Проводка

Нормы содержания co2 в помещении. Оценка уровня углекислого газа в помещении с кондиционером

Нормы содержания co2 в помещении. Оценка уровня углекислого газа в помещении с кондиционером

Экология потребления. Здоровье: Хоть от людей часто можно услышать, что им не хватает кислорода, на самом деле проблема...

Хоть от людей часто можно услышать, что им не хватает кислорода, на самом деле проблема в душных помещениях чаще всего есть с другим газом - углекислым.

Сегодня мы поговорим про избыток углекислого газа в организме (гиперкапния), который подстерегает нас во многих душных помещениях (и не только) и является причиной многих неприятностей.

Углекислый газ CO2 входит в состав земной атмосферы. Его средняя концентрация в воздухе составляет около 0,035%, или 350 ppm - миллионных долей (parts per million). Геохимические исследования показали, что примерно такой уровень - в пределах нескольких сотых долей процента - остаётся неизменным уже сотни тысяч лет.

Но вот атмосфера мест массового человеческого обитания - городов, и особенно мегаполисов, действительно формируется при непосредственном нашем участии. Во второй половине прошедшего века концентрация CO2 в сельской местности составляла те самые «среднеземные» 350 ppm, в небольших городах 500 ppm, в крупных промышленных центрах 600-700 ppm. И это, однако, не стало пределом.

Вы знаете, что мы вдыхаем кислород (О2) и выдыхаем углекислый газ (СО2) и наше дыхание зависит от рода деятельности (таблица).

Углекислый газ в помещениях образуется лишь как продукт жизнедеятельности человека, который выдыхает в 100 раз больше CO2, чем вдыхает. Потребляя около 30 литров кислорода в час, каждый из нас выделяет 20-25 литров углекислого газа. Человек в помещении производит примерно 35.2 грамма CO2 в час, и соответственно, если комната площадью 20 м2 высотой 2.5 метра, то без хорошей вентиляции каждый час концентрация углекислого газа будет расти на 584ppm каждый час.

Незначительное повышение концентрации углекислого газа вызывает у людей ощущение «спертости» воздуха, духоты. Мы отчетливо чувствуем это, когда приходим с улицы в помещение. Но наш дыхательный центр пластичен и уже спустя 10 минут мы перестаем это замечать. При более значительном повышении концентрации симптомы становятся хуже: «тяжелая» голова, головокружение, головные боли, и вплоть до необратимых изменений в организме человека. Одновременно большинству из нас знакомо ощущение духоты в помещении и симптомы связанные с этим т.е. усталость, сонливость, раздражительность. Такое состояния многие связывают с нехваткой кислорода. На самом деле, это симптомы вызваны превышением уровня углекислого газа в воздухе. Кислорода еще достаточно, а углекислота уже в избытке.

Симптомы у взрослых здоровых людей

Концентрация углекислого газа

  • Нормальный уровень на открытом воздухе 350 - 450 ppm
  • Приемлемые уровни < 600 ppm
  • Жалобы на несвежий воздух 600 - 1000 ppm
  • Максимальный уровень стандартов ASHRAE и OSHA 1000 ppm
  • Общая вялость 1000 - 2500 ppm
  • Возможны нежелательные эффекты на здоровье 2500 - 5000 ppm
  • Максимально допустимая концентрация в течение 8 часового рабочего дня
  • 5000 ppm

Где же находится тот предел, до которого мы можем не беспокоиться о состоянии своего здоровья? Вопрос актуален, поскольку большую часть жизни современный человек, и прежде всего городской обитатель, всё же проводит в помещениях, микроклимат и атмосфера которых существенным образом отличаются от условий открытого пространства. В то же время известно, что значительное (в десятки раз) повышение содержания в воздухе CO2 вызывает резкое ухудшение самочувствия, а концентрация более 5% (50 000 ppm) становится для человека смертельной.

Распространение пластиковых окон усугубило проблему углекислого газа. Почему в квартире высокий уровень CO2? Три основные причины: пластиковые окна, не работающая вытяжка и отсутствие приточной вентиляции, несоблюдение санитарных нормативов - большое количество людей в маленькой комнате. Еще раз повторю: пластиковые окна без клапанов - источник повышенного уровня СО2 в квартире

Показатель СО2 – это показатель качества вентиляции в целом!

Cегодня уровень концентрации СО2 в помещении служит основным показателем качества воздуха. Он выступает как газ-индикатор, по которому можно судить не только о других загрязнителях, но и о том, насколько хорошо работает вентиляционная система в здании. Исследования в школьном классе показали, что если в воздухе присутствуют, кроме углекислого газа, летучие органические соединения и формальдегиды, то достаточно следить только за СО2. Если вентиляция справляется с ним, то остальные загрязнители также остаются на низком уровне. Более того, по СО2 можно судить и о количестве бактерий в воздухе. Чем больше углекислого газа, тем хуже справляется вентиляция и тем больше в воздухе разных бактерий и грибков. Особенно отчетливо это заметно зимой, когда интенсивность вентиляции падает, а количество респираторных инфекций растет.

В принципе, чтобы воздух оставался чистым, достаточно наладить обмен с внешней атмосферой из расчёта 30 м3 в час на одного человека. Такие исходные данные закладываются при проектировании вентиляционных систем служебных, а также жилых помещений, которые и должны обеспечить те самые комфортные 600 ppm и не более. Хотя насчёт комфортности этого уровня некоторые исследователи высказывают весьма серьёзные сомнения.

Например, англичанин Д. Робертсон утверждает, что существующая на Земле фауна, в том числе и человек, формировалась в определённой температурно-газовой среде, в которой содержание диоксида углерода не превышало 300-350 ppm. По расчётам Робертсона, которые он опубликовал в журнале индийской Академии наук, максимальный безопасный для человека уровень CO2 равен 426 ppm. В городе такого уровня даже в парке быть не может, увы.

В сентябре 2016 года концентрация углекислого газа в атмосфере Земли преодолела психологически значимую отметку в 400 ppm (долей на миллион). Это делает сомнительными планы развитых стран по недопущению повышения температуры на Земле более чем на 2 градуса.

Глобальное потепление — это повышение средней температуры климатической системы Земли. За период с 1906 по 2005 год средняя температура воздуха возле поверхности планеты выросла на 0,74 градуса, причем темпы роста температуры во второй половине столетия примерно в два раза выше, чем за период в целом. За все время наблюдений самым жарким считается 2015 год, когда все температурные показатели на 0,13 градуса превысили показатели 2014 года — предыдущего рекордсмена. В различных частях земного шара температуры меняются по-разному. С 1979 года температура над сушей выросла вдвое больше, чем над океаном. Объясняется это тем, что температура воздуха над океаном растет медленнее из-за его большой теплоемкости.

Движение углекислого газа в атмосфере

Основной причиной глобального потепления считается деятельность человека. Косвенными методами исследования было показано, что до 1850 года на протяжении одной или двух тысяч лет температура оставалась относительно стабильной, правда с некоторыми региональными флуктуациями.

Таким образом, начало климатических изменений практически совпадает с началом промышленной революции в большинстве западных стран. Основной причиной на сегодняшний день считаются выбросы парниковых газов. Дело в том, что часть энергии, которую планета Земля получает от Солнца, переизлучается обратно в космическое пространство в виде теплового излучения.

Парниковые газы затрудняют этот процесс, частично поглощая тепло и удерживая его в атмосфере.

Добавление в атмосферу парниковых газов ведет к еще большему разогреву атмосферы и росту температуры у поверхности планеты. Основные парниковые газы в атмосфере Земли — это углекислый газ (СО 2) и метан (СН 4). В результате промышленной деятельности человечества в воздухе растет концентрация именно этих газов, что приводит к ежегодному росту температуры.

Поскольку потепление климата угрожает буквально всему человечеству, в мире неоднократно принимаются попытки взять этот процесс под контроль. До 2012 года основным мировым соглашением о противодействии глобальному потеплению был Киотский протокол.

Он охватывал более 160 стран мира и покрывал 55% мировых выбросов парниковых газов. Однако после окончания первого этапа Киотского протокола страны-участники не смогли договориться о дальнейших действиях. Отчасти составлению второго этапа договора помешало то, что многие участники избегают применения бюджетного подхода для определения своих обязательств в отношении эмиссии СО 2 . Эмиссионный бюджет СО 2 — количество выбросов за определенный период времени, который рассчитывается из температуры, которую участники не должны превысить.

Согласно решениям, принятым в Дурбане, никакое обязывающее климатическое соглашение не будет действовать до 2020 года, несмотря на необходимость срочно предпринять усилия по сокращению эмиссии газа и снизить выбросы. Исследования показывают, что в настоящее время единственной возможностью обеспечить «разумную вероятность» ограничения потепления величиной 2 градуса (характеризующей опасное изменение климата) будет ограничение экономик развитых стран и их переход к стратегии антироста.

И вот в сентябре 2016 года, по данным обсерватории Мауна-Лоа, был преодолен очередной психологический барьер эмиссии парникового газа СО 2 — 400 ppm (долей на миллион). Нужно сказать, что эта величина многократно превышалась и раньше,

но сентябрь традиционно считается месяцем с самой низкой концентрацией СО 2 в Северном полушарии.

Объясняется это тем, что зеленая растительность успевает за лето поглотить некоторое количество парникового газа из атмосферы, прежде чем листья с деревьев опадут и часть СО 2 вернется обратно. Поэтому если психологически важный порог в 400 ppm был превышен именно в сентябре, то, скорее всего, ежемесячные показатели уже никогда не будут ниже этого значения.

«Возможно ли, что в октябре этого года концентрация снизится по сравнению с сентябрем? Полностью исключено,

— поясняет в своем блоге Ральф Килинг, сотрудник Скриппсовского института океанографии Сан-Диего. — Кратковременные падения уровня концентрации возможны, но усредненные за месяц величины теперь всегда будут превышать 400 ppm».

Также Килинг отмечает, что тропические циклоны могут снизить уровень концентрации СО 2 на короткое время. С ним соглашается и Гэвин Шмидт, главный климатолог : «В лучшем случае можно ожидать некий баланс, и уровень СО 2 не будет расти слишком быстро. Но, по моему мнению, СО 2 уже никогда не упадет ниже 400 ppm».

Согласно прогнозу, к 2099 году концентрация СО 2 на Земле будет равняться 900 ppm, что составит порядка 0,1% от всей атмосферы нашей планеты. В результате средняя дневная температура в таких городах, как Иерусалим, Нью-Йорк, Лос-Анджелес и Мумбаи, будет близка к +45°C. В Лондоне, Париже и Москве летом температура будет превышать +30°C.

Ранее писал статью об угарном газе . Теперь же задался практическим исследованием CO 2 . Интерес оказался настолько великим, что я потратился. Газоанализатор AZ7787: замеряет CO 2 , температуру и влажность, почти 9000 рублей. Инструкция предоставляется только на английском языке, но разобрать можно.

Эксперимент делился на несколько частей:
- принес домой и включил в комнате 3x6x2.8 метра (50.4 кубических метра) с закрытым окном и открытой дверью. 990ppm (температура 29.2 градуса, влажность 55.9%);
- заснул с ним. Утром прибор показывал 1260ppm (температура 27.1 градуса, влажность 59.9%);
- ушел на 11 часов, вечером вошел в комнату: 1010ppm (температура 29.5 градуса, влажность 54%);
- открыл окно, находясь в комнате: 600ppm (температура 29.1 градуса, влажность 50%)
- заснул с открытым окном. Утром: 485 ppm (температура 28.5 градуса, влажность 44%);
- вечером закрыл окно и закрыл дверь: 980ppm (температура 28.8 градуса, влажность 47%);
- так и заснул: 1810ppm (температура 28.6 градусов, влажность 53%);
- включил прибор ранним утром на открытом воздухе: 390ppm (температура 19 градусов, влажность 60%).

Теперь о самом любопытном. Как интерпретировать полученные результаты:
- 1ppm - миллионная доля чего-либо. 1000ppm - 0.1% углекислого газа в воздухе;
- анализируя сайты на ПДК углекислого газа, попадались величины сильно различные (да ещё и в разных единицах измерения). И смертельная цифра разная: 35000-100000ppm (остановка дыхания, удушье). В научных журналах верхняя безопасная граница CO 2 (когда совсем никаких последствий) составляет 1000ppm: Наумов А.Л., Капко Д.В. Вентиляция с переменным расходом воздуха для офисных зданий.//НП "АВОК", №8, 2012 г. ; Гурина И.В. Безопасный уровень углекислого газа требует ревизии.//Журнал "Экологический Вестник России", №10, 2008 г. Смертельная доза: 40000ppm (Соколов В.А. Переносные приборы для контроля состава воздуха в колодцах и подземных объектах.//Журнал "Техника безопасности" №3 (4), 2004 г. ).
- нельзя путать углекислый газ с диоксином, сильнейшим экотоксикантом и ядом;
- если в случае с угарным газом нужно падать на пол и ползти к выходу - то с CO 2 , наоборот, надо на цыпочки вставать и дышать через что-нибудь влажное (молекулярная масса воздуха 29г/моль, CO 2 - 44г/моль). На концертах, к примеру, используют генераторы тяжелого дыма для смеси паров воды и углекислого газа (что делает его безопасным);
- углекислый газ находится в крови и тканях внутренних органов, стимулирует защитные системы организма (в частности, при физической нагрузке);
- гемоглобин меняет углекислый газ на кислород. Проблема в том, что если углекислого газа в организме мало, он будет испытывать кислородное голодание. Потому что гемоглобин умеет работать только с этими двумя газами, при недостатке хотя бы одного из них угнетается весь механизм передачи газов. Книга Исмукова Н.Н. "Естественная активация защитных систем организма " подробно описывает этот процесс в 6 главе. В защиту этой позиции служит статья, упоминающая о собственной атмосфере в альвеолах легких организма, где концентрация CO 2 составляет 5.7%, 57000ppm (Голик А.С., А.Ф.Син, В.Р.Дингес. Влияние углекислого газа на дыхание в изолирующих средствах индивидуальной защиты.//Журнал "Горная Промышленность", №3, 2006 г. );
- именно большое количество CO 2 создает ощущение духоты в комнате. При этом кислорода может быть ещё достаточно для того, чтобы дышать без проблем.

Выводы:
- замеры проводились в озелененном районе города Москвы. В других ее районах ситуация может быть хуже;
- без углекислого газа человеку не выжить из-за особенностей организма;
- в помещении объемом 50.4 кубических метра без полной или частичной вентиляции возможно пребывание не более 9 часов (концентрация превысит 1800ppm, почти двойное превышение ПДК);
- симптомы отравления. При концентрации выше 1500ppm и ниже 5000ppm наблюдаются симптомы первой степени отравления углекислым газом: понижение умственной и физической работоспособности, легкое головокружение, глубокое дыхание (при сохранении частоты дыхания), сонливость, апатия, несильная головная боль, некоторое падение пульса и кровяного давления. Вторая степень: частое и глубокое дыхание, резкая одышка, стук в висках, чувство жара во всем теле. Третья стадия: судороги в мышцах грудной клетки и по всему телу, потеря сознания, глубокий сон (без посторонней помощи уже не спастись);
- проветривание помещения несет основную функцию не столько в доставке в него кислорода, сколько избавления от избытка углекислого газа. В потрясающей работе Квашнина И.М. и Гурина И.И высчитывается, сколько воздуха в час нужно заменять в помещении (К вопросу о нормировании воздухообмена по содержанию CO 2 в наружном и внутреннем воздухе.//НП "АВОК", №5, 2008 г. ). Ярые энтузиасты могут вооружиться калькулятором и посчитать, насколько сильно в комнате нужно открывать окно (чтобы зимой при проветривании не мерзнуть, например).

Техника безопасности:
- при открытии подпола, погреба, подвала - не залезать сразу, а дать время для проветривания. Если там хранится картофель - проветривать длительное время: картофель поглощает кислород и выделяет CO 2 , особенно когда прорастает. Случаи смерти от CO 2 картофеля в подвале представлены в СМИ;
- на дне колодца также может содержаться губительная доза CO 2 (особенно, если пересохший);
- ни в коем случае нельзя пользоваться в дыму или в воздухе с высокой концентрацией CO 2 противогазом! При высокой температуре угольный фильтр восстанавливает CO 2 до CO. Для дыхания в таких ситуациях нужен изолирующий противогаз (пожарные ходят с ним, с баллонами на спине), либо противогаз с гопкалитовым патроном (например, РШ-4 с ДП-1). А от попадания частиц пепла в легкие защитит обычный респиратор, лучше многослойный (правда с ним особо не побегаешь).

Косвенные выводы:
- на планете до промышленного бума человечества концентрация CO 2 была около 280ppm. С развитием промышленности эта цифра растет и по сей день, чем современнее - тем быстрее; и в этом году на Гавайях станция наблюдения зафиксировала рекорд в 400ppm;
- повышение CO 2 рождает 2 вещи: на планете становится все более душно (открытие окна лет через 100 может уже не помочь), но в то же время и более растительно (стимулируется рост зеленого растительного покрова Земли, что приводит к увеличению поглощения CO 2 из воздуха). Природа сама регулирует баланс данного вещества; правда, более медленными темпами;
- огромное количество моих труда и времени потрачено как на изучение CO, так и на изучение CO 2 . А это всего лишь два самых простых газа. Уверен, если кислород взять - ещё и не такого узнать можно. Интересно, как сильно в странах ценятся химики...

(добавлено 27.07.2013): включение в той же комнате масляного обогревателя на полную мощность (2кВт) приводит к незначительному повышению CO 2: на 30 единиц. Таким образом, информация о том, что масляные обогреватели не сжигают кислород - истинна.

О проблеме превышения содержания углекислого газа в воздухе помещений говорят все чаще в последние 20 лет. Выходят новые исследования и публикуются новые данные. Поспевают ли за ними строительные нормы для зданий, в которых мы живем и работаем?

Самочувствие и работоспособность человека тесно связаны с качеством воздуха там, где он трудится и отдыхает. А качество воздуха можно определить по концентрации углекислого газа СО2.

Почему именно СО2?

  • Этот газ есть везде, где есть люди.
  • Концентрация углекислого газа в помещении напрямую зависит от процессов жизнедеятельности человека – ведь мы его выдыхаем.
  • Превышение уровня углекислого газа вредно для состояния организма человека, поэтому за ним необходимо следить.
  • Рост концентрации СО2 однозначно свидетельствует о проблемах с вентиляцией.
  • Чем хуже вентиляция, тем больше загрязнителей концентрируется в воздухе. Поэтому рост содержания углекислого газа в помещении – признак того, что качество воздуха снижается.

В последние годы в профессиональных сообществах врачей и проектировщиков зданий появляются предложения пересмотреть методику определения качества воздуха и расширить перечень измеряемых веществ. Но пока ничего нагляднее изменения уровня CO2 не нашли.

Как узнать, является ли приемлемым уровень углекислого газа в помещении? Специалисты предлагают перечни нормативов, причем для зданий разных назначений они будут различными.

Нормы углекислого газа в жилых помещениях

Проектировщики многоквартирных и частных домов берут за основу ГОСТ 30494-2011 под названием «Здания жилые и общественные. Параметры микроклимата в помещениях». Этот документ оптимальным для здоровья человека уровнем CO2 считает 800 — 1 000 ppm. Отметка на уровне 1 400 ppm – предел допустимого содержания углекислого газа в помещении. Если его больше, то качество воздуха считается низким.

Однако уже 1 000 ppm не признается вариантом нормы целым рядом исследований, посвященных зависимости состояния организма от уровня CO2. Их данные свидетельствует о том, что на отметке 1 000 ppm больше половины испытуемых ощущают ухудшения микроклимата: учащение пульса, головную боль, усталость и, конечно, пресловутое «нечем дышать».

Физиологи нормальным уровнем CO2 считают 600 – 800 ppm.

Хотя некоторые единичные жалобы на духоту возможны и при указанной концентрации.

Выходит, что строительные нормативы уровня СО2 вступают в противоречие с выводами исследователей-физиологов. В последние годы именно со стороны последних все громче раздаются призывы обновить допустимые пределы, но пока дальше призывов дело не идет. Чем ниже норма СО2, на которую ориентируются строители, тем дешевле обходится . А расплачиваться за это приходится тем, кто вынужден решать проблему вентилирования квартиры самостоятельно.

Нормы углекислого газа в школах

Чем больше углекислого газа в воздухе, тем сложнее сосредоточиться и справиться с учебной нагрузкой. Зная об этом, власти США рекомендуют школам поддерживать уровень СО2 не выше 600 ppm. В России отметка чуть выше: уже упомянутый ГОСТ считает оптимальным для детских учреждений 800 ppm и менее. Однако на практике не только американский, но и российский рекомендуемый уровень – голубая мечта для большинства школ.

Один из наших показал: больше половины учебного времени количество углекислого газа в воздухе превышает 1 500 ppm, а иногда приближается к 2 500 ppm! В таких условиях невозможно сосредоточиться, способность к восприятию информации критически снижается. Другие вероятные симптомы переизбытка СО2: гипервентиляция, потливость, воспаление глаз, заложенность носа, затрудненное дыхание.

Почему так происходит? Кабинеты редко проветриваются, потому что открытое окно – это простывшие дети и шум с улицы. Даже если школьное здание оснащено мощной центральной вентиляцией, она, как правило, либо шумная, либо устаревшая. Зато окна в большинстве школ современные – пластиковые, герметичные, не пропускающие воздух. При численности класса 25 человек в кабинете площадью 50–60 м2 c закрытым окном углекислый газ в воздухе подскакивает на 800 ppm за каких-то полчаса.

Нормы углекислого газа в офисах

В офисах наблюдаются те же проблемы, что и в школах: повышенная концентрация СО2 мешает сосредоточиться. Ошибки множатся, и производительность труда падает.

Нормативы содержания углекислого газа в воздухе для офисов в целом те же, что для квартир и домов: приемлемым считается 800 – 1 400 ppm. Однако, как мы уже выяснили, уже 1 000 ppm доставляет дискомфорт каждому второму.

К сожалению, во многих офисах проблема никак не решается. Где-то просто ничего о ней не знают, где-то ее сознательно игнорирует руководство, а где-то – пытается решить при помощи кондиционера. Струя прохладного воздуха действительно создает кратковременную иллюзию комфорта, однако углекислый газ никуда не исчезает и продолжает делать свое «черное дело».

Может быть и так, что офисное помещение построено с соблюдением всех нормативов, но эксплуатируется с нарушениями. Например, плотность размещения сотрудников слишком велика. Согласно строительным правилам, на одного человека должно приходиться от 4 до 6,5 м2 площади. Если сотрудников больше, то и углекислый газ в воздухе накапливается быстрее.

Выводы и выходы

Проблема с вентиляцией наиболее остро стоит в квартирах, офисных зданиях и детских учреждениях.
Тому есть две причины:

1. Расхождение между строительными нормативами и санитарно-гигиеническими рекомендациями.
Первые гласят: не выше 1 400 ppm CO2, вторые предупреждают: это слишком много.

Концентрация CO2 (ppm) Строительные нормативы (согласно ГОСТ 30494-2011) Влияние на организм (согласно санитарно-гигиеническим исследованиям)
менее 800 Воздух высокого качества Идеальное самочувствие и бодрость
800 – 1 000 Воздух среднего качества На уровне 1 000 ppm каждый второй ощущает духоту, вялость, снижение концентрации, головную боль
1 000 - 1 400 Нижняя граница допустимой нормы Вялость, проблемы с внимательностью и обработкой информации, тяжелое дыхание, проблемы с носоглоткой
Выше 1 400 Воздух низкого качества Сильная усталость, безынициативность, неспособность сосредоточиться, сухость слизистых, проблемы со сном

2. Несоблюдение нормативов при возведении, реконструкции или эксплуатации здания.
Самый простой пример – установка пластиковых окон, которые не пропускают уличный воздух и усугубляют тем самым ситуацию с накоплением углекислого газа в помещении.

Для анализа обстановки у других комнатах

Как оказалось, даже если оставить модуль в помещении без двери и с закрытым окном, как собственно в ближайшее время и происходит на моей кухне

То наличие углекислого газа будет в норме исключительно при условии, что там никого не будет.

На картинке простой пример:
1 - жена готовила до этого момента на кухне и ушла
2 - это количество СO2 после того как прошло 2 часа и на кухню никто не заходил, а окно соответсвенно было открыто, чтобы проветрить
3 - это я пришёл с работы и сидел работал на кухне до 2 часов ночи, стрелка показывает на момент когда я ушёл спать. На графике видно, что после того как я ушёл без открытого окна концентрация СO2 не смогла упасть до нормы даже спустя 6 часов!
4 - жена проснулась, зашла на кухню, быстро перекусила и убежала на работу
5 - я проснулся и аккупировал кухню
6 - на кухне огромное количество СO2 из-за рабочего, который делает полы в прихожей.....

Данная аналитика даёт основание утверждать, что даже один человек может спокойно надышать даже в комнате без двери. Вы скажете "в чём проблема проветрить?", ответ простой - да в том что надо так проветривать каждый 1-2 часа, очень удобно да? Особенно когда спишь)

Вот например как с большой концентрацией СO2 справляется Тион, это наша спальня и мы одновременно легли спать с супругой в точке 1 и соответственно тут же надвоих надышали более чем на 1000ppm, аппарат тут же это зафиксировал и начал равномерно запускать свежий воздух с улицы, чтобы значение упало до 750ppm

Таким образом расположив данные датчики по комнатам можно контролировать концентрацию СO2 по всей квартире. Анализировать статистику кстати оказалось крайне увлекательно, вот как вы думаете что за всплеск был на верхнем графике? Ответ прост - жена гладила в комнате)))

Ещё кстати важно не путать модуль и базовую станцию, визуально это конечно просто ибо они одинаковые

Но функционал различается:

  • Базовая станция - анализирует влажность температуру и кол-во СO2 и на их основе отправляет команды на бризер (добавить свежего воздуха, подогреть его и тд)

  • Модуль - анализирует влажность температуру и кол-во СO2 и на их основе отправляет данные на базовую станцию, которая в свою очередь отправляет команды на бризер
  • Таким образом можно сэкономить 2000р и купить только модуль для второго Бризера, ну или использовать его как в моём случае чисто в виде датчика анализирующего ситуацию в помещении)

    В общем я прихожу к мысли, что теперь я такой хочу не только в спальне, но и в большой комнате - нереально крутая штука) Для скептиков сразу озвучу - расход электроэнергии за год одного такого устройства составляет смешные 394 квтч (спасибо victorborisov за информацию полученную опытным путём!)