воздуха в соответствии с температурой наружного воздуха.  

Многие тепловые сети успешно выдерживают этот предел и даже добиваются снижения температуры обратной воды ниже установленного графика, повышая - тем самым технико-экономические показателя работы всей системы в целом.  

Экономия электроэнергии на перекачку теплоносителя, экономия топлива на ТЭЦ и снижение температуры обратной воды при трехимпульсном изодромном регулировании окупает все затраты на автоматизацию вводов.  

Применение поверхностных конденсационных котлов и экономайзеров для отопления целесообразно, таким образом, при условии снижения температуры обратной воды отопительной системы. Соответственно снижаются и средняя температура воды и, как было показано выше, температура прямой воды, поступающей в систему. Поэтому применение поверхностных конденсационных котлов и экономайзеров для нагрева воды систем отопления неизбежно связано с определенным перерасходом металла на сооружение систем отопления. Тем не менее за рубежом конденсационные котлы и экономайзеры используют в основном именно для систем отопления.  

Среднесуточная температура обратной воды из тепловой сети ие должна превышать заданную более чем на 2 С Снижение температуры обратной воды против графика не лимитируется.  


При снижении температуры обратной воды до расчетной величины следует ожидать некоторого снижения температуры уходящих газов.  

Определим оптимальную температуру обратной воды, поступающей из системы отопления здания в контактно-поверхностный водонагреватель ФНКВ-1. По мере снижения температуры обратной воды tz экономичность использования газа в аппарате повышается за счет использования тепла, выделящегося при конденсации водяных паров, находящихся в продуктах сгорания газа. Поэтому определение величины пт практически необходимо.  

Сырую воду на химводоочистку берут из сбросного циркуляционного водовода при температуре 20 - 35 С, что дает утилизацию сбросного тепла. Существенное повышение удельной выработки на тепловом потреблении дает снижение температуры обратной воды, которое получается в результате смешения обратной и более холодной подпиточной воды.  

Сильфон является регулирующим органом. При повышении температуры воды, выходящей из калорифера, жидкость в сильфоне нагревается и расширяется, что приводит к уменьшению проходного сечения клапана и сокращению расхода сетевой воды, а следовательно, к снижению температуры обратной воды.  

Таким образом, для рассмотренной схемы пропорционального регулирования температуры в помещении следует всегда предусматривать автоматически действующую защиту от замораживания калориферов. По этой схеме манометрический датчик температуры устанавливается в трубопроводе обратной воды после калорифера и настраивается на температуру 25 - 30 С. При снижении температуры обратной воды до установленного значения датчик дает сигнал, и Двухпозиционный регулятор срабатывает, открывая с помощью соленоидного вентиля проход для воды через обводную ветку.  

Для получения равномерного температурного поля после калорифера, что особенно важно иметь в кондиционерах, в которых сразу же за первым подогревом ставится оросительная камера, желательно значительное снижение температуры подаваемой в калорифер воды с одновременным уменьшением перепада температур прямой и обратной воды. Некоторое увеличение требуемой поверхности нагрева калориферов компенсируется снижением температуры обратной воды.  

Для снижения температуры воды, выходящей из ЦТП, и уменьшения теплопотерь ночью целесообразно переключать на это время циркуляционную линию системы горячего водоснабжения в трубопровод холодной воды перед I ступенью водонагревателя. Одновременно следует снизить уставку регулятора температуры горячей воды с 60 на 50 С. Днем циркуляционная линия должна быть включена в трубопровод нагреваемой воды перед II ступенью или, что более рационально, в трубопровод между секциями II ступени водонагревателя, температура воды в котором равна принятой температуре воды в циркуляционном трубопроводе (примерно перед тремя последними секциями по ходу движения нагреваемой воды), как показано на рис. 3.19. Переключение выполняется автоматически: реле времени, например в 0 ч, закрывает клапан 5, направляя циркуляционный поток в I ступень, и через электрогидравлическое реле переключается импульс на регулятор температуры с датчика, настроенного на поддержание температуры горячей воды 60 С, на другой датчик с уставкой на 45 - 50 С. В 6 ч реле времени делает обратное переключение, при открытом клапане 5 через него будет поступать циркуляционная вода, так как давление воды перед I ступенью значительно выше, чем в месте включения трубопровода, на котором установлен клапан. При автоматическом регулировании подачи тепла на отопление, когда температура воды из системы отопления будет ниже 40 - 45 С, переключение циркуляционного трубопровода перед I ступенью водонагревателя при таких температурах делать нецелесообразно. В связи с этим на обратном трубопроводе системы отопления установлен датчик температуры, по сигналу которого при снижении температуры обратной воды менее 40 - - 45 С клапан 5 остается открытым и в ночное время.  

Страницы:      1

Когда осень уверенно шагает по стране, за Полярным кругом летит снег, а на Урале ночные температуры держатся ниже 8 градусов, то уместно звучит словоформа «отопительный сезон». Народ вспоминает минувшие зимы и пытается разобраться в норме температуры теплоносителя в системе отопления.

Предусмотрительные владельцы индивидуальных строений заботливо ревизуют клапаны и форсунки котлов. Жильцы многоквартирного дома к 1 октября ждут, как Деда Мороза, слесаря-водопроводчика из управляющей компании. Повелитель вентилей и задвижек приносит тепло, а с ним - радость, веселье и уверенность в завтрашнем дне.

Путь гигакалории

Мегаполисы сверкают высотными домами. Над столицей висит туча реновации. Глубинка молится на пятиэтажки. Пока не снесли, в доме работает система подачи калорий.

Отопление многоквартирного дома экономкласса производится через централизованную систему подачи тепла. Трубы входят в подвальное помещение строения. Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.

Количество задвижек коррелирует с количеством стояков. При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.

Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.

Градусы здесь и там

Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной. Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.

Подачи рассчитывается с учетом параметров наружного воздуха. Так, для региона Южный Урал принимается к расчету минус 32 градуса.

Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс. Но это теория. Фактически большинство сетей работает на 95-110 °С, так как сетевые трубы большинства населённых пунктов изношены и высокое давление порвёт их как тузик грелку.

Растяжимое понятие - норма. Температура в квартире никогда не равна первичному показателю носителя тепла. Здесь выполняет энергосберегающую функцию элеваторный узел - перемычка между прямой и обратной трубой. Нормы температуры теплоносителя в системе отопления по обратке зимой допускают сохранение тепла на уровне 60 °С.

Жидкость из прямой трубы попадает в сопло элеватора, перемешивается с обратной водой и опять уходит в домовую сеть на обогрев. Температура носителя за счет подмешивания обратки понижается. Что влияет на вычисление количества тепла, потреблённого жилыми и подсобными помещениями.

Горяченькая пошла

Температура горячей воды по санитарным правилам в точках разбора должна лежать в диапазоне 60-75 °С.

В сети теплоноситель подаётся с трубы:

  • зимой - с обратной, чтобы не шпарить пользователей кипятком;
  • летом - с прямой, так как в летнее время носитель нагревают не выше 75 °С.

На составляется температурный график. Средняя суточная температура обратной воды не должна превышать график более чем на 5 % ночью и 3 % днём.

Параметры раздающих элементов

Одной из деталей согревания жилища является стояк, через который теплоноситель приходит в батарею или радиатор из Нормы температуры теплоносителя в системе отопления требуют нагрева в стояке в зимнее время в диапазоне 70-90 °С. Фактически градусы зависят от выходных параметров ТЭЦ или котельной. В летнее время, когда горячая вода нужна только для стирки и душа, диапазон перемещается в интервал 40-60 °С.

Наблюдательные люди могут заметить, что в соседней квартире элементы обогрева горячее или холоднее, чем в его собственной.

Причина разницы температур стояка отопления заключается в способе раздачи ГВС.

В однотрубной конструкции носитель тепла может раздаваться:

  • сверху; тогда температура на верхних этажах выше, чем на нижних;
  • снизу, тогда картина меняется на противоположную - снизу горячее.

В двухтрубной системе градус одинаковый на всём протяжении, теоретически 90 °С на прямом и 70 °С на обратном направлении.

Теплая, как батарея

Предположим, что конструкции центральной сети надёжно заизолированы по всей трассе, ветер не гуляет по чердакам, лестничным клеткам и подвалам, двери и окна в квартирах добросовестные хозяева утеплили.

Предположим, что теплоноситель в стояке соответствует нормативам строительных правил. Остаётся узнать, какая норма температуры батарей отопления в квартире. Показатель учитывает:

  • параметры наружного воздуха и время суток;
  • расположение квартиры в плане дома;
  • жилое или подсобное помещение в квартире.

Поэтому внимание: важно, не каков градус обогревателя, а каков градус воздуха в помещении.

Днём в угловых комнатах градусник должен показывать не менее 20 °С, а в центрально расположенных комнатах допускается 18 °С.

Ночью в жилище допустим воздух 17 °С и 15 °С соответственно.

Теория языкознания

Название «батарея» - бытовое, обозначающее ряд одинаковых предметов. Применительно к согреванию жилья это ряд обогревающих секций.

Нормы температуры батарей отопления допускают нагрев не выше 90 °С. По правилам детали, нагретые выше 75 °С, ограждают. Это не значит, что их надо обшивать фанерой или закладывать кирпичом. Обычно ставят решетчатое ограждение, не препятствующее циркуляции воздуха.

Распространены чугунные, алюминиевые и биметаллические устройства.

Выбор потребителя: чугун или алюминий

Эстетика чугунных радиаторов - притча во языцех. Они требуют периодической покраски, так как правила предусматривают, чтобы рабочая поверхность имела гладкую поверхность и позволяла легко удалить пыль и грязь.

На шершавой внутренней поверхности секций образуется грязный налет, уменьшающий теплоотдачу прибора. Но технические параметры чугунных изделий на высоте:

  • мало подвержены водной коррозии, могут эксплуатироваться более 45 лет;
  • обладают высокой тепловой мощностью на 1 секцию, поэтому компактны;
  • инертны в передаче тепла, поэтому хорошо сглаживают температурные перепады в комнате.

Другой тип радиаторов изготовлен из алюминия. Легкая конструкция, окрашенная в заводских условиях, не требует покраски, удобна в уходе.

Но есть недостаток, затмевающий достоинства, - коррозия в водной среде. Конечно, внутреннюю поверхность обогревателя изолируют пластиком для избегания контакта алюминия с водой. Но плёнка может повредиться, тогда начнётся химическая реакция с выделением водорода, при создании избыточного давления газа алюминиевый прибор может лопнуть.

Нормы температуры радиаторов отопления подчиняются тем же правилам, что и батареи: важен не столько нагрев металлического предмета, сколько нагрев воздуха в помещении.

Чтобы воздух хорошо прогревался, должен быть достаточный съём тепла с рабочей поверхности обогревающего конструктива. Поэтому категорически не рекомендуется повышать эстетику комнаты щитами перед нагревательным прибором.

Обогрев лестничной клетки

Раз уж речь зашла о многоквартирном доме, то следует упомянуть лестничные клетки. Нормы температуры теплоносителя в системе отопления гласят: градусная мера на площадках не должна опускаться ниже 12 °С.

Конечно, дисциплина жильцов требует закрывать плотно двери входной группы, не оставлять раскрытыми фрамуги лестничных окон, сохранять стёкла в целостности и оперативно сообщать в управляющую компанию о неполадках. Если УК не примет вовремя меры по утеплению точек вероятных потерь тепла и соблюдению температурного режима в доме, поможет заявление на перерасчёт стоимости услуг.

Изменения в конструкции обогрева

Замену существующих отопительных приборов в квартире производят с обязательным согласованием с управляющей компанией. Самовольное изменение элементов согревающего излучения может нарушить тепловой и гидравлический баланс строения.

Начнётся отопительный сезон, будет зафиксировано изменение температурного режима в других квартирах и площадках. Технический осмотр помещений выявит самовольное изменение типов отопительных приборов, их количества и величины. Неизбежна цепочка: конфликт - суд - штраф.

Поэтому ситуация разрешается так:

  • если заменяются не старые на новые радиаторы того же типоразмера, то это делается без дополнительных согласований; единственное, за чем обратиться в УК, - за отключением стояка на время ремонта;
  • если новые изделия существенно отличаются от установленных при строительстве, то полезно взаимодействовать с управляющей компанией.

Приборы учета тепла

Вспомним ещё раз о том, что сеть подачи тепла многоквартирного дома обустроена узлами учёта тепловой энергии, которые фиксируют и потребленные гигакалории, и кубатуру воды, пропущенную через внутридомовую линию.

Чтобы не удивляться счетам, содержащим нереальные суммы за тепло при градусах в квартире ниже нормы, до начала отопительного сезона уточните в управляющей компании, в рабочем ли состоянии прибор учета, не нарушен ли график поверки.