Проводка

Огромные винты больших кораблей. Гребные винты Самый большой корабельный винт

Огромные винты больших кораблей. Гребные винты Самый большой корабельный винт

Выбор геометрических характеристик, числа винтов и направления их вращения. Для морских транспортных судов обычно КПД винта увеличивается с ростом его диаметра. Это объясняется снижением коэффициента нагрузки при фиксированных значениях упора и скорости движения. Поэтому диаметр винта выбирают максимально возможным из условия его размещения в кормовой оконечности судна. В первом приближении для винта в ДП судна можно принимать D = (0,680,75)Т, для бортового, при двухвальной установке, D = (0,62 0,70) Т, где Т -- осадка судна.

При выборе числа лопастей гребного винта руководствуются соображениями, чтобы лопастная и удвоенная лопастная частоты не совпадали с собственными частотами первых трех тонов колебаний корпуса и основных его конструкций. В этом, случае удается избежать интенсивной вибрации корпуса, вызываемой работой гребного винта. Если информация об указанных частотах отсутствует, для винтов в ДП принимают Z p 4, а для бортовых в зависимости от нагрузки: при K dt >2 (или K nt >1), что соответствует слабонагруженным винтам, берут Z p = 3, для меньших значений этих коэффициентов

Zp = 4. Необоснованное увеличение Zp нерационально по двум причинам: возрастает трудоемкость изготовления винта и несколько снижается его КПД. Последнее обстоятельство имеет место в связи с тем, что для обеспечения равного запаса на кавитацию увеличение числа лопастей влечет за собой и увеличение дискового отношения.

Относительная толщина лопасти в самом широком месте (г = 0,6 - 0,7) не должна превышать предельного значения б mах, до которого КПД еще имеет приемлемое значение. При соблюдении этого условия минимальное дисковое отношение обеспечивающее прочность винт

где d H , D -- диаметр ступицы и винта соответственно, м; бmах =0,080,09; m-коэффициент, учитывающий условия работы винта (m=-1,15 для транспортных судов; m=1,5 для буксиров, m = 1,75 для судов ледового плавания, m = 2,0 для ледоколов); Т -- упор винта, кН; [у] --допускаемые напряжения, для винтов транспортных судов можно принимать [у] =6·10 4 кПа.

Увеличение дискового отношения приводит к падению КПД. Поэтому его выбирают так, чтобы выполнить требования обеспечения прочности (20.1) и отсутствия вредных последствий кавитации (19.24). Как правило, у гребных винтов транспортных судов определяющим является последнее.

Пропульсивный коэффициент винта в ДП обычно больше, чем при бортовом расположении. В связи с этим одновальной установке следует отдать предпочтение перед многовальной. В пользу последней, однако, говорит повышенные живучесть и маневренность, возможность осуществления парциальных режимов.

При выборе количества винтов определяющими могут стать и следующие обстоятельства: наличие подходящих двигателей, возможность их рационального размещения в корпусе, первоначальная стоимость установки и ее эксплуатации.

Что касается морских транспортных судов, то тут превалируют соображения экономического характера, поэтому большинство из них -- одновальные. Исключение составляют крупные быстроходные суда: пассажирские и грузовые лайнеры и др. Необходимая мощность может оказаться слишком велика, чтобы ее можно было получить в одном агрегате либо эффективно переработать одним винтом.

Направление вращения гребного винта не сказывается на его эффективности. Для одновинтовых судов оно определяется устанавливаемым двигателем. Бортовые винты должны вращаться в противоположные стороны во избежание уваливания судна с прямого курса. При этом считается, что во избежание попадания плавающих предметов между корпусом и винтами вращение последних должно быть наружным, т. е. лопасти в верхнем положении должны двигаться от корпуса.

Подбор гребных винтов по диаграммам. Проектирование гребных винтов транспортных судов, как правило, сводится к выбору оптимального винта. При этом он должен обладать необходимой прочностью и удовлетворять условию отсутствия негативных последствий кавитации. В случае, когда требуется обеспечить судну заданную скорость, оптимальность винта означает минимальную мощность механической установки. Если заданы характеристики двигателя, оптимальный винт позволяет судну двигаться с наибольшей скоростью.

Все задачи, связанные с проектированием гребного винта, в том числе и оптимального, эффективно могут решаться с помощью диаграмм для расчета гребных винтов. Исходной информацией при этом являются известные геометрические элементы гребного винта: D max , Z p , A e /A q и характеристики взаимодействия W T , t, i Q . Практически все многообразие заданий на проектирование гребных винтов можно свести к четырем основным типам, для каждого из которых используется своя расчетная схема.

Схема I. Заданы: скорость судна и; расчетное сопротивление R, диаметр винта D. Оптимальный гребной винт находится с помощью коэффициента задания K dt (см. (18.8)), вычисляемого с учетом того, что винт работает за корпусом судна:

На диаграмме, соответствующей элементам задания А е /А 0 , Z p на линии K bt opt находят точку, отвечающую рассчитанному значению (20.2) этого коэффициента, снимают величины P/D, J, Кт, з 0 . Искомые значения оптимальной частоты вращения двигателя и его мощности P S находятся по очевидным формулам:

где з D =з н з 0 -- пропульсивный коэффициент; з s - КПД передачи мощности.

Потери энергии в валопроводе зависят от его длины (МО в середине, в корме, промежуточное положение) и составляют (1-3) %. Соответственно при прямой передаче мощности: двигатель--вал--движитель з s - 0,99 - 0,97. Наличие дополнительного звена -- механического редуктора либо гидромуфты -- увеличивает потери мощности, при этом з s= 0,940,96. Еще меньшие значения КПД имеют место при электрической (дизель-генератор--электродвигатель--вал--винт) передаче мощности: з s = 0,880,90.

Использование коэффициента K dt фактически означает задание коэффициента нагрузки, а вместе с ним и предела коэффициента полезного действия з 0 , что ограничивает возможности оптимизации винта. Поэтому часто ту же задачу решают с помощью коэффициента задания K nt .

Схема 2. Исходные величины те же, что и в схеме 1. Задавая ряд значений частоты вращения винта п, для каждой из них с учетом взаимодействия винта и корпуса определяют

находят на линии K nt opt диаграммы соответствующую точку, снимают относительную поступь J, а затем ее корректируют:

Указанная корректировка необходима для учета влияния корпуса: в связи с тем, что t(J) максимумы функций з 0 (J) и з D (J) не совпадают, т. е. диаметр оптимального винта в свободной воде и за корпусом не одинаковы. Корректировка поступи фактически означает корректировку оптимального диаметра.

Для гребных винтов в ДП б =1,05, для бортовых винтов, где влияние корпуса слабее, б=1,03. Последовательность дальнейших расчетов: J" Dopt Кт P/D з 0 P s ; их удобнее выполнять в табличной форме.

По результатам расчетов строят графические зависимости Ps(n) и Dopt(n), а затем выбирают гребной винт, обеспечивающий P s min. Очевидно, что практический интерес представляют только те варианты, при которых Dopt < Dmax. Для винтов транспортных судов обычно искомый вариант P S min соответствует максимальной величине диаметра.

Пример реализации указанной схемы расчета оптимального гребного винта -- см. в таблицу 22.2. Схема 3. Заданы R, v, D и n. Находят значения К т и J (с учетом взаимодействия), которые однозначно определяют координаты точки, соответствующей искомому винту. С диаграммы снимаются величины P/D, з 0 затем рассчитывают мощность механической установки P s .

Рассматриваемая схема исключает любые вариации, полученный гребной винт не является оптимальным.

В приведенных выше схемах заданы характеристики корпуса -- скорость и сопротивление, а искомой является мощность двигателя. Для решения таких задач и предназначены корпусные диаграммы.

В том случае, когда задаются характеристики двигателя, логичнее было бы использовать машинные диаграммы. Однако и эти задачи могут столь же эффективно решаться с помощью корпусных диаграмм.

Схема 4. Исходные данные: зависимость сопротивления судна от скорости R(v) и характеристики главной механической установки Ps, n.

В районе предполагаемой скорости задаются несколькими ее значениями и для каждого из них рассчитывают коэффициент задания Кот. Дальнейший расчет идентичен таковому в схеме 2. Построив по его данным зависимости Ps (v), D(v) и P/D = f(v), находят искомые характеристики винта в точке, где мощность равна заданной P s (v) =Р s зад. В этом варианте предполагается, что диаметр винта не ограничен. В наиболее интересном с практической точки зрения случае диаметр винта всегда имеет верхний предел D max . Тогда для скоростей, при которых Dopt Dmax, расчет ведется по схеме 2, а при Dopt > Dmax -- по схеме 3. В последнем случае принимают D = D max и выбранный винт, строго говоря, уже не будет оптимальным.

Пример такого расчета -- см. в таблице 22.3, в первых четырех столбцах которой Dopt < Dmax и принимается D = Dopt, а в пятом Dopt > Dmax, в связи с чем принято D=Dmax. В последнем случае КПД винта мало отличается от з 0max , поскольку невелики и различия в Dopt и Dmax. Однако, если ограничение диаметра винта при заданных характеристиках двигателя (P s , n) приводит к существенному снижению пропульсивного коэффициента, то решается вопрос о редукции частоты вращения. Такая ситуация возможна, когда по каким-либо причинам не удается подобрать подходящий двигатель. В этом случае расчет винта можно вести по схеме I для нескольких скоростей движения.

Обычно проектирование гребного винта выполняется в несколько этапов. На первом определяются основные геометрические параметры (D, A E /A 0 , Z p) и коэффициенты взаимодействия винтаи корпуса (Wt, t, i q). Далее рассчитывают гребной винт, обеспечивающий заданному судну заданную скорость (схемы 1 или 2) и находят необходимые для этого характеристики (P s , n) главной механической установки. Затем выбирают двигатель, мощность и частота вращения которого в наибольшей степени отвечают требуемым. На заключительном этапе рассчитывают гребной винт, обеспечивающий проектируемому судну с выбранным двигателем максимальную достижимую скорость.

Для подбора двигателя можно пользоваться каталогами отечественных и зарубежных фирм, а также таблица 20.1, где приведены основные характеристики некоторых судовых малооборотных дизелей, выпускаемых консорциумом «МАН-Бурмейстер и Вайн». ДВС этой фирмы широко применяют на отечественных судах.

Расчет гребного винта с использованием вихревой теории. Проектирование гребных винтов с помощью диаграмм имеет и недостатки: выбирается оптимальный винт в пределах рассматриваемой серии, не учитывается неравномерность поля скоростей за корпусом судна. В связи с первым обстоятельством не гарантировано получение максимально возможного КПД, второе может привести к повышенной виброактивности гребного винта и его неудовлетворительным кави-тационным качествам. Последнее особенно важно для винтов быстроходных судов. Указанных недостатков можно избежать, используя вихревую теорию гребного винта. В ее основе -- вихревая теория крыла, в которой воздействие крыла на окружающую жидкость заменяется воздействием эквивалентного вихря. Из курса гидромеханики известно, что крыло бесконечного размаха с неизменной хордой может быть заменено присоединенным вихрем, имеющим такую же циркуляцию. Крыло конечного размаха заменяется П-образным вихрем постоянной циркуляции, состоящим, из присоединенного (в пределах крыла) вихря и двух свободных, распространяющихся в бесконечность по направлению скорости набегающего потока. Если хорда не постоянна по размаху крыла, оно заменяется присоединенным вихрем переменной циркуляции, а сбегающие с каждой его точки свободные вихри образуют вихревую пелену. И, наконец, крыло можно заменить системой присоединенных вихрей переменной циркуляции. Последняя схема в наибольшей степени подходит для широких крыльев сложной формы.

Указанные операции преследуют одну цель -- с помощью теоремы Био-Савара определить вызванные свободными вихрями скорости в любой точке потока. Эти скорости направлены по нормали к скорости набегающего потока. Они приводят к уменьшению угла атаки -- скосу потока, что влечет за собой снижение подъемной силы крыла и увеличение его сопротивления. Таким образом, задача определения сил, действующих на крыло конечного размаха, практически сводится к нахождению вызванных свободными вихрями скоростей. Лопасти те же крылья малого удлинения, следовательно, вихревая теория может с успехом применяться и для расчета гребного винта. Впервые эта идея была высказана в начале нашего века Н. Е. Жуковским, который считается родоначальником вихревой теории гребного винта. С ее помощью решаются обе задачи: прямая -- поверочный и обратная -- проектировочный расчет гребного винта. В обоих случаях учитываются индивидуальные особенности поля скоростей за корпусом судна.

Таблица 20.1 Характеристики некоторых судовых малооборотных дизелей (МОД)

Марка дизеля

Частота вращения n, об/мин

Агрегатная мощность Р тыс. кВт, при числе цилиндров

Примечания: 1. Двигатели типа ДКРН -- двухтактные крейцкопфные, с газотурбонаддувом, цифры за буквенным обозначением означают диаметр цилиндра и ход поршня, см.

  • 2. В таблице приведены номинальные значения мощности Р зи и частоты вращения п н.
  • 3. Пример записи характеристик 12-цилиндрового двигателя: 12 ДКРН 90/292, P SH =34 900 кВт, п н =58 об/мин.

Условие оптимальности винта при его проектировочном расчете-- достижение наивысшего пропульсивного коэффициента при выполнении требований задания и отсутствии вредных последствий кавитации. Другими словами, проектируется гребной винт, приспособленный к заданному попутному потоку. В результате такого расчета получают геометрические характеристики гребного винта -- распределение относительной кривизны профиля лопасти и шагового отношения по радиусу: и

Результатом поверочного расчета является распределение нагрузки по радиусу винта заданной геометрии в функции от его режима работы, относительной поступи:

В свою очередь эти зависимости позволяют найти силы, действующие на отдельные лопасти:

и на винт в целом:

Выражение (20.6) учитывает, что в общем случае при работе в неравномерном поле скоростей упоры и моменты, создаваемые отдельными лопастями, не одинаковы.

Рассчитав упор и момент для различных фиксированных значений относительной поступи винта, можно получить его ГДХ в свободной воде.

Поверочный расчет гребного винта широко используется при анализе его прочности, проверке на кавитацию, при изучении периодических усилий, возникающих на лопастях в неравномерном поле скоростей.

Ледовые гребные винты и их особенности. К гребным винтам ледоколов и судов активного ледового плавания предъявляются следующие специфические требования: высокая прочность, обеспечивающая работу в ледовых условиях, достаточная эффективность при движении передним и задним ходом с малыми скоростями, т. е. на режимах, близких к швартовному. Желательно, чтобы винты имели съемные лопасти, замена которых в случае поломки могла осуществляться судовыми средствами. В отечественной практике широкое применение находят ледовые гребные винты, разработанные М. А. Игнатьевым. Эти винты имеют четыре лопасти -- поломка одной изкрупные льдины. Контур спрямленной поверхности имеет симметричную форму, профиль сечения лопасти двояковыпуклый, обеспечивающий прочность и достаточную эффективность на заднем ходу. Увеличенный диаметр ступицы dн = 0,28 позволяет устанавливать съемные лопасти. На основании испытания серии моделей М. А. Игнатьевым были созданы расчетные диаграммы для проектирования гребных винтов ледоколов (Z p = 4; А е /А 0 =0,5; P/D = 0,41,2), которые можно найти в специальной литературе.

При проектировании гребных винтов ледоколов их элементы выбирают таким образом, чтобы в расчетном режиме можно было обеспечить максимальный упор на единицу мощности главной механической установки. В качестве расчетного обычно принимают режим движения в тяжелых либо предельных льдах с малой скоростью.

При заданных мощности двигателя и диаметре гребного винта максимальный удельный упор достигается при условии

Тогда выбор ледового винта сводится к построению по данным диаграммы зависимости q = f(P/D) при расчетном значении относительной поступи. Максимум этой функции будет соответствовать оптимальному с указанных позиций шаговому отношению. Для ледовых винтов расчетная поступь лежит в пределах J = 00,2, оптимальное шаговое отношение при этом составляет P/D = 0,700,80.

Диаметр винта ледокола выбирают максимально возможным, при этом максимален должен быть и удельный упор. Однако практика позволила выработать рекомендации: чтобы уменьшить вероятность взаимодействия гребного винта с плавающими на поверхности воды крупными льдинами, его ось должна быть достаточно заглублена, что возможно при условии, когда диаметр не превышает (55--60) % осадки.

Большая подводимая к ледовому винту мощность, повышенная толщина лопасти, малые значения относительной поступи на рабочих режимах -- все это способствует возникновению кавитации. Основной способ ее отделения -- увеличение дискового отношения.

При работе во льдах существенно изменяются ГДХ гребного винта: упор падает, момент возрастает, заметно снижается КПД. Достоверная оценка этих изменений -- одна из проблем, возникающих при расчете ледовых гребных винтов. Проектирование осложняет и то обстоятельство, что практически не существует систематических данных о взаимодействии гребного винта и корпуса в водно-ледяном потоке.

Гребные винты для судов активного ледового плавания занимают промежуточное положение между винтами транспортных судов и ледоколов.

Сегодня на ледоколах в основном используются винты фиксированного шага (ВФШ). Лучшим приводом в этом случае является гребной электродвигатель, обеспечивающий значительное повышение момента на валу при взаимодействии винта со льдом и тем самым снижающий вероятность заклинки винта. Кроме того, электродвигатель уменьшает время реверса, повышает маневренность судна. Поэтому, даже несмотря на довольно высокие потери мощности в передаче, электродвижение находит широкое распространение на ледоколах и судах активного ледового плавания.

В последнее время наблюдается тенденция использования на этих судах ВРШ, в том числе и в насадках. Применение таких винтов в сочетании с двигателем внутреннего сгорания или турбиной снизит потери энергии в передаче. Насадка обеспечивает повышение упора на швартовах, управление лопастями-- достаточную маневренность. Однако подобная пропульсивная установка имеет и ряд существенных недостатков: обломки льда, попадая в насадку, приводят к резкому усилению вибрации кормовой оконечности; начальная стоимость, эксплуатация и ремонт в случае поломки ВРШ существенно выше, чем у ВФШ,

Прочность гребных винтов. Лопасть представляет собой винтообразной формы оболочку, имеющую переменную вдоль радиуса ширину, толщину и кривизну. Ее можно рассматривать как консольную балку, жестко заделанную в корневом сечении. Под действием внешних нагрузок: упора, сопротивления вращению, центробежных сил -- лопасть подвергается кручению, изгибу, растяжению, т. е. испытывает сложное напряженное состояние. них представляет не слишком большую опасность, а в межлопастное пространство не могут попасть

Расчет прочности лопасти, как обычно, включает три задачи: определение внешних сил и внутренних напряжений, назначение обоснованного запаса прочности.

Внешние силы обычно разделяют на две категории: стационарные и периодические, возникающие в основном вследствие неравномерности поля скоростей.

На сегодняшний день проблему определения внешних сил можно считать практически решенной. Для гребного винта заданной геометрии, работающего в заданном поле скоростей, поверочный расчет позволяет определить как средние, так и амплитудные значениях всех перечисленных выше видов нагрузок, действующих на лопасть.

Несколько сложнее обстоит дело с определением сил внутренних, однако для винтов с не слишком большим дисковым отношением существуют достаточно надежные способы расчета этих напряжений.

Расчеты, выполненные для гребных винтов транспортных судов, показыва...

В заключение отметим, что точное определение напряжений в лопастях в различных условиях эксплуатации (реверс, движение на волнении и др.) пока еще не всегда возможно. Это компенсируется значительными запасами прочности, вводимыми при назначении допускаемых напряжений.

На предварительных стадиях расчета винта для оценки его прочности можно использовать выражение (20.1).

Движители совершенствовались одновременно с появлением новых типов судов и кораблей.

весло

С появлением первых небольших лодок человек понял, что понадобиться средство, которое будет толкать его судно. Первоначально это были весла, которые посредством погружения их в воду и перемещения производили нужный эффект - лодка двигалась. Необходимость в скорости заставила древних кораблестроителей увеличить количество весел и гребцов. Яркий тому пример весельного судна - галера, имеющая длину до 12 метров, на каждом из 96 весел располагалось до шести гребцов из числа рабов или каботажников.

кочет

Весла бывают вальковые, парные и двухлопатковые. Их применяют на лодках, шлюпках и других плавательных средствах, как крайнее средство для движения. Во время гребли средняя часть весла вставляется в отверстие - кочет, где фиксируется и создает упор.

АКТИВНЫЕ ДВИЖИТЕЛИ

парус

Мы знаем, что на протяжении тысячелетий морякам был известен еще один тип движителя - парус. Это также древний и популярный вид движителя, который использует силу ветра. В основном паруса бывают двух типов: прямые - трапециевидной формы, расположенные симметрично относительно мачты, и косые - треугольной или трапециевидной формы, которые крепятся с одной стороны мачты.

Прямым называют вооружение, у которого прямые паруса главные (барк, баркентина).

Суда с косым вооружением называют те, у которых основными являются косые паруса (шхуна, иола, кеч и др.).

Яхты чаще всего оснащаются треугольными парусами, которые получили название «бермудские» паруса.

яхта с «бермудскими» парусами

Также существуют смешанное парусное оснащение, при котором используются паруса всех выше перечисленных типов.

судно со смешанным парусным вооружением

Еще одной разновидностью парусов, которые получили распространение в наше время, можно считать - воздушный змей. По сути это тоже парус, но несколько другой формы. В судоходной компании «Beluga Projects » такой тип движителя уже экономит их расходы на топливо коммерческих судов.

грузовое судно компании «Beluga Projects»

Вынужденные в поисках ветра постоянно посещать участки океана с развитыми штормовыми условиями, часто попадали в жестокие штормы и бури. Со временем техническое несовершенство сыграло свою роль, и дальнейшее увеличение размеров торговых судов уже не могло быть поддержано парусниками - они достигли своего максимума. На смену пришли другие технически более совершенные корабли, отвечающие запросам того времени, а стали кораблями-музеями.

РЕАКТИВНЫЕ ДВИЖИТЕЛИ

гребное колесо

колесный пароход, Ванкувер, Канада

На первых пароходах в качестве основного движителя кораблестроители начали использовать гребное колесо. Но это, пожалуй, самый неудачный из всех движителей. Из-за многочисленных недостатков гребного колеса, которыми были частые поломки, и низкая эффективность по причине «выскакивания» из воды при бортовой качке гребные колеса недобросовестно выполняли свои функции и заняли последнее место среди других типов движителей.

появление гребного винта

Идея создания совершенного и универсального движителя , как всегда была не нова, просто нужно было оказаться в нужном месте и нужное время. Таким человеком оказался Изамбард Брунель, которому, по моему мнению, судостроители обязаны, по сей день. Сквозь многочисленные мнения скептиков он, подробно изучив работу изобретения древнегреческого ученого Архимеда, создал гребной винт, работу которого продемонстрировал на пароходе «SS Great Britain ».

С той поры этот движитель получил самое большое распространение. Изготовленный из различных материалов, меняя количество и угол наклона лопастей, гребной винт совершенствовался и занял лидирующую позицию среди прочих движителей.

Итак, движителем называют устройство, преобразующее мощность от двигателя (источника энергии) в работу поступательного движения корабля или судна.

КЛАССИФИКАЦИЯ ДВИЖИТЕЛЕЙ ДЛЯ КОРАБЛЕЙ И СУДОВ

Различают движители активные : паруса, обеспечивающие движение судна за счет непосредственного воздействия силы, создаваемой источником энергии - ветра, и реактивные , создающие движущее усилие путем отбрасывания масс воды в сторону, противоположную перемещению корабля.

Последние подразделяются на лопастные (колесный, винтовой, плавниковый, крыльчатый ) и водопроточные (водометные и гидрореактивные ).

ЛОПАСТНЫЕ ДВИЖИТЕЛИ

Типичный гребной винт состоит из ступицы с расположенными на ней лопастями. В основе его работы лежит гидродинамическая сила, создаваемая разностью давлений на сторонах лопастей. Любое концентрическое сечение лопастей представляет собой элемент несущего крыла самолета. Поэтому при вращении винта на каждом элементе возникают такие же силы, как и на крыле.

принцип действия гребного винта

Поток, обтекающий выпуклую сторону лопасти (засасывающая сторона), слегка поджимается, и вследствие этого движение его ускоряется. Поток, обтекающий вогнутую сторону лопасти (нагнетающая сторона), встречая на своем пути препятствие, несколько замедляет скорость. В соответствии с законом Бернулли, на засасывающей стороне лопасти давление потока падает и возникает зона разрежения. В то же время на нагнетающей стороне лопасти, напротив, возникает зона увеличенного давления. В результате разности давлений на стороны лопасти образуется гидродинамическая сила. Вследствие длительных исследований было установлено, что основная часть гидродинамической силы около 70 процентов создается за счет разрежения на засасывающей стороне лопастей винта и только 30 процентов за счет давления на нагнетающей стороне лопастей. Проекция гидродинамической силы на ось гребного винта представляет собой упор винта. Эта сила воспринимается лопастями, которые через ступицу и гребной вал передают ее кораблю или судну.

Поскольку лопасти имеют винтообразную поверхность, при вращении винта вода не только отбрасывается назад, но и закручивается в сторону вращения лопастей. Между тем задача движителя - только отбрасывать воду, не вращая ее, создавая реактивный импульс - силу тяги. На закручивание потока и на преодоление сопротивления вращения винта в воде затрачивается значительная доля мощности, подводимой ему от двигателя. Поэтому коэффициент полезного действия гребного винта, равный отношению мощности, затраченной на создание тяги винта (полезная мощность), ко всей мощности, затраченной на вращение винта, всегда будет меньше единицы.

КПД гребных винтов колеблется в диапазоне 0,5 - 0,7. Верхний предел считается очень высоким и достижимым на малооборотных гребных винтах большого диаметра. Для высокооборотистых винтов небольшого диаметра КПД редко превышает 0,5.

Гребной винт всегда согласован с двигателем, в противном случае будет происходить бесцельная потеря мощности. Кроме того, встречаются нереверсивные двигатели, которые не способны изменять сторону вращения вала. В таких случаях существует гребной винт регулируемого шага . В его ступице располагается механизм, поворачивающий лопасти на заданный угол и удерживает их в таком положении. Поворот лопастей позволяет изменять тяговое усилие при постоянной частоте вращения гребного вала и наоборот, сохранять постоянное тяговое усилие при разных частотах вращения вала, а также вообще изменить направление упора (реверс) при неизменном направлении вращения гребного вала.

Для передачи большой мощности часто применяют двух- и трехвальные установки, а на некоторые большие корабли, например авианосцы, оснащены четырьмя симметрично расположенными гребными винтами. Иногда применяются направляющие насадки, что при малой частоте вращения гребного винта обеспечивает прирост упора до шести процентов.

а) - гребной винт с неподвижными лопастями; б) - винт регулируемого шага; в) - гребной винт в насадке; г) - соосные гребные винты противоположного вращения;

азипод

рулевая колонка

Для повышения маневренности некоторых судов получили активное распространение универсальные движители, так называемые активные рули, получившие название «азипод ». Рулевая колонка типа «азипод » включает в себе небольшой гребной винт с собственным электрическим мотором. Вращаясь вокруг своей оси, винт создает упор и увеличивает тем самым вращающий момент, действующий на руль.

движитель типа «Азипод»

К сожалению, дороговизна конструкции ограничивает область применения движителей типа «азипод », но они оправдывают затраченные средства. Используются на ледоколах, современных круизных лайнерах, нефтедобывающих буровых платформах и других типах судов.

плавниковый движитель

плавниковый движитель

Для сохранения устойчивости корабля или судна судостроители оснащают свои «творения» небольшими килевидными стабилизаторами, выступающими с обеих сторон корпуса судна. По образу и подобию они похожи на плавники огромных китов, за что и получили соответствующую классификацию. Каждый из них имеет обтекаемую форму, благодаря которой рассекает волны, не замедляя ход корабля.Принцип действия очень прост - установленные под углом плавниковые движители производят тот же эффект, что и крылья самолета - либо погружают корпус судна глубже, либо поднимают его выше. Когда волны пытаются накренить корабль то в одну, то в другую сторону, килевидные стабилизаторы наклоняют корпус в противоположное направление крену. Это придает судну устойчивость даже при больших волнах.

крыльчатые движители

принцип действия крыльчатого движителя

Крыльчатые движители нашли применение, прежде всего в подруливающих устройствах. Они объединяют в себе функции движителя и руля и представляют собой ротор, установленный на одном уровне с днищем судна, и вращающийся вокруг вертикальной оси, по окружности которого на равных угловых расстояниях располагаются от 3 до 8 перпендикулярных к его поверхности лопастей, выполненных в виде крыльев. Вращаясь вместе с ротором, лопасти периодически поворачиваются вокруг своей собственной оси. Поворот лопастей производится так, что при каждом положении на ней создается сила, имеющая наибольшую проекцию в направлении движения судна. Это, достигается, когда условные перпендикулярные к хордам лопастей пересекаются в одной точке, являющейся центром управления. Перемещение центра управления вдоль оси, перпендикулярной к направлению движения корабля, изменяет величину и знак упора. Таким образом, крыльчатые движители обладают теми же свойствами, что и винт регулируемого шага. При произвольном перемещении центра управления в плоскости, параллельной плоскости ватерлинии, можно изменять направление вектора упора в пределах от 0 до 360 градусов. Для поворота лопастей и перемещения центра управления служит механический привод, расположенный в корпусе движителей и управляемый гидравлической системой.

крыльчатый движитель

По эффективности, а также по сложности и массогабаритным характеристикам крыльчатый движитель уступает гребным винтам, а потому используется в качестве эффективного подруливающего устройства.

Применяются на судах, к маневренности которых предъявляются повышенные требования (буксиры, рыболовные суда, тральщики и др.).

ВОДОПРОТОЧНЫЕ ДВИЖИТЕЛИ

водометный движитель

водометный движитель

Водометный движитель (водомёт) представляет собой рабочее колесо водяного насоса, помещенное в водопроточном канале, через который выбрасывается вода с увеличенной скоростью по оси движителя. К основным преимуществам подобных движителей относятся: хорошая защищённость от механических повреждений и возможность избежать кавитации, защищенность от плавающих на поверхности акватории предметов,меньший гидродинамический шум по сравнению с винтовыми движителями, что очень важно для подводных лодок. располагаются внутри или снаружи корпуса судна. Эффективность водомётного движителя зависит от формы водоводов, места расположения и конструкции водозаборников.

Применяются, как правило, на , работающих на мелководье, или служат в качестве подруливающего устройства для улучшения поворотливости судов.

движители насосного типа

движитель типа «pump-jet»

На субмаринах вообще стали применять новый тип движителя - pump-jet, что значит-движители насосного типа. Существуют две их разновидности:

-движитель насосного типа с предварительной закруткой - статор (основание насадки) расположен перед ротором;

-движитель насосного типа с последующей раскруткой, когда ротор расположен перед статором.

разновидности движителя насосного типа «pump jet»

1) - ротор; 2) - насадка; 3 - статор; 4) - основание насадки; 5) - статор-основание насадки;

Качества обоих типов движителей одинаковы, но движитель насосного типа с предварительной закруткой имеет лучшие кавитационные характеристики, хотя конструктивно более сложен.

гидрореактивный движитель

В гидрореактивном движителе для ускорения потока воды используется энергия сжатого воздуха или продуктов сгорания, подаваемых в водовод через сопло. Характерная особенность таких устройств - отсутствие валопровода и механического рабочего органа. Различают:

тепловые - прямоточные (пароводяная смесь образуется в камере, куда подается пар или горячий газ, создающий движущую силу);

пульсирующие (поршневого типа с пульсирующей газоводяной камерой сгорания, с реактивной газоводяной трубой взрывного типа и др.);

эжекционные и другие, использующие энергию холодного сжатого газа, ускоряющего поток водовоздушной смеси. Применяются в гражданском судостроении.

КАК ИЗГОТАВЛИВАЮТ ГРЕБНЫЕ ВИНТЫ

Самые большие гребные винты достигают высоты трехэтажного здания, а их изготовление требует уникальных навыков. Во времена, когда был создан винтовой пароход «SS Great Britain » на изготовление форм гребного винта уходило до 10 дней. Сегодня благодаря наличию компьютерных технологий автоматизированный манипулятор делает это за пару часов. Форма винта вводится в компьютер, и алмазное сверло на конце манипулятора вырезает из огромных пенопластовых блоков идеальную копию лопасти с точностью до 1 мм. Затем в готовую модель помещают смесь песка и цемента, чтобы получить точный оттиск. После того как бетон остынет, в форму, состоящую из двух половинок, соединяют вместе и заливают расплавленный до 3000 градусов металл.Гребной винт нельзя делать из чего-либо. Винт должен быть достаточно прочен, чтобы выдержать тысячи тонн давления и не подвергаться коррозии в соленой морской воде. Наиболее распространенными материалами для изготовления гребных винтов являются сталь, латунь и бронза. В последние годы для этой же цели стали применять пластмассы.

Сплав из цветных металлов для гребных винтов, получил название «куниал ». Он имеет прочность стали, но гораздо лучше противостоит коррозии. Куниал может находиться в воде десятилетиями, не ржавея при этом. Для придания сплаву предельной точности к 80 % меди необходимо добавить 5 % никеля и 5 % алюминия, а также 10 % других металлов. Переплавка осуществляется при температуре 3200 градусов.

Пройдя контроль качества, «коктейль» из расплавленных металлов заливается в форму. Чтобы избежать попаданий воздуха в структуру металл заливается ровной струей. Спустя два дня форма остывает. Затем лопасти высвобождают из формы.

Эффективность гребного винта зависит от гладкой и обтекаемой формы лопастей. Поверхность отлитой из формы детали неидеальна, и покрыта литейной коркой. Для определения толщины слоя применяется лазерный измеритель. После чего лишний слой удаляется с помощью резака из карбид-вольфрама. Затем гребной винт полируется до идеально гладкой поверхности, пока не будет составлять 1,6 микромиллиметра. В итоге поверхность приобретает гладкость стекла.

Гребной винт - изделие сугубо индивидуальное и для каждого современного судна или корабля должно иметь оптимальную форму, чтобы скользить и захватывать необходимое количество энергии, учитывая условия эксплуатации. Главная проблема всех гребных винтов - кавитация . Все дело в том, что под водой при их вращении на лопастях возникает область пониженного давления, в которой вода в буквальном смысле начинает закипать, даже при низких температурах. Поэтому движители испытывают на специальных стендах, где подбирают оптимальные параметры работы гребного винта, и проверяют правильный угол лопастей.

Как не печально, но невероятной красоты гребные винты обречены на тяжелый труд, скрытый от человеческих глаз под морскими волнами.Таким образом, из всех типов существующих движителей главенствующую роль занимает гребной винт , и пока нет оснований полагать, что в ближайшие годы для него найдется более эффективная замена.

Afrikaans Albanian Arabic Armenian Azerbaijani Basque Belarusian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Detect language Dutch English Estonian Filipino Finnish French Galician Georgian German Greek Haitian Creole Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latin Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese Welsh Yiddish ⇄ Afrikaans Albanian Arabic Armenian Azerbaijani Basque Belarusian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Filipino Finnish French Galician Georgian German Greek Haitian Creole Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latin Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese Welsh Yiddish

English (auto-detected) » Russian

Большие корабли нуждаются в огромных турбинах и винтах, чтоб перемещать тяжелые грузы в борьбе с океанскими волнами. Чем больше будет винт корабля, тем больше будет его скорость и мощность. В этой подборке мы рассмотрим самые большие корабельные винты разных судов.

Начнем с интересного факт. Знаете ли Вы, кто изобрел первый в мире пропеллер-винт? Это был Эдвард Бертон, придумавший винт в 1834 году. Адмиралтейству эта затея показалась бредовой, ей отклонили, сказав что с помощью этой игрушки никогда никакой корабль не поплывёт…

Теперь переходим непосредственно к теме. Один из самых больших в мире винтов (на фото выше) был изобретён компанией Хюндай для огромного контейнеровоза TEU. Винт высотой с трёхэтажное здание и диаметром в 9 метров, с шестью лопастями весом в 101 тонну. На следующем фото винт весом в 72 тонны для танкера Loannis Coloctronis

Самый большой на данный момент винт построен немецкой компанией Mecklenburger Metallguss GmbH: винт весом в 131 тонну предназначен для крупнейшего в мире контейнеровоза Эмма Маерск длиной в 397 метров, шириной в 56 и высотой в 68 метров. С таким винтом контейнеровоз может развивать скорость до 27 узлов (50 км/ч)


А вот массивные и тщательно защищенные винты Антарктического ледокола Палмер - это научно-исследовательское судно работает в одном из наиболее жестких и опасных для судоплавания уголков земли у берегов Антарктиды

А эти пропеллеры были созданы в Голландии для американского круизного судна Eurodam




Не обойдется в этой подборке и без одного из самых знаменитых кораблей - Титаника. для него было построено три винта из бронзы с отдельными двигателями. Два внешниз винта были весом в 38 тонн, а центральный весил 17 тонн. В подборке интересных фактов о Титанике вы найдете больше информации.

Корабль Титаник был одни из прекраснейших представителей своей эры, но в наше время есть суда гораздо больших размеров, например Oasis of the Seas в пять раз больше Титаника и является самым большим пассажирским кораблём на данный момент. Следовательно, для самого большого корабля потребовались и самые большие винты, созданные в Финляндии

Винты судна Elation, также построенные в Финляндии

Винты судна Norwegian Epic:

Винты корабля Queen Elizabeth 2 (QE2). Судно было спущено на воду в 1969 году и снято с обслуживания в 2008

Ей на замену пришла Queen Mary 2, а вот некоторые из её деталей

А это лопасти еще одного знаменитого судна - немецкого линкора Бисмарк, спущенного на воду в 1939 году. В 1941 году он был потоплен британцами

Это совсем небольшой винт, но не менее важный. Лопасти японской субмарины, участвовавшей в набеге на Пёрл-Харбор

Винт для южнокорейского судна весом в 107 тонн слева, а справа винт корабля Crystal Symphony

Огромный пропеллер одного из советских судов

Судовые гребные винты изготавливают из антикоррозионных материалов, поскольку они работают в морской воде, являющейся катализатором коррозии. Материалами, используемыми для изготовления гребных винтов, являются алюминиевые сплавы и нержавеющая сталь. Другие используемые материалы - это сплавы никеля, бронзы и алюминия, которые на 10-15% легче других материалов и имеют более высокую прочность.

Процесс изготовления гребных винтов включает крепление определенного числа лопастей на ступице с помощью сварки, или же винт изготавливается из единой поковки. Кованые лопасти более надежны и обладают большей прочностью, но являются более дорогостоящими, по сравнению со сварными лопастями. При вращении в водной среде, за счет разности давлений на кромках лопастей, гребной винт создает упор, движущий судно.

Такой вид движителей, как гребные винты, постоянно развивается и усовершенствуется. Но сначала рассмотрим классификацию традиционных гребных винтов. Классификацию гребных винтов можно представить в следующем виде.

Типы гребных винтов

Гребные винты классифицируются по ряду факторов.

А) Классификация по количеству лопастей:

Количество лопастей гребного винта может варьироваться от трех до четырех и иногда даже до пяти. Однако наиболее частым случаем является наличие у винта трех или четырех лопастей.

Теоретически, наивысшей эффективностью обладал бы винт с двумя лопастями. Но из соображений прочности и необходимости выдерживать высокие нагрузки на судах не используются двухлопастные гребные винты.

Трехлопастной гребной винт

Стоимость изготовления ниже, чем у других типов гребных винтов

Обычно изготавливаются из алюминиевого сплава

Обеспечивают высокую скорость хода судна

Ускорение более высокое, чем у других типов винтов

Э ффективность на малых скоростях хода низкая

Четырехлопастной гребной винт

Стоимость изготовления выше, чем у трехлопастных винтов

И зготавливаются из сплавов нержавеющей стали

И меют более высокую прочность и выносливость

Хорошо работают и при малых скоростях хода

Обеспечивают большую экономию топлива, чем винты других типов

Пятилопастной гребной винт

Стоимость изготовления самая высокая из всех типов гребных винтов

Уровень вибраций самый минимальный из всех типов гребных винтов

Шестилопастной гребной винт

Стоимость изготовления высокая

У шестилопастных винтов область индуцированного давления над винтом меньше

У крупных контейнеровозов, как правило, пяти- и шестилопастные гребные винты

B) Классификация по шагу винта:

Шаг гребного винта можно определить как перемещение, вызванное каждым круговым поворотом винта на 360 градусов.

Винт фиксированного шага (ВФШ)

Лопасти ВФШ стационарно закреплены на ступице. Гребные винты фиксированного шага литые, и позиция лопастей, а значит и шаг винта постоянны и не могут быть изменены в процессе эксплуатации винта. Такие винты обычно изготавливают из медных сплавов.

ВФШ прочны и надежны, поскольку не содержат механических деталей и гидравлики, в отличие от винтов регулируемого шага (ВРШ). Стоимость изготовления, монтажа и эксплуатации значительно ниже, чем у ВРШ. Однако маневренность судна с ВФШ ниже, чем у судна с ВРШ. Винты данного типа устанавливают на судах, не требующих высокой маневренности.


Винт регулируемого шага (ВРШ)

У ВРШ возможно менять шаг гребного винта за счет поворота лопасти вокруг вертикальной оси с использованием механических компонентов и гидравлики. Это позволяет избавиться от оборудования, необходимого для реверса. Повышается маневренность судна и эффективность работы двигателя.

Недостатком является возможность протечек гидравлики и загрязнения водной среды маслом. Кроме того, такой гребной винт сложен в изготовлении и монтаже на судне, а также требует особого внимания при эксплуатации судна.

Эффективность ВРШ несколько ниже, чем у ВФШ тех же размеров из-за большей ступицы, в которой нужно размещать механизм поворота лопастей и гидравлику. А гребные винты, как правило, более эффективны с увеличением их диаметра.

Для повышения эффективности работы гребные винты снабжают специальными насадками. Такие винты включают помимо самого винта кольцевую насадку, внутри которой размещается гребной винт. Винты с насадками успешно используются при необходимости создания дополнительного упора на малых скоростях хода. Обычно винты этого типа используются на буксирах-якорезаводчиках, на рыболовных траулерах, где за счет насадок обеспечивается от 40 до 50% упора винта при малых и близких к нулю скоростях хода. Иногда насадки делают поворотными. Но все это устройства, повышающие эффективность работы традиционных гребных винтов.

Усовершенствования в конструкциях винто-рулевого комплекса

Эффективность работы винто-рулевого комплекса может повышаться за счет добавления деталей как перед винтом, так и позади гребного винта. Добавление таких деталей в виде плавников или ребер является одним из способов снижения потерь мощности и экономии топлива. Большинство подобных устройств проходят предварительные испытания на моделях с тщательным замером всех характеристик и параметров перед установкой их на гребные винты коммерческих судов. Потери мощности винта, как правило, связаны с образованием спутных вихрей, устранить которые, и пытаются с помощью добавления таких деталей. Целью подобных инноваций является создание наиболее благоприятных условий для работы гребного винта. Насадки, плавники, сопла, бульбы и другие устройства используются для снижения требуемой мощности и повышения скорости судна.


Кольцевые насадки являются наиболее старым видом устройств, повышающих эффективность работы гребного винта. Такие насадки были изобретены немецким инженером Людвигом Кортом в 1930-е гг. и называются насадками Корта или кольцевыми насадками. В наши дни подобные насадки также продолжают использоваться на судах, где при малых скоростях хода требуется повышенный упор гребного винта.

Насадка Мьюиса (Mewis Duct) и полупреднасадка проф. Шнееклюта (Wake Equalizing Duct - WED)

Насадка Мьюиса и полупреднасадка проф. Шнееклюта являются двумя примерами устройств, устанавливаемых перед гребным винтом, использование которых основано на опыте, полученном при исследованиях и эксплуатации насадок Корта. Эти устройства используются на крупных коммерческих судах. Со времени ввода на рынок в 2010 г. насадка Мьюиса привлекла внимание как судовладельцев, так и судостроителей. Насадкой на настоящий момент оснащены 62 судна, и еще для 250 судов заказана установка данного устройства. Устройство используется на танкерах, балкерах и фидерных контейнеровозах.

Полупреднасадка проф. Шнееклюта была изобретена в 1980-х гг. С тех пор устройство применялось на 1500 судах океанского плавания. Это устройство идеально подходит для судов с полными обводами, таких как танкеры и контейнеровозы, эксплуатируемые при средней скорости хода 19 узлов. Проф. Шнееклют анонсировал экономию топлива в размере 12%, но на практике результаты были более скромными, хотя и значительными. Годовая экономия топлива в размере всего 3,5% на деле для контейнеровоза грузовместимостью 2500 ДФЭ означает ежегодную экономию 550 т топлива, а это представляет весьма существенную экономию для транспортной компании.

Инновации в конструкции винто-рулевого комплекса

Статор с лопатками на ступице гребного винта


Для повышения эффективности насадки могут монтироваться впереди гребного винта. Корпорация DSME разработала статор с лопатками на ступице гребного винта, который является альтернативой установке кольцевых насадок и тоннелей.

Разработка устройства, представляющего из себя ряд лопаток статор,а закрепленных в кормовой части корпуса перед гребным винтом, велась в течение десяти лет, и его установка создает дополнительное сопротивление движению судна. Однако создаваемый лопастями несимметричный поток создает более благоприятные условия для вращения винта и, таким образом, повышает его эффективность.

Так же, как и в случае насадок, данное устройство наиболее эффективно при установке на крупных судах, таких как танкеры и контейнеровозы. Установка первого устройства на крупнотоннажный танкер 3 класса дедвейтом 320000 т, принадлежавший компании Kristen Tankers, позднее переименованной в Maran, показала снижение потребления топлива на 4% и небольшое увеличение скорости. Крупная европейская судоходная компания заказала установку этих систем на 10 принадлежащих ей судов класса "Post-panamax" и сообщила об уменьшении потребления топлива и сокращении выбросов в результате этого.

Настолько же эффективны и доступны в установке и эксплуатации, устройства размещаемые за гребным винтом. Два из этих устройств - крыльчатая наделка с прямыми лопастями на ступице гребного винта (Propeller Boss Cap Fin - PBCF) и крыльчатая наделка с изогнутыми лопастями на ступице гребного винта (Propeller Cap Turbine - PCT) могут заменять обычный обтекатель гребного винта. Оба устройства используют вихревые потоки, образующиеся при вращении винта, для повышения его эффективности.

Рис.7. Внешний вид крыльчатой наделки с прямыми лопастями на ступице гребного винта (Boss Cap Fins).

Крыльчатая наделка с прямыми лопастями на ступице гребного винта представляет собой закрепленные на обтекателе винта прямые лопасти, а в крыльчатой наделке с изогнутыми лопастями на обтекателе устанавливаются искривленные лопасти.

Впервые устройство PBCF было изготовлено в конце 80-х гг. и с тех пор было установлено более 2000 устройств, которые, по заявлениям экспертов, обеспечивают экономию в 3-5%. Однако на малых скоростях эффективность данных устройств снижается.

Так же как и системы, размещаемые перед гребным винтом, PBCF и PCT являются относительно недорогими и несложными системами, которые могут монтироваться в дополнение к уже установленной пропульсивной системе. А, по утверждениям экспертов, окупаемость инвестиций в PBCF составляет один год, при том, что установка устройства на винт может быть произведена в течение двух дней без захода судна в сухой док.

Таким образом, за счет установки этих простых легко монтируемых устройств может достигаться экономия топлива. А поскольку стоимость топлива растет, то эти системы обеспечивают быструю окупаемость, заняв за счет этого свою долю рынка.

Системы, размещаемые в дополнение к гребным винтам, старых и новых типов позволяют уменьшить расходы судовладельцев и судовых операторов без необходимости сдавать на слом старые суда и инвестировать в новые экологичные проекты.

Огромные корабельные винты скрывают невиданную мощь. Вы можете считать, что главный двигатель всей жизни - любовь; кораблю нет до этого никакого дела:)


внизу слева: 85-тонный винт, изготовленный Stone Marine Propulsion Ltd; вверху и справа: винты от MMG

Интересный факт: когда Эдвард Лион Бертон (Edward Lyon Berthon) изобрел гребной винт в 1834 году, он был отвергнут и воспринят Адмиралтейством как «милая игрушка, которая никогда не смогла бы, и не сможет привести в движение корабль».

Самые огромные корабельные винты в мире

Один из самых больших корабельных винтов в мире изготовила компания Hyundai Heavy Industries для судна грузоподъемностью 7200 двадцатифутовых контейнеров, принадлежавшего Hapag Lloyd. Высотой с трехэтажное здание, 9,1 метра в диаметре, шестилопастевый винт весит 101,5 тонну. На следующей фотографии изображен 72-тонный винт, установленный на танкер Loannis Coloctronis:


Крупнейший на сегодняшний день корабельный винт массой в 131 тонну, изготовленный в городе Варен на реке Мюриц, установлен на Emma Maersk - крупнейшем контейнеровозе в мире, грузоподъемностью до 14 770 двадцатифутовых контейнеров, длиной 397 м, шириной более 56 м и высотой 68 м. Сообща с мощным двигателем, винт позволяет океанскому гиганту набирать скорость в 27 узлов (50 км / ч).




А это массивные винты и рули антарктического ледокола Palmer, научно-исследовательского судна, работающего в самых суровых условиях на Земле:


Винты, установленные на Eurodam - круизном лайнере:




Эти громадные винты принадлежали "Титанику" - одному из самых известных кораблей в истории. Лайнер имел три гребных винта, каждый приводился в действие отдельным двигателем. Два внешних винта весили 38 тонн, а центральный - 17 тонн:


"Титаник" был одним из лучших кораблей своего времени, но "Oasis of the Seas" компании Royal Caribbean размерами превосходит знаменитый лайнер в пять раз, и в настоящее время является крупнейшим пассажирским судном из когда-либо построенных. Естественно, роскошный корабль должен иметь достаточно большие винты, способные доправить его от побережья Финляндии до нового дома "Oasis of the Seas" в городе Форт-Лодердейл, штат Флорида:


"Elation от Carnival Cruise Lines" также был построен в Финляндии, и в настоящее время обосновался в Сан-Диего, штат Калифорния. Рядом с винтами корабля люди, ответственные за их конструирование и установку, кажутся жалкими лилипутами:


А этот винт собирается в сухом доке в Сан-Франциско:


Следующий винт принадлежит другому круизному лайнеру, "Norwegian Epic":


Еще один пример винта гигантского размера, который необходим для передвижения таких огромных круизных судов как "Celebrity Solstice":


А вот винты корабля "Queen Elizabeth 2", известного как QE2. Принадлежавшее Cunard Line (британская компания-оператор трансатлантических и круизных маршрутов океанских лайнеров), судно было спущено на воду в 1969 году и снято со службы в 2008 году:


"Queen Mary 2" сменил QE2 в качестве флагманского судна Cunard в 2004 году. Вот некоторые из запасных винтов QM2, располагающихся на передней палубе судна:


Это винт другого известного в истории корабля. Немецкий линкор "Bismark" был спущен на воду в феврале 1939 года, незадолго до начала Второй мировой войны, и потоплен англичанами в мае 1941 (изображение слева). На фото справа - заводской пейзаж и винт от нефтяного танкера во время его строительства в 1947 году:

Не такие большие, но не менее интересные
Винт японских мини-подводных лодок, атаковавших американские авианосцы во время атаки на Перл-Харбор в декабре 1941 года:


Правый винт USS Fiske, 1946 год:


Технологии, конечно, улучшаются, но большим кораблям до сих пор необходимы большие винты. Этот - от "SS Great Britain", разработанный Isambard Kingdom Brunel для самого большого корабля в мире (на момент его запуска в 1843 году). Корабль пересек Атлантический океан в 1845 году всего за 14 дней, что стало в то время абсолютным рекордом.


Рабочие судостроительного завода изучают один из четырех латунных винтов авианосца USS George Washington. Каждый из винтов весит около 66 000 фунтов и имеет 22 фута в диаметре:


Разработанный для корабля, который строится в Южной Корее, этот гигантский винт имеет диаметр более 30 футов и весит 107 тонн (слева). Справа винт корабля Crystal Symphony в сухом доке в Лиснаве, Португалия:


Один из гигантских винтов контейнеровозов советских времен:


Сверхмощный винт готов к трудной роботе!