Проводка

Приведенное квадратное уравнение определение. Корни квадратного уравнения

Приведенное квадратное уравнение определение. Корни квадратного уравнения

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Превращение полного квадратного уравнения в неполное выглядит так (для случая \(b=0\)):

Для случаев, когда \(с=0\) или когда оба коэффициента равны нулю - всё аналогично.

Обратите внимание, что про равенство нулю \(a\) речи не идет, оно равно нулю быть не может, так как в этом случае превратиться в :

Решение неполных квадратных уравнений.

Прежде всего, надо понимать, что неполное квадратное уравнение все-таки является , поэтому может быть решено также как и обычное квадратное (через ). Для этого просто дописываем недостающий компонент уравнения с нулевым коэффициентом.

Пример : Найдите корни уравнения \(3x^2-27=0\)
Решение :

У нас неполное квадратное уравнение с коэффициентом \(b=0\). То есть, мы можем записать уравнение в следующем виде:

\(3x^2+0\cdot x-27=0\)

Фактически здесь то же самое уравнение, что и в начале, но теперь его можно решать как обычное квадратное. Сначала выписываем коэффициенты.

\(a=3;\) \(b=0;\) \(c=-27;\)

Вычислим дискриминант по формуле \(D=b^2-4ac\)

\(D=0^2-4\cdot3\cdot(-27)=\)
\(=0+324=324\)

Найдем корни уравнения по формулам
\(x_{1}=\)\(\frac{-b+\sqrt{D}}{2a}\) и \(x_{2}=\)\(\frac{-b-\sqrt{D}}{2a}\)

\(x_{1}=\)\(\frac{-0+\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{18}{6}\) \(=3\)

\(x_{2}=\)\(\frac{-0-\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{-18}{6}\) \(=-3\)


Записываем ответ

Ответ : \(x_{1}=3\); \(x_{2}=-3\)


Пример : Найдите корни уравнения \(-x^2+x=0\)
Решение :

Опять неполное квадратное уравнение, но теперь нулю равен коэффициент \(c\). Записываем уравнение как полное.

В данной статье мы рассмотрим решение неполных квадратных уравнений.

Но сначала повторим какие уравнения называются квадратными. Уравнение вида ах 2 + bх + с = 0, где х – переменная, а коэффициенты а, b и с некоторые числа, причем а ≠ 0, называется квадратным . Как мы видим коэффициент при х 2 не равен нулю, а следовательно коэффициенты при х или свободный член могут равняться нулю, в этом случае мы и получаем неполное квадратное уравнение.

Неполные квадратные уравнения бывают трех видов :

1) Если b = 0, с ≠ 0, то ах 2 + с = 0;

2) Если b ≠ 0, с = 0, то ах 2 + bх = 0;

3) Если b= 0, с = 0, то ах 2 = 0.

  • Давайте разберемся как решаются уравнения вида ах 2 + с = 0.

Чтобы решить уравнение перенесем свободный член с в правую часть уравнения, получим

ах 2 = ‒с. Так как а ≠ 0, то разделим обе части уравнения на а, тогда х 2 = ‒с/а.

Если ‒с/а > 0 , то уравнение имеет два корня

x = ±√(–c/a) .

Если же ‒c/a < 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Давайте попробуем разобраться на примерах, как решать такие уравнения.

Пример 1 . Решите уравнение 2х 2 ‒ 32 = 0.

Ответ: х 1 = ‒ 4, х 2 = 4.

Пример 2 . Решите уравнение 2х 2 + 8 = 0.

Ответ: уравнение решений не имеет.

  • Разберемся как же решаются уравнения вида ах 2 + bх = 0.

Чтобы решить уравнение ах 2 + bх = 0, разложим его на множители, то есть вынесем за скобки х, получим х(ах + b) = 0. Произведение равно нулю, если хотя бы один из множителей равен нулю. Тогда или х = 0, или ах + b = 0. Решая уравнение ах + b = 0, получим ах = ‒ b, откуда х = ‒ b/a. Уравнение вида ах 2 + bх = 0, всегда имеет два корня х 1 = 0 и х 2 = ‒ b/a. Посмотрите как выглядит на схеме решение уравнений этого вида.

Закрепим наши знания на конкретном примере.

Пример 3 . Решить уравнение 3х 2 ‒ 12х = 0.

х(3х ‒ 12) = 0

х= 0 или 3х – 12 = 0

Ответ: х 1 = 0, х 2 = 4.

  • Уравнения третьего вида ах 2 = 0 решаются очень просто.

Если ах 2 = 0, то х 2 = 0. Уравнение имеет два равных корня х 1 = 0, х 2 = 0.

Для наглядности рассмотрим схему.

Убедимся при решении примера 4, что уравнения этого вида решаются очень просто.

Пример 4. Решить уравнение 7х 2 = 0.

Ответ: х 1, 2 = 0.

Не всегда сразу понятно какой вид неполного квадратного уравнения нам предстоит решить. Рассмотрим следующий пример.

Пример 5. Решить уравнение

Умножим обе части уравнения на общий знаменатель, то есть на 30

Сократим

5(5х 2 + 9) – 6(4х 2 – 9) = 90.

Раскроем скобки

25х 2 + 45 – 24х 2 + 54 = 90.

Приведем подобные

Перенесем 99 из левой части уравнения в правую, изменив знак на противоположный

Ответ: корней нет.

Мы разобрали как решаются неполные квадратные уравнения. Надеюсь, теперь у вас не будет сложностей с подобными заданиями. Будьте внимательны при определении вида неполного квадратного уравнения, тогда у вас все получится.

Если у вас появились вопросы по данной теме, записывайтесь на мои уроки , мы вместе решим возникшие проблемы.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Якупова М.И. 1

Смирнова Ю.В. 1

1 Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 11

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

История квадратных уравнений

Вавилон

Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Правила решения этих уравнений, изложенные в вавилонских текстах, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Древняя Греция

Решением квадратных уравнений занимались и в Древней Греции такие ученые как Диофант, Евклид и Герон. Диофант Диофант Александрийский - древнегреческий математик, живший предположительно в III веке нашей эры. Основное произведение Диофанта - «Арифметика» в 13 книгах. Евклид. Евклид древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике Герон. Герон - греческий математик и инженер впервые в Греции в I век н.э. дает чисто алгебраический способ решения квадратного уравнения

Индия

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax2 + bх = с, а> 0. (1) В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

«Обезьянок резвых стая

А двенадцать по лианам Всласть поевши, развлекалась

Стали прыгать, повисая

Их в квадрате часть восьмая

Сколько ж было обезьянок,

На поляне забавлялась

Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений. Соответствующее задаче уравнение Бхаскара пишет под видом x2 - 64x = - 768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем: x2 - б4х + 322 = -768 + 1024, (х - 32)2 = 256, х - 32= ±16, x1 = 16, x2 = 48.

Квадратные уравнения в Европе XVII века

Формулы решения квадратных уравнений по образцу Ал - Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI - XVII вв. и частично XVIII. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Определение квадратного уравнения

Уравнение вида ax 2 + bx + c = 0, где a, b, c - числа, называется квадратным.

Коэффициенты квадратного уравнения

Числа а, b, с - коэффициенты квадратногоуравнения.а - первый коэффициент (перед х²), а ≠ 0;b - второй коэффициент (перед х);с - свободный член (без х).

Какие из данных уравнений не являются квадратными ?

1. 4х² + 4х + 1 = 0;2. 5х - 7 = 0;3. - х² - 5х - 1 = 0;4. 2/х² + 3х + 4 = 0;5. ¼ х² - 6х + 1 = 0;6. 2х² = 0;

7. 4х² + 1 = 0;8. х² - 1/х = 0;9. 2х² - х = 0;10. х² -16 = 0;11. 7х² + 5х = 0;12. -8х²= 0;13. 5х³ +6х -8= 0.

Виды квадратных уравнений

Название

Общий вид уравнения

Особенность (какие коэффициенты)

Примеры уравнений

ax 2 + bx + c = 0

a, b, c - числа, отличные от 0

1/3х 2 + 5х - 1 = 0

Неполные

х 2 - 1/5х = 0

Приведенные

x 2 + bx + c = 0

х 2 - 3х + 5 = 0

Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице. Такое уравнение может быть получено делением всего выражения на старший коэффициент a:

x 2 + px + q =0, p = b/a, q = c/a

Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.

Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.

Способы решения квадратных уравнений

I способ. Общая формула для вычисления корней

Для нахождения корней квадратного уравнения ax 2 + b + c = 0 в общем случае следует пользоваться приводимым ниже алгоритмом:

Вычислить значение дискриминанта квадратного уравнения: таковым для него называется выражениеD = b 2 - 4ac

Выведение формулы:

Примечание: очевидно, что формула для корня кратности 2 является частным случаем общей формулы, получается при подстановке в неё равенства D=0, а вывод о отсутствии вещественных корней при D0, а {displaystyle {sqrt {-1}}=i} = i.

Изложенный метод универсален, однако он далеко не единственный. К решению одного уравнения можно подойти различными способами, предпочтения обычно зависят от самого решающего. Кроме того, часто для этого некоторый из способов оказывается значительно более элегантным, простым, менее трудоёмким, чем стандартный.

II способ. Корни квадратного уравнения при чётном коэффициенте b III способ. Решение неполных квадратных уравнений

IV способ. Использование частных соотношений коэффициентов

Существуют частные случаи квадратных уравнений, в которых коэффициенты находятся в соотношениях между собой, позволяющих решать их гораздо проще.

Корни квадратного уравнения, в котором сумма старшего коэффициента и свободного члена равна второму коэффициенту

Если в квадратном уравнении ax 2 + bx + c = 0 сумма первого коэффициента и свободного члена равна второму коэффициенту:a + b = c , то его корнями являются -1 и число, противоположное отношению свободного члена к старшему коэффициенту (-c/a ).

Отсюда, прежде, чем решать какое-либо квадратное уравнение, следует проверить возможность применения к нему этой теоремы: сравнить сумму старшего коэффициента и свободного члена со вторым коэффициентом.

Корни квадратного уравнения, сумма всех коэффициентов которого равна нулю

Если в квадратном уравнении сумма всех его коэффициентов равна нулю, то корнями такого уравнения являются 1 и отношение свободного члена к старшему коэффициенту (c/a ).

Отсюда, прежде, чем решать уравнение стандартными методами, следует проверить применимость к нему этой теоремы: сложить все коэффициенты данного уравнения и посмотреть, не равна ли нулю эта сумма.

V способ. Разложение квадратного трёхчлена на линейные множители

Если трёхчлен вида {displaystyle ax^{2}+bx+c(anot =0)}ax 2 + bx + c(a ≠ 0) удастся каким-либо образом представить в качестве произведения линейных множителей {displaystyle (kx+m)(lx+n)=0}(kx + m)(lx + n), то можно найти корни уравнения ax 2 + bx + c = 0 - ими будут -m/k и n/l, действительно, ведь {displaystyle (kx+m)(lx+n)=0Longleftrightarrow kx+m=0cup lx+n=0}(kx + m)(lx + n) = 0 kx + mUlx + n, а решив указанные линейные уравнения, получим вышеописанное. Отметим, что квадратный трёхчлен не всегда раскладывается на линейные множители с действительными коэффициентами: это возможно, если соответствующее ему уравнение имеет действительные корни.

Рассмотрим некоторые частные случаи

Использование формулы квадрата суммы (разности)

Если квадратный трёхчлен имеет вид {displaystyle (ax)^{2}+2abx+b^{2}}ax 2 + 2abx + b 2 , то применив к нему названную формулу, мы сможем разложить его на линейные множители и, значит, найти корни:

(ax) 2 + 2abx + b 2 = (ax + b) 2

Выделение полного квадрата суммы (разности)

Также названную формулу применяют, пользуясь методом, получившим названия «выделение полного квадрата суммы (разности)». Применительно к приведённому квадратному уравнению с введёнными ранее обозначениями, это означает следующее:

Примечание: если вы заметили, данная формула совпадает с предлагаемой в разделе «Корни приведённого квадратного уравнения», которую, в свою очередь, можно получить из общей формулы (1) путём подстановки равенства a=1. Этот факт не просто совпадение: описанным методом, произведя, правда некоторые дополнительные рассуждения, можно вывести и общую формулу, а также доказать свойства дискриминанта.

VI способ. Использование прямой и обратной теоремы Виета

Прямая теорема Виета (см. ниже в одноимённом разделе) и обратная ей теорема позволяют решать приведённые квадратные уравнения устно, не прибегая к достаточно громоздким вычислениям по формуле (1).

Согласно обратной теореме, всякая пара чисел (число) {displaystyle x_{1},x_{2}}х 1 , х 2 будучи решением нижеприведённой системы уравнений, являются корнями уравнения

В общем случае, то есть для не приведённого квадратного уравнения ax 2 + bx + c = 0

х 1 + х 2 = -b/a, х 1 * х 2 = c/а

Подобрать устно числа, удовлетворяющие этим уравнениям, поможет прямая теорема. С её помощью можно определить знаки корней, не зная сами корни. Для этого следует руководствоваться правилом:

1) если свободный член отрицателен, то корни имеют различный знак, и наибольший по модулю из корней — знак, противоположный знаку второго коэффициента уравнения;

2) если свободный член положителен, то оба корня обладают одинаковым знаком, и это — знак, противоположный знаку второго коэффициента.

VII способ. Метод «переброски»

Так называемый метод «переброски» позволяет сводить решение неприведённых и непреобразуемых к виду приведённых с целыми коэффициентами путём их деления на старший коэффициент уравнений к решению приведённых с целыми коэффициентами. Он заключается в следующем:

Далее уравнение решают устно описанным выше способом, затем возвращаются к исходной переменной и находят корни уравнений {displaystyle y_{1}=ax_{1}} y 1 = ax 1 и y 2 = ax 2 .{displaystyle y_{2}=ax_{2}}

Геометрический смысл

Графиком квадратичной функции является парабола. Решениями (корнями) квадратного уравнения называют абсциссы точек пересечения параболы с осью абсцисс. Если парабола, описываемая квадратичной функцией, не пересекается с осью абсцисс, уравнение не имеет вещественных корней. Если парабола пересекается с осью абсцисс в одной точке (в вершине параболы), уравнение имеет один вещественный корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось абсцисс в двух точках, уравнение имеет два вещественных корня (см. изображение справа.)

Если коэффициент {displaystyle a}a положительный, ветви параболы направлены вверх и наоборот. Если коэффициент {displaystyle b} bположительный (при положительном {displaystyle a}a , при отрицательном наоборот), то вершина параболы лежит в левой полуплоскости и наоборот.

Применение квадратных уравнений в жизни

Квадратное уравнение широко распространено. Оно применяется во многих расчетах, сооружениях, спорте, а также и вокруг нас.

Рассмотрим и приведем некоторые примеры применения квадратного уравнения.

Спорт. Прыжки в высоту: при разбеге прыгуна для максимально четкого попадания на планку отталкивания и высокого полета используют расчеты, связанные с параболой.

Также подобные расчеты нужны в метании. Дальность полета объекта зависит от квадратного уравнения.

Астрономия. Траекторию движения планет можно найти с помощью квадратного уравнения.

Полет самолета. Взлет самолета главная составляющая полета. Здесь берется расчет для маленького сопротивления и ускорения взлета.

Также квадратные уравнения применяются в различных экономических дисциплинах, в программах для обработки звука, видео, векторной и растровой графики.

Заключение

В результате проделанной работы выяснилось, что квадратные уравнения привлекали ученых еще в глубокой древности, они уже сталкивались с ними при решении некоторых задач и пробовали их решать. Рассматривая различные способы решения квадратных уравнений, я пришла к выводу, что не все они просты. На мой взгляд самым лучшим способом решения квадратных уравнений является решение по формулам. Формулы легко запоминаются, этот метод универсальный. Гипотеза, что уравнения широко применяются в жизни и математике подтвердилась. Изучив тему, я узнала много интересных фактов о квадратных уравнениях, их использовании, применении, видах, решениях. И я с удовольствием продолжу их изучение. Надеюсь, что это поможет мне хорошо сдать экзамены.

Список использованной литературы

Материалы сайтов:

Википедия

Открытый урок.рф

Справочник по элементарной математике Выгодский М. Я.

», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Важно!

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное — «2 », значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Важно! Общий вид квадратного уравнения выглядит так:

A x 2 + b x + c = 0

«a », «b » и «c » — заданные числа.
  • «a » — первый или старший коэффициент;
  • «b » — второй коэффициент;
  • «c » — свободный член.

Чтобы найти «a », «b » и «c » нужно сравнить свое уравнение с общим видом квадратного уравнения «ax 2 + bx + c = 0 ».

Давайте потренируемся определять коэффициенты «a », «b » и «c » в квадратных уравнениях.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Уравнение Коэффициенты
  • a = 5
  • b = −14
  • с = 17
  • a = −7
  • b = −13
  • с = 8
1
3
= 0
  • a = −1
  • b = 1
  • с =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • с = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней .

Запомните!

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду «ax 2 + bx + c = 0 ». То есть в правой части должен остаться только «0 »;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

X 2 − 3x − 4 = 0


Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду «ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения .

Определим коэффициенты «a », «b » и «c » для этого уравнения.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

С её помощью решается любое квадратное уравнение.

В формуле «x 1;2 = » часто заменяют подкоренное выражение
«b 2 − 4ac » на букву «D » и называют дискриминантом . Более подробно понятие дискриминанта рассматривается в уроке «Что такое дискриминант ».

Рассмотрим другой пример квадратного уравнения.

x 2 + 9 + x = 7x

В данном виде определить коэффициенты «a », «b » и «c » довольно сложно. Давайте вначале приведем уравнение к общему виду «ax 2 + bx + c = 0 ».

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Теперь можно использовать формулу для корней.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Ответ: x = 3

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.