Проводка

Методы селекции растений — Гипермаркет знаний. Методы современной селекции Основные методы селекции растений таблица

Методы селекции растений — Гипермаркет знаний. Методы современной селекции Основные методы селекции растений таблица

Таблица 54. Основные методы селекции (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Методы Селекция животных Селекция растений
Подбор родительских пар По хозяйственно ценным признакам и по экстерьеру (совокупности фенотипических признаков) По месту их происхождения (географически удаленных) или генетически отдаленных (неродственных)
Гибридизация: а) неродственная (аутбридинг) Скрещивание отдаленных пород, отличающихся контрастными признаками, для получения гетерозиготных популяций и проявления гетерозиса. Получается бесплодное потомство Внутривидовое, межвидовое, межродовое скрещивание, ведущее к гетерозису, для получения гетерозиготных популяций, а также высокой продуктивности
б) близкородственная (инбридинг) Скрещивание между близкими родственниками для получения гомозиготных (чистых) линий с желательными признаками Самоопыление у перекрестноопыляющихся растений путем искусственного воздействия для получения гомозиготных (чистых) линий
Отбор: а) массовый Не применяется Применяется в отношении перекрестноопыляющихся растений
б) индивидуальный Применяется жесткий индивидуальный отбор по хозяйственно ценным признакам, выносливости, экстерьеру Применяется в отношении самоопыляющихся растений, выделяются чистые линии – потомство одной самоопыляющейся особи
Метод испытания производителей по потомству Используют метод искусственного осеменения от лучших самцов-производителей, качества которых проверяют по многочисленному потомству Не применяется
Экспериментальное получение полиплоидов Не применяется Применяется в генетике и селекции для получения более продуктивных, урожайных форм

В селекции растений широко применяют гибридизацию и отбор – массовый (без учета генотипа) и индивидуальный. В растениеводстве по отношению к перекрестноопыляющимся растениям нередко применяется массовый отбор. При таком отборе в посеве сохраняют растения только с желательными качествами. При повторном посеве снова отбирают растения с определенными признаками. Индивидуальный отбор сводится к выделению отдельных особей и получению от них потомства. Индивидуальный отбор приводит к выделению чистой линии – группы генетически однородных (гомозиготных) организмов. Путем отбора были выведены многие ценные сорта культурных растений. Для внесения в генофонд создаваемого сорта растений или породы животных ценных генов и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором. При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении гибридов повышается жизнеспособность и наблюдается мощное развитие. Это явление получило название гибридной силы, или гетерозиса. Оно объясняется переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов. При последующих скрещиваниях гибридов между собой гетерозис затухает вследствие выщепления гомозигот.

Используют также полиплоидию, благодаря которой выведены высокоурожайные полиплоидные сорта сахарной свеклы, хлопчатника, гречихи и др. Таким путем Г. Д. Карпеченко (1935) получил межвидовой капустно-редечный гибрид. Каждая из исходных форм имела в половых клетках по 9 хромосом. В этом случае клетки полученного от них гибрида имели 18 хромосом. Но некоторые яйцеклетки и пыльцевые зерна содержали все 18 хромосом (диплоиды), а при их скрещивании создано растение с 36 хромосомами, которое оказалось плодовитым. Так была доказана возможность использования полиплоида для преодоления нескрещиваемости и бесплодия при отдаленной гибридизации.

Один из приемов селекции – выведение чистых линий путем многократного принудительного самоопыления растений: потомство такого растения становится гомози-готным по всем генам; в дальнейшем скрещивают особи двух чистых линий, что резко повышает урожайность гибридов первого поколения, их жизнестойкость. Это явление называется гетерозисом. Однако в последующих поколениях гетерозис снижается, урожайность уменьшается, и поэтому в практике используют только гибриды первого поколения.

Методами скрещивания и индивидуального отбора П. П. Лукьяненко были выведены высокопродуктивные кубанские сорта пшеницы: Безостая 1, Аврора, Кавказ; В. Н. Ремесло на Украине получил сорт Мироновская 808, а затем более урожайные сорта Юбилейная 50, Харьковская 63 и др. В. С. Пустовойт со своими сотрудниками этими методами создал на Кубани сорт подсолнечника, содержащий до 50–52% масла в семенах.

Преодоление бесплодия межвидовых гибридов. Впервые это удалось осуществить в. начале 20-х годов советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая – редьки.

Искусственный мутагенез. Естественные мутации сопровождающиеся появлением полезных для человека признаков, возникают очень редко. На их поиски приходится затрачивать много сил и времени. Частота мутаций резко повышается при воздействии мутагенов. К ним относятся некоторые химические вещества а также ультрафиолетовое и рентгеновское излучения. Эти воздействия нарушают строение молекул ДНК и служат причиной резкого возрастания частоты мутаций. Наряду с вредными мутациями нередко обнаруживаются и полезные, которые используются учеными в селекционной работе. Путём воздействия мутагенами в растениеводстве получают и полиплоидные растения, отличающиеся более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Радиационным облучением с последующим отбором созданы ценные сорта гороха, фасоли, томатов.

Особое место в практике улучшения плодово-ягодных культур занимает селекционная работа И. В. Мичурина. Большое значение он придавал подбору родительских пар для скрещивания. При этом он не использовал местные дикорастущие сорта (так как они обладали стойкой наследственностью, и гибрид обычно уклонялся в сторону дикого родителя), а брал растения из других, отдаленных географических мест и скрещивал их друг с другом. Подобными методами вывели такие ценные сорта, как груша Бере зимняя Мичурина (от скрещивания южного сорта груши Бере Рояль и дикой уссурийской груши) и яблоня Бельфлер-китайка (родители: американский сорт Бельфлер желтый и китайская яблоня родом из Сибири).

Важным звеном в работе Мичурина было целенаправленное воспитание гибридных сеянцев: в определенный период их развития создавались условия для доминирования признаков одного из родителей и подавления признаков другого, т. е. эффективное управление доминированием признаков (разные приемы обработки почвы, внесение удобрений, прививки в крону другого растения и т. п.). Использовался и метод ментора – воспитание на подвое. В качестве привоя он брал как молодое растение, так и почки от зрелого плодоносящего дерева. Этим методом удалось придать желаемую окраску плодам гибрида вишни с черешней под названием «Краса севера». Мичурин применял также отдаленную гибридизацию. Им получен своеобразный гибрид вишни и черемухи – церападус, а также гибрид терна и сливы, яблони и груши, персика и абрикоса. Все мичуринские сорта поддерживают путем вегетативного размножения.

Таблица. Методы селекционно-генетической работы И. В. Мичурина (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Методы Сущность метода Примеры
Биологически отдаленная гибридизация: а) межвидовая Скрещивание представителей разных видов для получения сортов с нужными свойствами Вишня владимирская X черешня Винклера белая = вишня Краса севера (хороший вкус, зимостойкость)
б) межродовая Скрещивание представителей разных родов для получения новых растений Вишня Х черемуха = Церападус
Географически отдаленная гибридизация Скрещивание представителей контрастных природных зон и географически отдаленных регионов с целью привить гибриду нужные качества (вкусовые, устойчивости) Груша дикая уссурийская Х Бере рояль (Франция)=Бере зимняя Мичурина
Отбор Многократный, жесткий: по размерам, форме, зимостойкости, иммунным свойствам, качеству, вкусу, цвету плодов и их лежкости Продвинуто на север много сортов яблонь с хорошими вкусовыми качествами и высокой урожайностью
Метод ментора Воспитание в гибридном сеянце желательных качеств (усиление доминирования), для чего сеянец прививается на растение-воспитатель, от которого эти качества хотят получить. Чём ментор старше, мощнее, длительнее действует, тем его влияние сильнее Яблоня Китайка (под вой)X гибрид (Китайка Х Кандиль-синап) = Кандиль-синап (морозостойкий) Бельфлер-китайка (гибрид-подвой) X Китайка (привой) = Бельфлер-китайка (лежкий позднеспелый сорт)
Метод посредника При отдаленной гибридизации для преодоления нескрещиваемости использование дикого вида в качестве посредника Дикий монгольский миндаль Х дикий персик Давида = миндаль Посредник Культурный персик X миндаль Посредник = гибридный персик (продвинут на север)
Воздействие условиями среды При воспитании молодых гибридов обращалось внимание на метод хранения семян, характер и степень питания, воздействие низкими температурами, бедной питанием почвой, частыми пересадками Закаливание гибридного сеянца. Отбор наиболее выносливых растений
Смешение пыльцы Для преодоления межвидовой нескрещиваемости (несовместимости) Смешивалась пыльца материнского растения с пыльцой отцовского, своя пыльца раздражала рыльце, и оно воспринимало чужую пыльцу

Селекция животных отличается от таковой у растений: животные дают мало потомков, у них позднее наступает половозрелость, они не размножаются вегетативно и у них отсутствует самооплодотворение. Однако и в селекции животных используют гибридизацию и отбор, как массовый, так и индивидуальный. Учитывают признаки экстерьера родительских пар, родословную производителей, проверяют чистоту породы. Путем близкородственного скрещивания (инбридинга) получают чистые линии, когда все или большинство генов переходят в гомозиготное состояние.

Создавая белую степную украинскую породу свиней, акад. М. Ф. Иванов в качестве исходных форм для скрещивания брал высокопродуктивного английского хряка и неприхотливую к условиям содержания плодовитую украинскую свинью (матку). Затем он провел возвратное скрещивание полученных гибридов с тем же хряком. Так был выведен хряк Асканий I превосходного телосложения (масса 479 кг), которого затем он скрещивал с сестрами, с дочерьми, внучками. Параллельно этой инбридной линии были получены другие аналогичные линии. Несмотря на то что в пределах каждой инбридной линии возникли особи с пониженной жизнеспособностью и другими нежелательными признаками, большинство генов было переведено в гомозиготное состояние. Дальнейшим скрещиванием между собой двух чистых линий с последующим многократным индивидуальным отбором была получена порода степной белой украинской свиньи, сочетающая высокую продуктивность, плодовитость и устойчивость.

Гибриды первого поколения, полученные от скрещивания особей двух инбредных линий, как правило, характеризуются выраженным гетерозисом. Этим широко пользуются в животноводстве для получения хозяйственно ценных форм.

Скрещивание неродственных особей называется аутбридингом. Его осуществляют между особями разных пород одного вида животных и даже в пределах различных родов и видов, т. е. при отдаленной гибридизации. Этим путем получены бесплодный гибрид осла и лошади – мул, гибрид одногорбого и двугорбого верблюда, гибрид яка и крупного рогатого скота (самцы у них бесплодные, а самки плодовиты). Эти гибриды характеризуются гетерозисом, т. е. повышенной жизненностью, обладают долголетием и большей выносливостью по сравнению с родителями.

Основа успеха любой селекционной работы - генетическое разнообразие материала и методы селекции. Использование таких исходных материалов позволяет получать новые гибриды и сорта, с самыми разнообразными характеристиками и свойствами. Основы селекции заложили известнейшие ученые мира:

Н. К. Кольцов (создал основы для молекулярной генетики).

Н. И. Вавилов (открыл закон гомологических рядов);

И. В. Мичурин (вывел множество плодовых гибридов).

Основные методы селекции растений и животных были разработаны на основе всех предыдущих открытий и совершенствуются до сих пор. Селекционеры в своей работе используют различные способы селекции: инбридинг, искусственный мутагенез, полиплоидию, отдаленную гибридизацию. Ниже приведены наиболее часто применяемые способы выведения новых растений и пород животных.

Основные методы селекции растений: гибридизация и отбор. Перекрестно-опыляемые растения селекционируют путем тех особей, которые имеют желательные свойства. Для получения наиболее чистых линий, то есть генетической однородности сорта, используют индивидуальный отбор, в ходе которого путем самоопыления достигается получение потомства от единственной особи, обладающей всеми самыми лучшими признаками. Недостатком такого метода является то, что при этом нередко наблюдаются неблагоприятные проявления Основной причиной этого является переход большого числа генов в состояние гомозиготы. Со временем накопление рецессивных мутантных генов, переходящих в гомозиготное состояние, может вызвать неблагоприятные наследственные изменения. В природных условиях у самоопыляемого растения рецессивные гены переходят в состояние гомозиготы, и такое растение быстро погибает.

При использовании метода самоопыления часто снижается урожайность. Для ее повышения проводят перекрестное опыление разных самоопыляющихся линий растений и получают высокоурожайные гибриды. Такие методы селекции называются межлинейной гибридизацией. Самой высокой урожайностью обладают гибриды первого поколения. При этом наблюдается известный эффект гетерозиса, согласно которому при скрещивании «чистых» линий получаются мощные гибриды. Они устойчивы к неблагоприятным воздействиям, поскольку в них устранено вредное влияние рецессивных генов, а объединение сильных родительских растений усиливает эффект.

Нередко в селекции различных растений используется экспериментальная полиплоидия. Полученные таким путем растения обладают крупными размерами, дают хороший урожай и быстро растут. Получаются искусственные полиплоиды под воздействием химических веществ, разрушающих веретено деления. В результате этого удвоившиеся хромосомы остаются в одном ядре.

Новые сорта выводят и при помощи искусственного мутагенеза. Организм, который в результате мутации получил новые свойства, имеет слабую жизнеспособность, поэтому при отсеивается. Для селекции и эволюции новых сортов и пород необходимы редкие особи, имеющие нейтральные или благоприятные мутации.

Методы селекции животных практически не отличаются от основных методов селекции растений. Особенности работы с ними - их половое размножение и небольшое потомство. Отбор родителей и тип скрещивания проводятся с определенными целями, поставленными селекционером. Все животные получают оценку не только по своим внешним признакам, а и по качеству потомства и происхождению. Поэтому так важно знать их родословную. В селекции чаще всего применяют 2 способа скрещивания:

Инбридинг (близкородственное) - скрещиваются родители, сестры, братья. Такое скрещивание нельзя проводить бесконечно. Его используют, как правило, для улучшения свойств породы;

Аутбридинг (неродственное) - скрещивание представителей одной или разных пород и строгий отбор потомков с лучшими свойствами.

Отдаленная гибридизация животных значительно менее эффективна, чем гибридизация растений. Такие межвидовые гибриды часто оказываются бесплодными.

Определение селекции, основные методы

Селекция - наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов с целью увеличения их продуктивности, повышения устойчивости к болезням, вредителям, приспособления к местным условиям и другое. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. Основными методами селекции являются отбор и гибридизация, а также мутагенез (образующий метод в селекции высших растений и микроорганизмов, который позволяет искусственно получать мутации с целью увеличения продуктивности), полиплоидия (кратное увеличение диплоидного или гаплоидного набора хромосом, вызванное мутацией), клеточная (совокупность методов конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции) и генная инженерия (наука, создающая новые комбинации генов в молекуле ДНК). Как правило, эти методы комбинируют. В зависимости от способа размножения вида применяют массовый или индивидуальный отбор. Скрещивание разных сортов растений и пород животных – основа повышения генетического разнообразия потомства

Методы селекции растений

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестно-опыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого - переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают.

Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестно-опыляемых растений для получения гомозиготных ("чистых") линий с нужными признаками. Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса (гетерозис – мощное развитие гибридов, полученных при скрещивании "чистых" линий, одна из которых гомозиготная по доминантным, другая — по рецессивным генам): гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина - объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

Методы селекции животных

Основные принципы селекции животных не отличаются от принципов селекции растений. Однако селекция животных имеет некоторые особенности: для них характерно только половое размножение; в основном очень редкая смена поколений (у большинства животных через несколько лет); количество особей в потомстве невелико.

Одним из важнейших достижений человека на заре его становления и развития (10-12 тыс. лет назад) было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У домашних животных весьма развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Поэтому в естественных условиях одомашненные формы существовать не могут.

Одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более спокойный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у животных определенных качеств, удовлетворяющих человека.

Отбор родительских форм и типы скрещивания животных проводятся с учетом цели, поставленной селекционером. Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства. Поэтому необходимо хорошо знать их родословную. По признакам предков, особенно по материнской линии, можно судить с известной вероятностью о генотипе производителей.

В селекционной работе с животными применяют в основном два способа скрещивания: аутбридинг (неродственное скрещивание) и инбридинг (близкородственное).

Аутбридинг между особями одной породы или разных пород животных, при дальнейшем строгом отборе приводит к поддержанию полезных качеств и к усилению их в ряду следующих поколений.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство. Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.

У домашних животных, как и у растений, наблюдается явление гетерозиса: при межпородных или межвидовых скрещиваниях у гибридов первого поколения происходит особенно мощное развитие и повышение жизнеспособности.

Гетерозис широко применяют в промышленном птицеводстве и свиноводстве, так как первое поколение гибридов непосредственно используют в хозяйственных целях.

Отдаленная гибридизация домашних животных менее эффективна, чем растений. Межвидовые гибриды животных часто бывают бесплодными. Но в некоторых случаях отдаленная гибридизация сопровождается нормальным слиянием гамет, обычным мейозом и дальнейшим развитием зародыша, что позволило получить некоторые породы, сочетающие ценные признаки обоих использованных в гибридизации видов.

История селекции

Первоначально в основе селекции лежал искусственный отбор, когда человек отбирает растения или животных с интересующими его признаками. До XVI-XVII вв. отбор происходил бессознательно, то есть человек, например, отбирал для посева лучшие, самые крупные семена пшеницы, не задумываясь о том, что он изменяет растения в нужном ему направлении.

Только в последнее столетие человек, еще не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени.

Однако методом отбора человек не может получить принципиально новых свойств у разводимых организмов, так как при отборе можно выделить только те генотипы, которые уже существуют в популяции. Поэтому для получения новых пород и сортов животных и растений применяют гибридизацию (скрещивание), скрещивая растения с желательными признаками и, в дальнейшем, отбирая из потомства те особи, у которых полезные свойства выражены наиболее сильно.

Учёные, которые внесли вклад в развитие селекции и генетики

1) Г. Мендель

Этот немецкий учёный заложил основы современной генетики, установив в 1865 году принцип дискретности (прерывности), наследовании признаков и свойств организмов. Также он доказал метод скрещивания (на примере гороха) и обосновал три закона, названных позже его именем.

2) Т. Х. Морган

В начале двадцатого века этот американский биолог обосновал хромосомную теорию наследственности, согласно которой наследственные признаки определяются хромосомами — органоидами ядра всех клеток организма. Ученый доказал, что гены расположены среди хромосом линейно и что гены одной хромосомы сцеплены между собой.

3) Ч. Дарвин

Этот учёный, основатель теории происхождения человека от обезьяны, провёл большое количество опытов по гибридизации, в ряде которых и была установлена теория о происхождении человека.

4) Т. Фэрчайлд

Впервые в 1717 году получил искусственные гибриды. Это были гибриды гвоздик, получившиеся в результате скрещивания двух различных родительских форм

5) И. И. Герасимов

В 1892 году русский ботаник Герасимов исследовал влияние температуры на клетки зеленой водоросли спирогиры и обнаружил удивительное явление — изменение числа ядер в клетке. После воздействия низкой температурой или снотворным, он наблюдал появление клеток без ядер, а также с двумя ядрами. Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так было открыто наследственное изменение, связанное с мутацией генотипа, т.е. всего набора хромосом в клетке. Оно получило название полиплоидии, а организмы с увеличенным числом хромосом – полиплоидов.

5) М. Ф. Иванов

Выдающуюся роль в селекции животных сыграли достижения известного советского селекционера Иванова, разработавшего современные принципы отбора и скрещивания пород. Он сам широко вводил генетические принципы в практику племенного дела, сочетая их с подбором условий воспитания и кормления, благоприятных для развития породных свойств. На этой основе им были созданы такие выдающиеся породы животных, как белая украинская степная свинья и асканийский рамбулье.

6) Я. Вильмут

В последнее десятилетие активно изучается возможность искусственного массового клонирования уникальных животных, ценных для сельского хозяйства. Основной подход заключается в переносе ядра из диплоидной соматической клетки в яйцеклетку, из которой предварительно удалено собственное ядро. Яйцеклетку с подмененным ядром стимулируют к дроблению (часто электрошоком) и помещают животным для вынашивания. Таким путем в 1997 г. в Шотландии от ядра диплоидной клетки из молочной железы овцы-донора появилась овечка Долли. Она стала первым клоном, искусственно полученным у млекопитающих. Именно этот случай был достижением Вильмута и его сотрудников.

7) С. С. Четвериков

В двадцатых годах возникли и стали развиваться мутационная и популяционная генетики. Популяционная генетика это область генетики, которая изучает основные факторы эволюции — наследственность, изменчивость и отбор — в конкретных условиях внешней среды, популяции. Основателем этого направления и был советский ученый Четвериков.

8) Н. К. Кольцов

В 30-е годы генетик этот учёный предположил, что хромосомы — это гигантские молекулы, предвосхитив тем самым появление нового направления в науке – молекулярной генетики.

9) Н. И. Вавилов

Советский ученый Вавилов установил, что у родственных растений возникают сходные мутационные изменения, например у пшеницы в окраске колоса, остистости. Эта закономерность объясняется сходным составом генов в хромосомах родственных видов. Открытие Вавилова получило название закона гомологических рядов. На основании его можно предвидеть появление тех или иных изменений у культурных растений.

10) И. В. Мичурин

Занимался гибридизацией яблонь. Благодаря этому, он вывел новый сорт Антоновка шестиграммовая. А его гибриды яблок нередко называют "Мичуринскими яблоками"

Примеры селекции живых организмов

В пушном деле большое значение имеет отбор естественных мутаций, отличающихся новой красивой окраской. Такой отбор очень быстро дает положительные результаты. Это можно показать на новых породах лисиц: серебристо-черной, платиновой и белой. Серебристо-черная лисица, которая была завезена в СССР в 1927 г., за 20 лет селекционной работы приобрела ряд свойств, отличающих ее от исходной формы. Платиновая лисица выведена путем отбора из группы серебристо-черных, имевших большое количество серебристых волос. У платиновой лисицы большие белые пятна развиты на груди, брюхе, лапах и морде.

Хорошим примером может служить выведенная академиком М.Ф.Ивановым порода свиней — украинская белая степная. При создании этой породы использовались свиноматки местных украинских свиней с небольшой массой и невысоким качеством мяса и сала, но хорошо приспособленных к местным условиям. Самцами- производителями были хряки белой английской породы. Гибридное потомство вновь было скрещено с английскими хряками, в нескольких поколениях применялся инбридинг, были созданы различные линии, при скрещивании которых получены родоначальники новой породы, которые по качеству мяса и массе не отличались от английской породы, а по выносливости – от украинских свиней.

Доказано, что вклад селекции в повышение в два раза урожайности основных сельскохозяйственных культур, достигнутое за последнюю четверть века в развитых странах, составляет около 50%. Так называемую "зеленую революцию" в земледелии Мексики, Индии и ряда других стран совершило внедрение низкорослых (с высотой стебля 100-110 см), полукарликовых (80-100 см) и карликовых (60-80 см) сортов риса, пшеницы и др. Они характеризуются нетолько высокой устойчивостью к полеганию, но и высокой продуктивностью колоса, главным образом за счет повышенного количества в нем зерновок. Такие сорта обеспечивают урожайность выше 60 ц/га. Производство пшеницы в Мексике и Индии с 1950 по 1970 г. возросло более чем в 8 раз; посевная площадь увеличилась вдвое, а урожай - вчетверо. Подобные сорта пшеницы созданы и в России (например, Донская полукарликовая и Мироновская низкорослая).

Селекция - наука, занимающаяся выведением новых сортов растений, пород животных и штаммов микроорганизмов. Селекция происходит в два этапа: сначала путем скрещивания и мутагенеза создается наследственное разнообразие, а потом производится искусственный отбор.

Скрещивание (гибридизация)

Отдаленная гибридизация (аутбридинг) - скрещивание организмов разных сортов (пород, линий), подвидов, видов.

При этом получаются новые сочетания генов, повышается гетерозиготность , возникает гетерозис (превосходство гибридов над родителями по размеру, жизнеспособности и т.д.).

Близкородственное скрещивание (инбридинг) - приводит к закреплению желательного признака (повышается гомозиготность: скрытые рецессивные гены переходят в гомозиготное состояние и проявляются в фенотипе).

Длительное близкородственное скрещивание приводит к получению чистых линий . У самоопыляющихся растений они имеют нормальную жизнеспособность, а у животных и перекрестноопыляющихся растений - пониженную, потому что закрепляются не только желательные, но и вредные признаки.

Мутагенез

Если обработать мешок пшеницы ультрафиолетовыми или рентгеновскими лучами, то в каждом семени произойдут мутации .

Если обработать зиготу колхицином, то в ней произойдет полиплоидия (кратное увеличение количества хромосом), у растений это приводит к повышению урожайности (в селекции животных не используется).

Искусственный отбор

При искусственном отборе закрепляются признаки, полезные для человека, при этом для самого растения или животного эти признаки могут быть вредными (например, ожирение у свиней).

Массовый отбор - проводится по фенотипу (по экстерьеру).

Устаревшая методика селекции растений, сейчас не применяется.
Индивидуальный отбор - проводится по генотипу , т.е. с учетом данных о фенотипе родителей, потомства и других родственников.

БОЛЬШЕ ИНФОРМАЦИИ: Основные методы классической селекции, Гетерозис и Карпеченко
ЗАДАНИЯ ЧАСТИ 2: Селекция

Тесты и задания

В селекции животных практически не используют
1) массовый отбор
2) неродственное скрещивание
3) родственное скрещивание
4) индивидуальный отбор

Выберите один, наиболее правильный вариант. Индивидуальный отбор, в отличие от массового, более эффективен, так как он проводится
1) по генотипу
2) под влиянием факторов окружающей среды
3) под влиянием деятельности человека
4) по фенотипу

Установите соответствие между характеристиками и формами отбора: 1) естественный, 2) искусственный.


А) отбирающий фактор – условия природы
Б) благоприятные изменения сохраняются и передаются по наследству
В) темпы эволюции быстрые
Г) целенаправленное накопление полезных для человека признаков

Е) благоприятные изменения отбираются и становятся хозяйственно-ценными

Установите соответствие между методом селекции и его использованием в селекции: 1) Селекция растений, 2) Селекция животных.

Запишите цифры 1 и 2 в правильном порядке.
А) массовый отбор
Б) отбор по экстерьеру
В) получение полиплоидов
Г) искусственный мутагенез
Д) испытание родителей по потомству

Выберите один, наиболее правильный вариант. Все многообразие современных пород животных и сортов растений сформировалось под влиянием
1) модификационной изменчивости
2) стабилизирующего отбора
3) искусственного отбора
4) биологического прогресса

Установите соответствие между признаком отбора и его видом: 1) естественный, 2) искусственный.

Запишите цифры 1 и 2 в правильном порядке.
А) приводит к созданию новых пород животных и сортов растений
Б) способствует созданию организмов с нужными человеку наследственными изменениями
В) действует в природе миллионы лет
Г) приводит к возникновению новых видов и формированию приспособленности к среде
Д) проводится человеком

Все приведённые ниже методы, кроме двух, используются в селекции для создания пород животных.

Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) гетерозис
2) индивидуальный отбор
3) полиплоидизация
4) отбор по экстерьеру
5) искусственный мутагенез

Ниже приведен перечень терминов.

Все они, кроме двух, используются для описания методов селекции. Найдите два термина, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) кроссинговер
2) гетерозис
3) аутбридинг
4) дрейф генов
5) полиплоидия

Установите соответствие между характеристикой отбора и его видом: 1) естественный, 2) искусственный. Запишите цифры 1 и 2 в правильном порядке.
А) действует в природе постоянно
Б) сохраняет особей с признаками, интересующими человека
В) обеспечивает формирование приспособленности к условиям жизни в биоценозах
Г) приводит к возникновению новых видов
Д) способствует созданию новых пород животных

Проанализируйте таблицу «Сравнительная характеристика естественного и искусственного отбора».

Заполните пустые ячейки таблицы, используя термины, приведенные в списке. Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.
1) Медленный в течение всей истории органического мира
2) Наследственная изменчивость
3) Человек
4) Медленный, с появлением земледелия и животноводства
5) Борьба за существование
6) Быстрый, в течение всей истории органического мира
7) Биологический прогресс
8) Многообразие видов

Все приведенные ниже термины, кроме двух, используются для описания селекции животных и растений. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) чистая линия
2) движущий отбор
3) гетерозис
4) гаструляция
5) гибридизация

Все приведенные ниже термины и понятия, кроме двух, используют в селекции. Найдите два понятия, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) гетерозис
2) инбридинг
3) рудимент
4) продуцент
5) сорт

Установите соответствие между особенностями и методами селекции: 1) аутбридинг, 2) инбридинг.

Запишите цифры 1 и 2 в правильном порядке.
А) близкородственное скрещивание
Б) получение чистых линий
В) скрещивание неродственных организмов
Г) улучшает продуктивность гибридов
Д) наблюдается депрессия у гибридов
Е) повышает гетерозиготность гибридов

Установите соответствие между методом селекции и его особенностями: 1) гибридизация, 2) индуцированный мутагенез.


А) получение гибридов путем скрещивания отобранных родительских форм
Б) воздействие на организм колхицином, который разрушает веретено деления клетки
В) появление новых признаков происходит в результате мутационной изменчивости
Г) чаще используется в селекции растений и микроорганизмов
Д) иногда наблюдается явление гетерозиса
Е) появление новых признаков происходит в результате комбинативной изменчивости

Выберите один, наиболее правильный вариант.

Межлинейная гибридизация в селекции растений способствует
1) получению чистой линии
2) проявлению эффекта гетерозиса
3) получению межвидовых гибридов
4) усилению мутагенеза

Выберите один, наиболее правильный вариант. Явление гетерозиса наблюдается у гибридов, полученных от
1) генетически отдаленных родительских форм
2) близкородственного скрещивания
3) особей одного сорта, но с разными фенотипами
4) особей одного сорта, но с разными генотипами

Выберите один, наиболее правильный вариант.

Какой отбор более эффективен при создании нового сорта самоопыляющихся зерновых культур?
1) стабилизирующий
2) массовый
3) индивидуальный
4) движущий

Выберите один, наиболее правильный вариант. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем
1) близкородственного скрещивания
2) искусственного отбора
3) искусственного мутагенеза
4) гетерозиса

Установите соответствие между видами отбора и их особенностями: 1) естественный, 2) искуственный.

Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) темпы эволюции медленные
Б) неблагоприятные изменения бракуются, уничтожаются
В) благоприятные изменения отбираются, становятся хозяйственно-ценными
Г) приводит к возникновению новых популяций, видов
Д) результат – многообразие видов
Е) характер действия творческий – целенаправленно накапливаются признаки, полезные для человека

Все приведенные ниже термины, кроме двух, используются при описании методов селекции растений.

Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) аутбридинг
2) инбридинг
3) испытание производителей по потомству
4) массовый отбор
5) полиэмбриония

Все приведенные ниже термины, кроме двух, используются для описания методов селекции. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) кроссинговер
2) аутбридинг
3) гибридизация
4) мутагенез
5) полимерия

Установите соответствие между характеристикой и видом отбора: 1) естественный, 2) искусcтвенный.

Методы селекции растений

Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) происходит в природе
Б) проводит человек
В) происходит на Земле миллионы лет
Г) до человека не было
Д) образуются сорта, породы и штаммы
Е) образуются виды и популяции

Все приведённые ниже характеристики, кроме двух, используют для описания гетерозисных гибридов растений.

Найдите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) превосходство над родительскими формами по ряду свойств
2) ослабление эффекта гибридной силы в последующих поколениях
3) образование новых сортов
4) бесплодие гибридов первого поколения
5) стимулирующее действие гетерозиготности на развитие признаков

Установите последовательность этапов деятельности селекционера при создании высокопродуктивных штаммов бактерий.

Запишите соответствующую последовательность цифр.
1) присвоение номенклатурного названия штамму бактерий
2) воздействие мутагенами на исходную колонию бактерий
3) подбор исходной колонии бактерий
4) получение новой колонии (штамма) и оценка её продуктивности
5) отбор бактерий с новыми признаками

© Д.В.Поздняков, 2009-2018


Adblock detector

Основными методами селекции являютсяотбор , гибридизация (с использованием гетерозиса и цитоплазматической мужской стерильности), полиплоидия и мутагенез.

Отбор и его творческая роль. В основе селекционного процесса лежит искусственный отбор.

В сочетании с генетическими методами он позволяет создавать сорта, породы и штаммы с заранее определенными признаками и свойствами. В селекции различают два основных типа отбора: массовый и индивидуальный.

Массовый отбор - это выделение группы особей по внешним, фенотипическим признакам без проверки их генотипа.

Например, при массовом, или стихийном, отборе из всей популяции кур той или иной породы в хозяйствах оставляют для размножения птиц с яйценоскостью 200-250 яиц, живой массой не менее 1,5 кг, определенной окраски, не проявляющих инстинкты высиживания и т. д. Все остальные куры выбраковываются. При этом потомство каждой курицы и петуха оценивается только по фенотипу.

Следовательно, массовый отбор может дать хорошие результаты только при высоком коэффициенте наследуемости ценных признаков, избранных селекционером.

Массовый отбор наиболее эффективен в отношении качественных признаков, контролируемых одним или несколькими генами. Вместе с тем он редко бывает успешным по полигенным признакам с низким коэффициентом наследования. В этом случае необходимо применять индивидуальный, или методический, отбор.

При индивидуальном отборе (по генотипу) получают и оценивают потомство каждого отдельного растения или животного в ряду поколений при обязательном контроле наследования интересующих селекционера признаков.

На последующих этапах отбора используют только тех особей, которые дали наибольшее число потомков с высокими показателями. В результате появляется возможность оценивать наследственные качества отдельных особей, т. е.

способность передавать свойства потомству.

Значение индивидуального отбора особенно велико в тех отраслях сельскохозяйственного производства, где имеется возможность получения от одного организма большого количества потомков. Так, используя искусственное осеменение, от одного быка можно получить до 35000 телят с помощью глубокого замораживания семени, сохраняющегося долгие годы.

Поэтому уже теперь во многих странах мира существуют банки спермы животных с ценными генотипами.

Отбор в селекции отличается наибольшей эффективностью в том случае, если он сочетается с определенными типами скрещиваний.

Методы гибридизации (типы скрещивания) в селекции. Все разнообразие типов скрещиваний сводится к инбридингу и аутбридингу.

Методы селекции

Инбридинг - это близкородственное (внутрипородное или внутрисортовое), а аутбридинг - неродственное (межпородное или межсортовое) скрещивание.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец - дочь, мать - сын, двоюродные братья - сестры и т. д.). Этот тип скрещивания применяют в тех случаях, когда желают перевести большинство генов породы в гомозиготное состояние и, как следствие, закрепить хозяйственно ценные признаки, сохраняющиеся у потомков.

Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности.

Вместе с тем при инбридинге часто наблюдается ослабление животных, их постепенное вырождение, обусловленное гомозиготизацией рецессивных аллелей.

При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственные скрещивания используют при инбридинге. Для избежания этого явления необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

У растений чистые линии также обладают пониженной жизнеспособностью, что, вероятно, связано с переходом в гомозиготное состояние всех рецессивных мутаций, которые в основном являются вредными.

Чистые линии, полученные в результате инбридинга, отличаются не только различными признаками, но и степенью снижения жизнеспособности.

Если эти чистые линии скрещивать между собой, то обычно наблюдается эффект гетерозиса.

Неродственное скрещивание между особями одной породы или между особями разных пород (кроссбридинг) животных позволяет поддерживать свойства или улучшать их в ряду следующих поколений гибридов.

Аутбридинг повышает уровень гетерозиготности потомства и гетерогенности популяции.

Полипюидия и отдаленная гибридизация. При создании новых сортов растений селекционерами широко используется метод автополиплодии, который приводит к увеличению размеров клеток и всего растения вследствие умножения числа наборов хромосом. Кроме того, избыток хромосом повышает их устойчивость к патогенным организмам (вирусам, грибам, бактериям) и ряду других неблагоприятных факторов, например к радиации: при повреждении одной или даже двух гомологичных хромосом остаются неповрежденными другие такие же.

Полиплоидные особи жизнеспособнее диплоидных.

Около 80 % современных культурных растений являются полиплоидами. Среди них хлебные злаки, овощные и плодово-ягодные культуры, цитрусовые, технические, лекарственные и декоративные растения, которые гораздо более урожайны, чем исходные диплоидные сорта.

Так, триплоидная сахарная свекла отличается от обычной не только большей урожайностью вегетативной массы и более крупными размерами корнеплодов, но и повышенной их сахаристостью, а также устойчивостью к болезням. Однако триплоиды стерильны, поэтому необходимо каждый раз получать гибридные семена от скрещивания диплоидной и тетраплоидной форм. Успешному решению этой проблемы способствовало открытие мужской стерильности свеклы.

Стерильность триплоидных гибридов может иметь положительное значение при получении бессемянных плодов, например винограда и арбуза.

Ценные результаты дает использование в селекции явления аллополиплоидии, основой которого служит метод отдаленной гибридизации, т.

е. скрещивания организмов, относящихся к разным видам и даже родам. Например, получены межвидовые полиплоидные гибриды капусты и редьки, ржи и пшеницы. Гибридизация пшеницы (Triticum) и ржи (Secale) позволила получить ряд форм, объединенных общим названием тритикале. Они обладают высокой урожайностью пшеницы и зимостойкостью и неприхотливостью ржи, устойчивостью ко многим болезням, в том числе к линейной ржавчине, являющейся одним из главных факторов, ограничивающих урожайность пшеницы.

На основе гибридизации пшеницы и пырея российским академиком Н.

В. Цициным получены пшенично-пырейные гибриды, обладающие высокой урожайностью и устойчивостью к полеганию. Однако отдаленные гибриды, как правило, бесплодны. Это связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у межвидовых гибридов в 1924 г. советский генетик Г. Д. Карпеченко предложил использовать удвоение числа хромосом (полиплоидию) у отдаленных гибридов.

Д. Карпеченко проводил скрещивание редьки и капусты. Число хромосом у этих растений одинаково (2п « 18). Соответственно их гаметы несут по 9 хромосом. Гибрид капусты и редьки имеет 18 хромосом, но он бесплоден, так как хромосомы капусты и редьки в мейозе не конъюгируют, поэтому процесс образования гамет не может протекать нормально.

В результате удвоения числа хромосом в бесплодном гибриде оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза; хромосомы капусты и хромосомы редьки конъюгировали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; межвидовой гибрид стал плодовитым. По фенотипу этот новый растительный организм совмещал признаки редьки и капусты, например в строении стручка.

Получение экспериментальным путем полиплоидных животных представляет большую трудность, поэтому такие формы животных - редкость.

Так, советскому ученому генетику Б. JI. Астаурову путем межвидовой гибридизации удалось получить полиплоидную форму тутового шелкопряда. На сегодняшний день есть уже полиплоидные рыбы, птицы (например, куры), однако внедрение полиплоидных пород животных в практику сельского хозяйства - дело будущего.

Спонтанный и индуцированный мутагенез.

Спонтанные мутанты используются преимущественно в селекции растений. Так, на основе мутанта желтого безалкалоидного люпина получено несколько сортов сладкого люпина, которые выращивают на корм скоту.

Большое число мутантов известно у плодовых культур, которые используются как новые сорта или в гибридизации с другими формами. Один из наиболее известных спонтанных мутантов кукурузы opaque, отличающийся высоким содержанием аминокислоты лизина в зерне, используется для создания так называемых высоколизиновых гибридов кукурузы.

В последние десятилетия во многих странах мира развернуты работы по получению индуцированных мутантов.

Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке. Кроме того, короткая и прочная соломина позволяет вести дальнейшую селекцию на увеличение размера колоса и массы семян без опасения, что повышение урожая зерна приведет к полеганию растений.

Особенно успешно индуцированный мутагенез применяют в селекции микроорганизмов.

Методы селекции животных те же, что и методы селекции растений , но при их применении селекционерам приходится учитывать ряд особенностей, характерных для животных. Животные размножаются только половым путем, а количество особей в потомстве невелико.

В связи с этим при подборе селекционеру важно определить наследственные признаки, которые непосредственно у производителей могут не проявляться, например наследственные признаки самцов по жирномолочности или яйценоскости. Поэтому значительную роль приобретает оценка животных по их родословной и по качеству их потомства. Часто большое значение имеет учет экстерьера, т. е.

Основы селекции. Методы и задачи.

совокупности внешних признаков животного.

Одомашнивание животных началось более 10 тыс. лет назад. Его центры в основном совпадают с центрами многообразия и происхождения культурных растений. Одомашнивание способствовало резкому повышению уровня изменчивости у животных, так как ослабило действие стабилизирующего отбора.

Человек сначала бессознательно, а затем целенаправленно стал отбирать животных с определенными качествами, важными для человека в конкретных природных и экономических условиях. Анализ и обобщение опыта многих поколений по выведению новых пород животных позволил разработать методы и правила селекции животных, сформировав ее как науку.

К основным направлениям селекции животных относят:

Сочетание высокой продуктивности с приспособленностью пород к условиям среды конкретных природных зон;
- повышение роли качественных показателей продуктивности животных (жирномолочность, соотношение мяса, жира и костей у мясных животных, качество меха и шерсти и т.

д.);
- выведение пород интенсивного типа, снижающих экономические затраты;
- повышение устойчивости к заболеваниям и др.

Гибридизация и индивидуальный отбор являются основными методами в селекции животных. Массовый отбор практически не применяется из-за небольшого количества особей в потомстве.

В селекции животных применяют два вида гибридизации: родственную (инбридинг) и неродственную (аутбридинг).
Родственное скрещивание между братьями и сестрами или между родителями и потомством ведет к гомозиготности и часто сопровождается ослаблением животных, уменьшению их устойчивости к неблагоприятным факторам среды, снижению плодовитости и т.

д. Тем не менее инбридинг применяют в селекции животных с целью закрепления в породе характерных хозяйственно ценных признаков. Как правило, близкородственное скрещивание ведется в нескольких линиях внутри породы.

Для устранения неблагоприятных последствий инбридинга используют неродственное скрещивание разных линий или даже разных пород. Это скрещивание сопровождается строгим отбором, что позволяет усиливать и поддерживать ценные качества породы.

Сочетание близкородственного скрещивания с неродственным широко применяется селекционерами для выведения новых пород животных.

Так, известный селекционер М. Ф. Иванов, используя эту методику, создал высокопродуктивную породу свиней Белая степная украинская, породу овец Асканийская рамбулье и др.
Важным направлением в селекции животных является использование явления гетерозиса.

Особенно широко это направление применяется в птицеводстве, например для получения бройлерных цыплят.

Метод полиплоидии в селекции животных практически не применяется. Исключение составляет выведение генетиком В. Л. Астауровым полиплоидных гибридов тутового шелкопряда, размножавшихся партеногенезом.
Вы уже знаете, что межвидовые гибриды лошади с ослом (мул), одногорбого и двугорбого верблюдов (нар), яка с крупным рогатым скотом и других с древних времен используются человеком.

Эти гибриды обладают повышенной выносливостью по сравнению с родителями.

В некоторых случаях отдаленная гибридизация домашних животных с дикими предками дает плодовитое потомство и может быть использована в селекции. Так, в результате скрещивания тонкорунных овец мериносов с диким бараном архаром были получены тонкорунные архаромериносы, которые могут круглогодично пастись на высокогорных пастбищах. В результате скрещивания крупного рогатого скота с горбатым зебу получены ценные группы молочного скота (рис.

В селекции животных, кроме описанных выше методов, применяют искусственное осеменение (введение полученной от высокоценных самцов спермы в половые пути самки с целью ее оплодотворения) и полиэмбрионию (искусственное образование нескольких зародышей из одной зиготы ценных пород с последующим их введением в матку беспородных животных). Эти методы позволяют в несколько раз увеличить скорость получения потомства от пенных производителей.

Дата публикования: 2014-11-29; Прочитано: 388 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Основные методы селекции растений в частности - отбор и гибридизация. Для перекрестно-опыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Если же желательно получение чистой линии - то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта.

Иногда для этого применяют самоопыление перекрестно-опыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов.

Основная причина этого - переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены.

Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение.

Селекция растений, методы

В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают.

Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестно-опыляемых растений для получения гомозиготных («чистых») линий с нужными признаками.

Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса (гетерозис – мощное развитие гибридов, полученных при скрещивании «чистых» линий, одна из которых гомозиготная по доминантным, другая — по рецессивным генам): гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям.

Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина - объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью.

Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н.

И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации

Селекция - создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами. Породы животных, сорта растений, штаммы микроорганизмов - это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами.

Теоретической основой селекции служит генетика.

Основные методы селекции - отбор, гибридизация, полиплоидия, мутагенез, а также клеточная и генная инженерия.

Отбор

В селекции действует естественный и искусственный отбор.

Искусственный отбор бывает бессознательный и методический.

Какой метод исследования используют в селекции

Бессознательный отбор проявляется в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенный сорт или породу. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор , который повышает приспособляемость организмов к условиям окружающей среды.

ПризнакЕстественный отборИскусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существование Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Отбор бывает массовый и индивидуальный.

Массовый отбор - выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор - выделение отдельных особей с желательными признаками и получение от них потомства.

Массовый отбор чаще применяют в селекции растений, а индивидуальный - в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдаленную) гибридизацию.

Внутривидовая гибридизация - скрещивание особей одного вида.

Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведет к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, а с другой приводит к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды.

Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрестное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом .

Основная причина эффекта гетерозиса - отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдаленная) гибридизация - скрещивание разных видов.

Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале - гибрид пшеницы и ржи, мул - гибрид кобылы и осла, лошак - гибрид коня и ослицы).

Обычно отдаленные гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдаленных гибридов растений удается с помощью полиплоидии.

Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия - увеличение числа хромосомных наборов. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины:

  1. удвоение хромосом в неделящихся клетках,
  2. слияние соматических клеток или их ядер,
  3. нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом.

Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином.

Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика.

Поэтому в селекции используют индуцированный (искусственно вызванный) мутагенез - воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации. Делают это с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Селекция - это эволюция, управляемая человеком

Н. И. Вавилов

Селекция -- наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов с целью увеличения их продуктивности, повышения устойчивости к болезням, вредителям, приспособления к местным условиям и другое. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. Основными методами селекции являются отбор и гибридизация, а также мутагенез (образующий метод в селекции высших растений и микроорганизмов, который позволяет искусственно получать мутации с целью увеличения продуктивности), полиплоидия (кратное увеличение диплоидного или гаплоидного набора хромосом, вызванное мутацией), клеточная (совокупность методов конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции) и генная инженерия (наука, создающая новые комбинации генов в молекуле ДНК). Как правило, эти методы комбинируют. В зависимости от способа размножения вида применяют массовый или индивидуальный отбор. Скрещивание разных сортов растений и пород животных - основа повышения генетического разнообразия потомства

Методы селекции растений

Основные методы селекции растений в частности -- отбор и гибридизация. Для перекрестно-опыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Если же желательно получение чистой линии -- то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестно-опыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого -- переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают.

Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестно-опыляемых растений для получения гомозиготных ("чистых") линий с нужными признаками. Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса (гетерозис - мощное развитие гибридов, полученных при скрещивании "чистых" линий, одна из которых гомозиготная по доминантным, другая - по рецессивным генам): гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина -- объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

Результативность селекции в первую очередь зависит от применяемых методов. К настоящему времени наиболее распространенными являются методы отбора и гибридизации. Кроме того, в последние годы активные работы ведутся по разработке методов полиплоидии, мутагенеза, культуры изолированных клеток и тканей, клеточной и генной инженерии.

Отбор

В основе селекционной работы в любом направлении отбор является наиболее важным и решающим процессом все сорта сельскохозяйственных культур созданы и создаются отбором.

Улучшение древесных и кустарниковых пород путем выявления, отбора и размножения ценных популяций и форм является основным методом лесной селекции.

В лесной селекции выделяют три типа отбора: массовый, групповой и индивидуальный.

Массовый отбор, или отбор, лучших климатических экотипов (отбор по происхождению), является простейшим методом селекции, который положен в основу районирования переброски семян лесных древесных растений. При помощи географических культур установлено большое влияние происхождения семян на рост и качество лесных насаждений сосны, ели, дуба, лиственницы и других видов древесных растений как в пределах естественного ареала, так и при интродукции. На первом этапе искусственного отбора выгодно исходить из местной, или локальной, расы (популяции), которая под действием естественного отбора приобрела полезные приспособления к окружающим условиям.

Групповой отбор лучших местных популяций становится основой лесной селекции. Этот вид отбора высококачественных насаждений, популяций лесных древесных пород называют популяционным отбором.

Индивидуальный отбор – это отбор лучших биотопов, или клонов, а также ценных форм в популяциях и экотипах. Индивидуальный отбор плюсовых деревьев по фенотипу без проверки по потомству соответствует однократному массовому отбору в сельском хозяйстве. Отбор лучших особей в ряду поколений сельскохозяйственных растений получил название непрерывного массового отбора. Разновидностью непрерывного массового отбора является негативный отбор, при котором отбираются не лучшие растения, а удаляют из насаждения худшие особи. В лесоводстве процесс негативного отбора осуществляется рубками ухода и санитарными рубками, при которых вырубаются худшие по селектируемому признаку и больные растения.

Отбор по фенотипу дает хорошие и быстрые результаты в том случае, когда его задачи совпадают с направлением естественного отбора в данных условиях. Например, если в популяциях имеются рано распускающиеся формы и этот признак в данной местности определяет лучшее вызревание побегов и улучшает общий прирост древостоев, то отбор по началу и продолжительности вегетации может быть эффективным. Но в селекции на улучшения качества продукции возможности отбора по фенотипу часто очень ограничены. Таким образом, аналитическая селекция и создание новых форм при помощи других методов значительно облегчаются при совпадении направлений естественного и искусственного отборов. В популяциях лесных древесных растений наблюдаются три основных формы естественного отбора: направленный, стабилизирующий и дизруптивный.

Направленный отбор - из популяции в процессе развития древостоев отмирает один из генотипов с положительным или отрицательным отклонением значения признака от среднепопуляционного. Направленный отбор у лесных древесных пород с отпадом в онтогенезе отстающих по росту особей наиболее характерен для признака продуктивности по высоте.

Стабилизирующий отбор наблюдается при пониженной адаптивности ценности признака, когда в популяции отмирают особи, имеющие генотипы с крайними отклонениями признака (возрастает частота гетерозигот). Например, превалирования прироста гетерозиготных особей в раннем возрасте у ели, березы и других пород.

Дизруптивный отбор – определенные преимущества имеют оба генотипа с крайними отклонениями признака. В зависимости от типа скрещивания между ними возникает различное распределение генотипов.

Основными методами индивидуального отбора являются методы: клоновый отбор, отбор у перекрестноопыляющихся растений и метод педегри.

Индивидуальный отбор в селекции растений, размножаемых вегетативно, называется клоновым. Индивидуальный отбор у перекрестного опыляющихся растений, вследствие постоянного переопыления и расщепления признаков сортов у перекрестноопыляющихся растений нельзя вывести путем однократного индивидуального отбора. Поэтому в селекции таких растений применяется многократный или непрерывный (в каждом поколении) индивидуальный отбор. При этом имеют дело не с отдельным растением, а с семьями.

Индивидуально-семейный отбор заключается в том, что после отбора лучших растений в популяции исходного материала потомство каждого лучшего растения, называемого семьей, размещают изолированно от остальных потомств (Царев и др., 2001).

Гибридизация

Гибридизация – скрещивание между собой двух или большего числа видов, наследственно различающихся по какому-либо признаку или группе признаков.

Гибрид – потомство, полученное в результате скрещивания особей с разной наследственностью.

Скрещивание особей разных форм и сортов, принадлежащих к одному виду, называется внутривидовой гибридизацией.

Скрещивание особей, принадлежащих к разным видам одного рода, разным родам и разным семействам, называется межвидовой, межродовой и межсемейственной гибридизацией.

Гетерозис – увеличение мощности и жизнеспособности гибридов, по сравнению с родительскими формами.

Искусственная гибридизация – контролируемое скрещивание, которое проводится с целью получения семенного потомства, отличающегося хозяйственно-ценными признаками.

При гибридизации:

1) подбирают родительские пары для скрещивания (чтобы каждый из родителей обладал одним из признаков, которые необходимо получить в гибриде)

2) наблюдают за протеканием репродуктивной фазы у родительских особей

3) собирают пыльцу, определяют ее жизнеспособность

4) проводят искусственное опыление

5) наблюдают за развитием гибридных семян

6) собирают гибридные семена, высеивают и выращивают гибридное потомство

7) отбирают среди гибридов экземпляры по селектируемым признакам.

В зависимости от принципа подбора родительских пар различают типы скрещиваний:

Простые – однократные скрещивания между двумя родительскими формами

Парные – однократное скрещивание только между двумя родительскими формами

Диаллельные – каждая испытываемая форма или вид скрещивается со всеми другими формами или видами во всех возможных комбинациях

Реципрокные – каждый из двух форм или видов в одном случае является материнской формой, во втором отцовской

Сложные – если скрещивается более двух родительских форм или гибридное потомство повторно скрещивается с одним из родителей

Множественные (поликросы) – материнское растение опыляется смесью пыльцы нескольких видов

Возвратные (беккроссы) – гибрид повторно скрещивается с одной из родительских форм

Ступенчатые – полученный от простого скрещивания гибрид скрещивается не с родительской формой, а с третьим видом, затем с четвертым

Конвергентные – скрещивание гибридов от материнской и отцовской форм

Межгибридное – объединение наследственности нескольких родителей при скрещивании гибридов от параллельного скрещивания (Любавская, 1985).

Мутагенез

Мутации - это прерывистые, скачкообразные изменения наследственных структур, возникающие под влиянием факторов среды. Изменчивость, обусловленная возникновением мутаций, называется мутационной. Растения с мутировавшими клетками называются мутантами.

Мутации классифицируют по различным признакам. В зависимости от того, на каком уровне они возникают и какие генетические структуры затрагивают, различают мутации генные, хромосомные, геномные, пластидные и плазменные.

Генные мутации представляют собой наследственные изменения, связанные с появлением новых аллелей. Они возникают на уровне нуклеотидов в результате потери или удвоения, изменения порядка чередования или вставки одного или нескольких нуклеотидов в молекулах ДНК в ядре. Так как фиксированных границ между триплетами не существует, все перечисленные изменения в молекулах ДНК приводят к изменению порядка "считывания" наследственной информации, заключенной в этих молекулах.

Хромосомные мутации возникают вследствие разрывов хромосом. Оторванная часть хромосомы (фрагмент) может присоединиться к той же или любой другой хромосоме или элиминируется в процессе деления клетки. Потеря части хромосомы называется делекцией, удвоение одного и того же участка хромосомы - дупликацией, поворот в пределах одной хромосомы какого-то участка ее на 180° получил название инверсия, а присоединение фрагмента к другому месту той же или другой негомологичной хромосомы - транслокации. Перестройки, захватывающие всю хромосому, называются хромосомными, а хроматиду - хроматидными (Котов, 1997).

Геномные мутации связаны с изменением числа хромосом в клетке.

Плазменные мутации представлены изменениями наследственных структур в цитоплазме, а пластидные - в пластидах. Они изучены пока недостаточно полно.

Элементарной единицей мутации считается мутон, равный одному нуклеотиду.

Мутации возникают в природе и могут быть вызваны искусственно. Первые называются спонтанными (естественными), а вторые - индуцированными (искусственными). По своей природе мутации естественного происхождения и полученные искусственно не отличаются.

Мутации, возникающие в гаметах, называются гаметическими, а в клетках тела - соматическими. Если мутировавшая гамета участвует в оплодотворении и образовании зиготы, то все клетки организма, вырастающего из такой зиготы, будут мутировавшими. Соматическая мутация передастся только тем клеткам организма, для которых в качестве исходной материнской служила соматическая мутантная клетка. Таким образом возникает химерный организм, состоящий из клеток с неодинаковой генетической информацией.

По характеру фенотипического проявления различают мутации морфологические, если изменение затрагивает морфологические признаки, физиологические и биохимические. В последних двух случаях изменения касаются физиологических и биохимических процессов. Строго говоря, любые изменения морфологических признаков или функциональных особенностей происходят через изменения биохимических процессов (Котов, 1997).

В большинстве случаев мутации снижают жизнеспособность мутировавшей клетки и организма. Такие мутации называются вредными. Крайним выражением действия вредных мутаций является гибель мутанта. В таких случаях мутация называется летальной. Мутации, не вызывающие заметных сдвигов в жизнеспособности организмов, - нейтральные. Часть мутаций способствует усилению жизнеспособности организмов. Это - биологически полезные мутации. Их нельзя отождествлять с хозяйственно полезными мутациями, вызывающими усиление признаков, используемых человеком для удовлетворения своих нужд. Нередко улучшение "хозяйственного" признака сопровождается ослаблением конкурентной способности организма. Естественный отбор такие мутанты элиминирует, а человек отбирает и разводит в культуре. Любая мутация может наследоваться, так как она возникает в наследственных структурах клеток. Характер наследования зависит от природы мутаций, хотя в основе лежат общие закономерности, связанные с их наследованием.

Факторы, вызывающие изменения в молекулах ДНК или хромосомах, называются мутагенными. Мутагенными свойствами обладают такие физические факторы как ионизирующая радиация, ультрафиолетовые лучи, температурные шоки, лазерное излучение, а также многие химические соединения.

В настоящее время в мутационной селекции наибольшее применение находят ионизирующие излучения, которые по своей природе подразделяются на волновые и корпускулярные. К волновым излучениям относятся ультрафиолетовые лучи (длина волны 2000-4000 а), рентгеновы лучи (0,05 - 10 а) и гамма-лучи (менее 0,05А). К корпускулярным излучениям относятся а-частицы, протоны, нейтроны, дейтроны и др.

В основе оценки чувствительности к мутагену лежит общая закономерность, известная под названием закона Арндта-Шульце. Суть его заключается в том, что слабое воздействие мутагеном способствует стимуляции процессов жизнедеятельности растений. По мере усиления воздействия мутагеном стимулирующий эффект возрастает и достигает своего предела, затем постепенно падает и снижается до нуля, после чего переходит в свою противоположность, то есть начинает подавлять процессы жизнедеятельности и тем больше, чем сильнее действие мутагенов. Подавляющее воздействие мутагенов постепенно возрастает вплоть до полной гибели клеток, органа или всего растения. Схематически закон Арндта-Шульце представлен на примере отзывчивости желудей дуба черешчатого на рентгеново облучение.

Различают стимулирующие, критические, летальные и оптимальные дозы мутагенов. Дозы мутагена определяются мощностью источника излучения или концентрацией его (для химических мутагенов) и продолжительностью воздействия на растения, или экспозицией.

Единицей дозы облучения волновыми излучениями служит рентген, равный количеству излучения, при котором в 1 см 3 сухого воздуха при 00С и давлении 760 мм рт. ст. образуется 2,1*109 дар ионов. Доза нейтронов определяется их количеством, приходящимся на 1 см 2 облучаемой поверхности. 1000 рентген (р) равны 1 килорентгену (кр).

Сравнимость доз облучения достигается при их переводе в дозы поглощения. Единицей дозы поглощения является 1 рад., равный количеству излучений, эквивалентному поглощению 1 граммом вещества энергии в 100 эрг. 1 рад соответствует 1,07 рентгена.

Стимулирующими называются дозы, при которых наблюдается совершенствование процессов жизнедеятельности у обрабатываемых растений в сравнении с контролем, например, повышение всхожести семян, ускорение роста, увеличение урожая и т.д.

Дозы, при которых всхожесть семян составляет около 50% от контроля, а выживаемость - 20-30% от числа всходов, называются критическими.

Дозы, вызывающие гибель обрабатываемого материала, называются летальными, а дозы, при которых на единицу выживаемости растения получается наибольшее количество мутаций, - оптимальными.

При оценке чувствительности растения к мутагенам учитываются такие признаки, как энергия прорастания семян, их всхожесть, выживаемость растений, степень подавления роста, плодовитость и стерильность растения, число и типы хромосомных перестроек в первом митозе в клетках проростков.

Существенные изменения в реакции организма на облучение вносят технические условия обработки: вид излучения, мощность и величина дозы, содержание кислорода при облучении и после него.

Сходная картина наблюдается при обработке растений химическими мугагенами.

Постановка задач при селекции методом индуцированного мутагенеза исходит из направлений селекции и района работы. Растения подбирают, как правило, с минимальным числом отрицательно выраженных признаков, которые подлежат улучшению посредством мутагенеза. В качестве растительного материала для получения гаметических мутаций берут пыльцу, срезанные до споро- или гаметогенеза ветви с пестичными или тычиночными цветками, а также целые растения. Для получения соматических мутаций используют семена, черенки с вегетативными почками, целые растения. Растительный материал подбирают в таком физиологическом состоянии, чтобы при имеющихся в распоряжении селекционера технических возможностях было бы возможно выращивание растений из обработанного мутагенами материала.

Выбор мутагенов зависит от применяемых доз и практической их доступности. В районных центрах и поселках, где есть лечебные учреждения с терапевтической рентгеновской установкой, доступны ультрафиолетовые лучи для работы с пыльцой и каллусными тканями, а также рентгеновы лучи для работы с пыльцой, семенами, черенками. В областных центрах и крупных городах, где есть онкологические отделения, вполне реально использование гамма-лучей кобальтовых пушек. Не является проблемой приобретение в лесничества или лесхозы гупосов (гамма-установок предпосевной обработки семян), химических мутагенов и элементарного оборудования для работы с ними.

Обработка растений корпускулами пока возможна только в ядерных колонках нескольких научно-исследовательских центров. Функционируют международные центры по мутагенезу с гамма-полями. Для выбора рабочих доз обработки растительных объектов необходимо располагать информацией о чувствительности растений к мутагену. Если такой информации нет, то предварительно экспериментальным путем следует установить области стимулирующих, нейтральных, оптимальных, критических и летальных доз. В дальнейшем в целях получения большего количества точковых мутаций следует работать в области стимулирующих и нейтральных доз. Если нужно получить хромосомные и хроматидные мутации, рекомендуется работать в области оптимальных и критических доз.

В работе с химическими мутагенами пользуются 0,00001-0,01%-ми концентрациями растворов. Обязательны меры предосторожности в работе со всеми мутагенами.

Обработанный мутагенами материал используется далее или для скрещивания, или для посадки, прививки, посева. Организуются наблюдения за опытными и контрольными растениям. Ведется журнал селекции, где отмечаются все характеристики исходного материала (вид; внутривидовой таксой; адрес и условия произрастания; какой орган обработан; когда, где и как заготовлен и хранился исходный материал; когда, чем, как обработан; что сделано после обработки; результаты наблюдений).

Перспективные гаметические и соматические мутанты могут быть сразу отобраны. В таких случаях они поступают на сортоиспытание.

Если же наряду с полезными мутанты несут отрицательные изменения, то их скрещивают с ценными видами или формами или повторно обрабатывают мутагенами, а затем уже производят отбор и испытание представляющих интерес мутантов.

Как уже отмечалось, соматические мутации могут возникать не во всех клетках обрабатываемого растения, а только в некоторых из них. В этих случаях растения оказываются химерными. Как правило, измененные клетки делятся медленнее нормальных, что приводит к постепенному вытеснению мутантных тканей нормальными. Это явление получило название соматического отбора» Для выявления скрытых соматических мутаций применяются специальные приемы расхимеривания. У древесных видов расхимеривание можно провести путем одной или многократной посадки опытного растения на пень и последующего отбора мутантных порослевин, черенкования отдельных частей растения, прививки черенков и почек, микроклонального размножения (Котов, 1997).

Для получения мутанта лиственницы сибирской следует взять семена в количестве 50000 шт. и обработать рентгеновым излучением 4000 рентген. В результате облучение половина семян погибла, остальные 25000 семян высеивают и ухаживают за ними до самой смерти. Лучшие мутанты в количестве 5000 шт. отбирают и размножают.

Полиплоидия

Полиплоидией называется биологическое явление, характеризующееся нетипичным числом хромосом в клетках. Растения с нетипичным числом хромосом в клетках называются полиплоидами. Они подразделяются на эуплоиды и анэуплоиды. Эуплоиды - это растения с числом хромосом, кратным основному (гаплоидному) набору. Если, например, у березы основное число хромосом равно 14, то типичными являются гаметы с 14, а соматические клетки с 28 хромосомами. Гаметы с 28, 42, 56 хромосомами будут нетипичными, полиплоидными или нередуцированными. Соматические клетки с 14 хромосомами называются гаплоидными, с 42 - трипловидными, 56 - тетраплоидными и т.д. Если в клетках увеличивается число геномов одного вида, растения называются автополиплоидами. Например, у осины есть автотриплоиды с тремя наборами геномов в клетках (Зn). Число хромосом в них 57, так как в геноме 19 хромосом. Если растения представляют собой гибриды между двумя видами и в клетках содержится не по одному геному каждого вида, а по крайней мере по два генома хотя бы одного вида, они называются аллополиплоидами. Например, среди растений тополя сереющего встречаются триплоиды. В клетках таких растений содержится по три генома, один из которых представлен геномом осины, а два - геномом тополя белого или наоборот.

Растения, в клетках которых содержится число хромосом некратное основному (гаплоидному), называются анэуплоидами. Например, вяз мелколистный имеет 14 хромосом в основном наборе. В степях Северного Казахстана обнаружены растения с 29 хромосомами в соматических клетках. Они имели два набора хромосом (2п=28) и одну добавочную хромосому.

Полиплоиды возникают разными путями. Один из них - нарушение сократительной функции ахроматинового веретена при митозе или мейозе. Вследствие этого хромосомы или хроматиды теряют ориентацию при расхождении к полюсам и в дочерние клетки может отойти число хромосом от 0 до 2п независимо от способа деления (митоз или мейоз), от стадии формирования спор и гамет. Клетки с несбалансированным числом хромосом (не кратным основному) характеризуются слабой жизнеспособностью.

В природе встречаются такие деления, как кариокинез без цитокинеза и удвоение хромосом без последующего деления ядра (эндомитоз). В обоих случаях возникают полиплоидные клетки.

Полиплоиды могут быть и комбинативного происхождения, когда зигота образуется от слияния гамет с разным набором геномов. Слияние гаплоидной и диплоидной гамет дает триплоидную зиготу, двух диплоидных - тетраплоидную и т.п.

Анэуплоиды возникают, как правило, вследствие воздействия на растения мутагенов. Например, в процессе репарации разорванных хромосом возникают ацентрические и дицентрические хромосомы. Первые образуются при объединении фрагментов, не имеющих центромеры. При делении клетки такая хромосома теряется. Дицентрические хромосомы возникают при срастании двух фрагментов с центромерами, которые образуют в анафазе так называемые мосты и далее или снова разрываются, или превращаются в кольцевые хромосомы, которые в клетке не элиминируются (Котов, 1997).

Для получения полиплоида лиственницы сибирской рекомендуется взять 20000 семян, произвести намачивание семян в 0,1%-ном растворе колхицина. Продолжительность действия 18 часов. После этого промывают проточной водой. Затем высеивают, после появления всходов обследуют на появление полиплоидов. Полиплоиды оставляют на контроль, а остальные оставляют и сравнивают с контролем.

Генная инженерия

За последние 10-15 лет были созданы принципиально новые методы манипулирования с нуклеиновыми кислотами in vitro, на основе которых зародился и бурно развивается новый раздел молекулярной биологии и генетики - генная инженерия. Принципиальное отличие генной инженерии от использовавшихся ранее традиционных приемов изменения генотипа (например, создания полиплоидных форм растений) состоит в том, что она дает возможность конструировать функционально активные генетические структуры in vitro в форме рекомбинантных ДНК. Понятия «генная» и «генетическая» инженерия часто употребляют как синонимы, хотя последнее является более широким и включает манипулирование не только отдельными генами, но и с более крупными частями генома. Работа по переделке генотипа животных или растений с помощью скрещиваний ограничены пределами вида либо близких в видовом отношении форм. Напротив, генная инженерия, как будет показано ниже, стирает межвидовые барьеры, обеспечивая возможность создания организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. Генная, инженерия представляет собой совокупность методов, позволяющих не только получать рекомбинантные ДНК из фрагментов геномов разных организмов, но и вводить такие рекомбинантные молекулы в клетку, создавая условия для экспрессии в ней введенных, часто совершенно чужеродных генов. Таким образом, в этом случае исследователь оперирует непосредственно с генами, причем их перенос может не зависеть от таксономического родства используемых организмов. Эта особенность генной инженерии представляет ее главное отличие от ранее использовавшихся приемов изменения генотипа.

Первенствующую роль в формировании генной инженерии сыграла генетика микроорганизмов, идеи и методы, разработанные молекулярной генетикой и химией нуклеиновых кислот.

Выполнение любой генно-инженерной программы включает необходимость получения фрагментов ДНК, несущих нужный ген, объединение их in vitro с век-торными молекулами, способными обеспечить доставку гена в организм реципиента, создание условий для стабильного наследования и эффективной экспрессии перенесенного гена. Осуществление такой работы определяется крупными достижениями в области генетики и химии нуклеиновых кислот. К важнейшим из них относятся:

1) открытие явления рестрикции-модификации ДНК, в результате которого были выделены необходимые ферменты - рестриктазы для получения специфичных фрагментов ДНК;

2) создание методов химического и химико-ферментативного синтеза генов;

3) выявление векторных молекул ДНК, способных перенести в клетку чужеродную ДНК и обеспечить там экспрессию, соответствующих генов;

4) разработка методов объединения фрагментов ДНК из разных источников;

5) разработка методов трансформации у различных организмов и отбора клонов, несущих рекомбинантные ДНК.

Совокупность этих достижений и составляет сущность методологии генной инженерии.

Не менее важное значение имеет генная инженерия в качестве мощного инструмента фундаментальных исследований. С ее помощью изучают строение различных геномов, отдельных генов и кодируемых ими продуктов. Генная инженерия помогла раскрыть экзонинтронную организацию эукариотических генов, позволяла понять суть явления непостоянства генома, связанного с присутствием мигрирующих генетических элементов у про- и эукариот, открыла принципиально новые возможности для изучения молекулярных основ онтогенеза, наследственных заболеваний, эволюционного происхождения различных организмов. В значительной мере этим успехам генной инженерии способствовало создание банков (или библиотек) генов отдельных организмов, резко облегчающих стратегию поиска индивидуальных генов, исследование их структуры и функции. Получение танков генов включает выделение тотальной ДНК, фрагментацию ее с помощью рестриктаз, присоединение полученных фрагментов к векторным молекулам (плазмидного или фагового происхождения) и введение рекомбинантных ДНК в реципиентные бактерии. Эта техника позволяет получить набор клонов бактерий или щтоков гибридных фагов, различающихся по включенным фрагментам ДНК. Необходимые исследователю гены отбирают из таких банков с помощью специально разработанных генетических, биохимических, радиоизотопных и иммунологических методов. Потенциальные возможности генной инженерии действительно очень велики, и их реализация в полной мере дело сегодняшнего дня и ближайшего будущего (Котов, 1997).

С помощью генной инженерии лиственнице сибирской можно пересадить ген лимонника китайского, тем самым создать стелющуюся форму лиственницы. Затем провести наблюдение в течение всей жизни.