Проводка

Металлы как основные конструкционные материалы. Технические характеристики конструкционных материалов

Металлы как основные конструкционные материалы. Технические характеристики конструкционных материалов

Федеральное агентство по образованию

ГОУ ВПО Уральский государственный экономический университет

Кафедра инженерных дисциплин

Контрольная работа

«Свойства конструкционных материалов»

Исполнитель:

студентка I курса заочного факультета

специальности «ЭПП»

Добрынкина Л. В.

Екатеринбург 2009


Понятие конструкционных материалов

Классификация свойств конструкционных материалов

Процессы производства стали

Стеклокристаллические материалы (ситаллы)

Чугун. Классификация чугунов

Графитизация чугунов

Классификация серого чугуна

Маркировка чугуна

Библиографический список


КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

В составе конструкционных материалов нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств конструкционных материалов связаны с синтезированием материалов из элементов, имеющих предельные значения свойств.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность (способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних сил);

· Твердость (способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии);

· Упругость (способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения);

· Вязкость (способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения);

· Хрупкость (способность материала разрушаться под действием внешних сил, сразу после упругой деформации).

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет (способность материала отражать световые лучи с определенной длиной световой волны);

· Плотность (масса единицы объема вещества);

· Температура плавления;

· Электропроводность (способность материала хорошо и без потерь проводить электрический ток);

· Теплопроводность (способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому);

· Теплоёмктсть (способность материала поглощать определенное количество теплоты);

· Магнитные (способность материалахорошо намагничиваться);

· Коэффициент объемного и линейного расширения.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

· Литейные свойства;

· Ковкость (важно при обработке давлением);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов- химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

СТАЛЬ

Сталь (польск.stal , от нем. Stahl ) - деформируемый (ковкий) сплав железа с углеродом (и другими элементами), содержание углерода в котором не превышает 2,14 %, но не меньше 0,02 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

В древнерусских письменных источниках сталь именовалась специальными терминами: «Оцел», «Харолуг» и «Уклад».

Сталь - важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства.

Стали делятся на конструкционные и инструментальные.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода - на малоуглеродистые, среднеуглеродистые и высокоуглеродистые; легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Производство стали в кислородных конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху. Количество воздуха необходимого для переработки 1 т чугуна, составляет 350 кубометров.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии в 1952 - 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране - кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 - 50 мин.

Кислородный конвертер (рис. 1) представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.

Конвертеры изготовляют емкостью 100...350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м 3 .

Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения - боксит и плавиковый шпат.

Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.

Конструкционные материалы, используемые в химическом маши - ностроении, условно делятся на четыре класса:

Цветные металлы и сплавы;

Неметаллические материалы.

Стали. Сталь представляет собой сплав железа с углеродом, содер­жание которого не превышает 1-2%. Кроме того, в состав стали входят примеси кремния, марганца, а также серы и фосфора.

Стали по химическому составу делятся на несколько групп:

Углеродистые обыкновенного качества;

Углеродистые конструкционные;

Легированные конструкционные и др.

Сталь углеродистую обыкновенного качества изготавливают в зави­симости от химического состава по ГОСТ 380-88 и ГОСТ 16523-88. Сталь углеродистая обыкновенная делится на несколько категорий - 1,2, 3,4, 5, 6 - чем больше номер, тем выше механическая прочность стали и ниже ее пластичность. По степени раскисления стали всех

В табл. 12.1 приведены примеры использования углеродистой стали обыкновенного качества в химическом машиностроении.

Свойства углеродистой стали обыкновенного качества значитель­но повышаются после термической обработки, которая для проката может выражаться в его закалке либо непосредственно после проката, либо после специального нагрева.

Например, термическое упрочнение листового проката из стали марок СтЗ, СтЗкп при охлаждении в воде повышает предел текучести более чем в 1,5 раза при высоком (15+26%) относительном удлинении.

Термическая обработка низкоуглеродистых сталей не только улуч­шает механические свойства сталей, но и приносит значительный эко­номический эффект.

Стали углеродистые конструкционные выпускаются по ГОСТ 1050-74 следующих марок: 08, 10, 15, 20, 25, 30,40,45, 55, 58 и 60. В зависимос­ти от степени раскисления по ГОСТ 1050-88 выпускаются следующие марки стали: 05кп, 08кп, 08пс, Юкп, Юпс, 11кп, 15кп, 18кп, 20кп и 20пс.

В табл. 12.2 приведены примеры использования углеродистой конструкционной стали в химическом машиностроении.

Таблица 12.2. Углеродистая сталь конструкционная

Для улучшения физико-механических характеристик сталей и придания им особых свойств (жаропрочность, кислотостойкость, жа­ростойкость и др.) в их состав вводят определенные легирующие добавки.

Наиболее распространенные легирующие добавки:

Хром (X) - повышает твердость, прочность, химическую и кор­розионную стойкость, термостойкость;

Никель (Н) - повышает прочность, пластичность и вязкость;

Вольфрам (В) - повышает твердость стали, обеспечивает ее са­мозакаливание;

Молибден (М) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость;

Марганец (Г) - повышает твердость, увеличивает коррозионную стойкость, понижает теплопроводность;

Кремний (С) - повышает твердость, прочность, пределы теку­чести и упругости, кислотостойкость;

Ванадий (Ф) - повышает твердость, предел текучести при рас­тяжении, вязкость, улучшает свариваемость стали и увеличивает стой­кость к водородной коррозии;

Титан (Т) - увеличивает прочность и повышает коррозионную стойкость стали при высоких (> 800 °С) температурах.

Обычно в состав легированных сталей входят несколько добавок. По общему содержанию легирующих добавок легированные стали делят на три группы:

Низколегированные - с содержанием добавок до 3%;

Среднелегированные - с содержанием добавок от 3 до 10%;

Высоколегированные - с содержанием добавок > 10%.

В табл. 12.3 приведены примеры использования легированных сталей в химическом машиностроении.

Таблица 12.3. Легированные конструкционные стали

Назначение

Коррозионностойкие стали для применения в слабоагрессивных средах

Азотная и хромовая кислоты различной концентрации при температуре не более 25 °С. Уксусная кислота концентрации <5% при температуре до 25 °С. Щелочи (аммиак, едкий натр, едкое кали). Соли органические и неорганические при температуре не более 50 °С и концентрации менее 50%

Обладают повышенной твердостью, хорошей коррозионной стойкостью во влажном воздухе, водопроводной воде, в не­которых органических кислотах, растворах солей и щелочей, азотной кислоте и хлористом натре при 20 “С

Окалиностойкая до 850 °С

Продолжение табл. 12.3

Назначение

10Х14Г14Н4Т,

Заменители сталей 12Х18Н9Т, 17X18Н9, 12Х18Н10Т для оборудования, работающего в слабоагрессивных средах, а также изделий, работающих при повышенных температурах до +400 °С и пониженной температуре до -196 °С

Коррозионностойкие стали для сред средней агрессивности

Заменители стали марки 12Х18Н10Т и 12Х18Н9Т для сварных конструкций, не подвергающихся воздействию ударных нагрузок при температуре эксплуатации не ниже -20 °С. Для труб теплообменной аппаратуры. Эксплуати­ровать в интервале температур 400-700 °С не рекомендуется. Стойкие к действию азотной, фосфорной, лимонной, уксус­ной, щавелевой кислот разных концентраций при темпера­турах не более 100 °С

08X22 Н6Т, 08Х18Г8Н2Т

Заменитель сталей 12Х18Н1 ОТ и 08Х18Н1 ОТ Обладает более высокой прочностью, чем эти стали, и используется для изготовления сварной аппаратуры, работающей при темпе­ратуре не выше 300 °С.

Заменитель стали 12Х18Н9Т для сварных и паянных конст­рукций

Высокая коррозионная стойкость по отношению к азотной, холодной фосфорной и органическим кислотам (за исклю­чением уксусной, муравьиной, молочной и щавелевой), к растворам многих солей и щелочей, морской воде, влаж­ному воздуху. Неустойчивы в соляной, серной, плавиковой, горячей фосфорной, кипящих органических кислотах. Обладают удовлетворительной сопротивляемостью к меж - кристаллитной коррозии

Обладает более высокой стойкостью, чем сталь 12Х18Н 10Т. Например, сталь устойчива к действию 65% азотной кисло­ты при температуре не более 50 °С, к действию концентри­рованной азотной кислоты при температуре не более 20 °С, к большинству растворов солей органических и неорга­нических кислот при разных температурах и концентра­циях

Используются в производстве формальдегидных смол

Используются в качестве конструкционного материала в производстве пластмасс

Для сварных изделий, работающих при криогенных темпе­ратурах до -253 °С

Коррозионностойкие стали для сред повышенной и высокой агрессивности

04X18Н10, 03Х18Н11

Для оборудования и трубопроводов в производстве азотной кислоты и аммиачной селитры

Окончание табл. 12.3

Назначение

Для изготовления сварных изделий, работающих в средах высокой агрессивности. Применяется как жаростойкая сталь при температуре до 600 °С

10X171113М2Т, 10Х17Н ПМЗТ, 08Х17Н15МЗТ, 08Х17Н14МЗ, 03X21Н21М4ГБ

Для изготовления сварных конструкций, работающих в условиях действия кипящей фосфорной, серной, 10%-й уксусной кислоты и в сернокислых средах. Сварные кор­пуса, днища, фланцы и другие детали при температуре от -196 до 600 °С под давлением

Для сварных конструкций, работающих при температурах до 80 °С в условиях производства серной кислоты различных концентраций

Молочная, муравьиная кислоты при температуре до 20 “С. Едкое кали концентрации до 68% при температуре 120 вС. Азотная кислота концентрации 100% при температуре 70 “С. Соляная кислота, сухой йод концентрации до 10% при температуре до 20 °С

Существенное значение для улучшения качества стали имеет хими­ко-термическая обработка, т. е. процесс насыщения поверхности стали различными элементами с целью упрочнения се поверхностного слоя, увеличения поверхностной твердости, жаростойкости и химической стойкости.

К основным видам химико-термической обработки изделий из стали относятся:

Цементация - процесс насыщения поверхностного слоя углеро­дом, что улучшает его прочность и твердость;

Азотирование - процесс насыщения поверхностного слоя азо­том, что повышает стойкость изделий к истиранию и атмосферной коррозии;

Алитирование - процесс диффузионного насыщения поверх­ностного слоя алюминием, что повышает стойкость к окислению при температурах 800-5-1000 °С;

Хромирование - поверхностное насыщение изделий хромом, что значительно повышает твердость, износостойкость и коррозион­ную стойкость в воде, азотной кислоте, атмосфере и газовых средах при высоких температурах.

Дальнейшее улучшение качества химико-термической обработки сталей развивается по двум направлениям: насыщение диффузионно­го слоя азотом и упрочнение деталей термоциклической обработкой в процессе насыщения. Основой новых технологических процессов ста­ла нитроцементация со ступенчатым возрастанием расхода аммиака.

Толщина слоя при этом увеличивается до 1-2 мм и более, возрастает его твердость.

Чугуны. Серые чугуны представляют собой сплав железа, углерода и других металлургических добавок: кремния, марганца, фосфора и серы. Содержание углерода в чугунах колеблется от 2,8 до 3,7%, при лом большая его часть находится в свободном состоянии (графит) и только около 0,8-М),9% находится в связанном состоянии в виде цемен­тита (карбида железа - РеС). Свободный углерод выделяется в чугуне в виде пластинок, чешуек или зерен. По микроструктуре различают:

Чугун серый - в структуре которого углерод выделяется в виде пластинчатого или шаровидного графита;

Чугун белый - в структуре которого углерод выделяется в свя­занном состоянии;

Чугун отбеленный - в отливках которого внешний слой имеет структуру белого чугуна, а сердцевина - структуру серого чугуна;

Чугун половинчатый - в структуре которого углерод выделяется частично в связанном, а частично в свободном виде.

Детали из чугуна изготавливают методом литья в земляных и ме­таллических формах. Из чугуна получают детали сложной конфигу­рации, которые невозможно получить другими методами, например, ковкой или резанием.

Серый чугун является ценным конструкционным материалом, так как, имея сравнительно низкую стоимость, он обладает неплохими механическими свойствами.

Существенным недостатком серых чугунов является их низкая пластичность. Поэтому ковка и штамповка серого чугуна даже в нагре­том состоянии невозможна.

Марки серых чугунов (СЧ) обычно содержат два числа: первое характеризует предел прочности на растяжение, второе - предел проч­ности на изгиб, например, СЧ 12-28; СЧ 18-36 и др.

Серые чугуны обладают низкой химической стойкостью, и детали из них не могут работать в агрессивных средах.

Для повышения качества чугуна его модифицируют различными модификаторами, которые воздействуют на процессы кристаллизации жидкого чугуна, изменяя его механические свойства.

Различают ковкий чугун и высокопрочный чугун. Ковкий чугун (КЧ) отличается от серого чугуна пониженным содержанием углерода и кремния, что делает его более пластичным, способным выдерживать значительные деформации (относительное удлинение КЧ составляет 3-10%). Высокопрочный чугун (ВЧ) является разновидностью ковко­го чугуна, высокие прочностные характеристики которого достигаются модифицированием присадками магния и его сплавов. Ковкий и вы­сокопрочный чугуны идут на изготовление коленчатых валов, цилинд­ров малых компрессоров и других фасонных тонкостенных деталей.

Широкое применение в химическом машиностроении имеют ле­гированные чугуны, в состав которых входят легирующие элементы: никель, хром, молибден, ванадий, титан, бор и лр.

По суммарному содержанию легирующих добавок чугупы делят на три группы:

Низколегированные - легирующих добавок до 3%;

Среднелегированные - легирующих добавок о г 3 до 10%;

Высоколегированные - легирующих добавок более 10%.

Легирование позволяет существенно улучшить качество чугуна и

Придать ему особые свойства. Например, введение никеля, хрома, мо­либдена, кремния повышает химическую стойкость и жаропрочность чугуна; никелевые чугуны с добавкой меди (5-6%) надежно работают со щелочами; высокохромные (до 30% Сг) устойчивы к действию азот­ной, фосфорной и уксусной кислот, а также хлористых соединений; чугун с добавкой молибдена до 4% (антихлор) хорошо противостоит действию соляной кислоты.

Цветные металлы и их сплавы. Цветные металлы и их сплавы при­меняют для изготовления машин и аппаратов, работающих со средами средней и повышенной агрессивности и при низких температурах. В химической промышленности в качестве конструкционных мате­риалов используются алюминий, медь, никель, свинец, титан, тантал и их сплавы.

Алюминий. Обладает высокой стойкостью к действию органических кислот, концентрированной азотной кислоты, разбавленной серной кислоты, сравнительно устойчив к действию сухого хлора и соляной кислоты. Высокая коррозионная стойкость металла обусловлена обра­зованием на его поверхности защитной оксидной пленки, предохра­няющей его ог дальнейшего окисления. Механические свойства алю­миния в значительной степени зависят от температуры. Например, при увеличении температуры от 30 °С до 200 °С значения допускаемого напряжения на растяжение снижаются в 3-3,5 раза, а на сжатие - в

5 раз. Верхняя предельная температура применения алюминия 200 °С. Алюминий не стоек к действию щелочей.

Медь. Взаимодействие меди с кислородом начинается при комнат­ной температуре и резко возрастает при нагревании с образованием пленки закиси меди (красного цвета). Медь сохраняет прочность и ударную вязкость при низких температурах и поэтому нашла широкое применение в технике глубокого холода. Медь не обладает стойкостью к действию азотной кислоты и горячей серной кислоты, относительно устойчива к действию органических кислот. Широкое распространение получили сплавы меди с другими компонентами: оловом, цинком, свинцом, никелем, алюминием, марганцем, золотом и др. Наиболее распространенными являются сплавы меди с цинком (латуни), с оловом (бронзы), с никелем (ЛАН), с железом и марганцем (ЛЖМ), цинком (до 10% цинка - томпак; до 20% - полутомпак; более 20% - константаны, манганины и др.).

Свинец - обладает сравнительно высокой кислотостойкостью, осо­бенно, к серной кислоте, вследствие образования на его поверхности защитной пленки из сернокислого свинца. Исключительно высокая мягкость, легкоплавкость и большой удельный вес резко ограничи­вают применение свинца в качестве конструкционного материала. Однако широкое применение в машиностроении нашли сплавы с ис­пользованием свинца в качестве легирующего компонента: свинцовая бронза, свинцовая латунь, свинцовый баббит (свинец, олово, медь, сурьма).

Никель - обладает высокой коррозионной стойкостью в поде, в растворах солей и щелочей при разных концентрациях и темперагурах. Медленно растворяется в соляной и серной кислотах, не стоек к дейст­вию азотной кислоты. Широко применяется в различных отраслях тех­ники, главным образом для получения жаропрочных сплавов и спла­вов с особыми физико-химическими свойствами. Никель-медные сплавы обладают улучшенными механическими свойствами и повы­шенной коррозионной стойкостью.

Никедьхромсодержащие жаропрочные сплавы. Никелевые сплавы, легированные хромом и вольфрамом, являются стойкими в окисли­тельных средах. Никелевые сплавы с добавкой меди, молибдена и же­леза стойкие в неокислитсльных средах. Никель-медные сплавы с добавлением кремния стойкие в горячих растворах серной кислоты, а сплавы никеля с молибденом обладают повышенной стойкостью к действию соляной кислоты.

Титан и тантал. Титан химически стоек к действию кипящей азот­ной кислоты и царской водки всех концентраций, нитритов, нитратов, сульфидов, органических кислот, фосфорной и хромовой кислот. Однако изделия из титана в 8-10 раз дороже изделий из хромоникеле­вых сталей, поэтому применение титана в качестве конструкционного материала ограничено. Тантал химически стоек к действию кипящей соляной кислоты, царской водки, азотной, серной, фосфорной кислот. Однако не обладает стойкостью к действию щелочей.

Титан и тантал по механическим свойствам не уступают высоколе­гированным сталям, а по химической стойкости намного превосходят их. Эти ценные металлы находят широкое применение в химическом машиностроении как в чистом виде, так и в виде сплавов.

Неметаллические конструкционные материалы. Применение в хими­ческом машиностроении неметаллических конструкционных матери­алов позволяет экономить дорогостоящие и дефицитные металлы.

Фторопласт (тефлон) - элементы конструкций из фторсодер­жащих полимеров обладают высокой стойкостью практически во всех агрессивных средах в широком интервале температур.

Углеграфитовые материалы ~ графит, пропитанный фенолфор - мальдегидной смолой, или графитопласт, - прессованная пластмасса на основе фснолформальдегидной смолы с графитовым наполнителем. Обладают высокой коррозионной стойкостью в кислых и щелочных средах.

Стекло и эмали. Стекло применяется в качестве конструкционного материала в производствах особо чистых веществ. Эмали - специ­альные силикатные стекла, обладающие хорошей адгезией с металлом. Промышленностью выпускаются чугунные и стальные эмалиро­ванные аппараты, работающие в широком интервале температур от -15 до +250 °С при давлениях до 0,6 МПа.

Керамика - выпускается кислотоупорный кирпич для футеровки химического оборудования, крупноблочная керамика для аппаратов башенного типа, например, в производстве серной кислоты. Кера - мические материалы обладают высокой устойчивостью ко многим агрессивным средам, исключение составляют щелочные среды. Трубо­проводы из кислотостойкой керамики широко применяют для транс­портировки серной и соляной кислот.

Фарфор - обладает высокой стойкостью ко всем кислотам, за исключением плавиковой. Недостаточно стоек к действию щелочей. Фарфор используется в качестве конструкционного материала в про­изводствах, где к чистоте продуктов предъявляются повышенные требования.

Винипласт - термопластичная масса, обладающая высокой устой­чивостью почти во всех кислотах, щелочах и растворах, за исключени­ем азотной и олеума. Детали из винипласта надежно работают в интер­вале температур 0-40 °С и давлении до 0,6 МПа.

Асбовинил - композиция из кислотостойкого асбеста и лака, обла­дающая сравнительно высокой стойкостью к действию большинства кислот и щелочей в интервале температур от -50 до +110 °С.

Полиэтилен, полипропилен - термопластичные материалы, стойкие к действию минеральных кислот и щелочей при условиях:

Полиэтилен - температура от -60 до +60 “С, давление до 1 МПа;

Полипропилен - температура от -10 до +100 °С, давление до

Фаолит - кислотостойкая пластмасса с наполнителями: асбест, графит, кварцевый песок. Используют при температуре до 140 СС и дав­лении до 0,06 МПа. Фаолит стоек к действию многих кислот, в том чис­ле серной (концентрацией до 50%), соляной (всех концентраций), уксусной, муравьиной (до 50%), фосфорной, а также бензола, но не стоек в растворах щелочей и окислителей.

Текстолит - по механической прочности превосходит фаолит и отличается высокой стойкостью к агрессивным средам, в том числе к кислотам - серной (концентрацией до 30%), соляной (до 20%),

Фосфорной (до 25%), уксусной (всех концентраций). Верхний темпе­ратурный предел применения текстолита 80 °С.

Пропитанный графит - графит, полученный после прокалки ка­менноугольной смолы и пропитанный связующими смолами - фенол - форматьдегидными, кремнеорганическими, эпоксидными и др.

Вследствие хорошей теплопроводности пропитанного графита его широко применяют для изготовления теплообменников и трубопро­водной арматуры. Пропитанный графит стоек во многих химически активных средах, в том числе в кислотах - азотной (низкой концент­рации), плавиковой (концентрацией до 40%), серной (до 50%), соля­ной, уксусной, муравьиной, фосфорной. Некоторые сорта пропитан­ного графита стойки к действию щелочей.

Жаропрочный кислотостойкий бетон - применяется для бетониро­вания дниш башенного оборудования сернокислотного производства, дня изготовления фундаментов под оборудование. Надежно работает в условиях 900-1200 °С. В последнее время находят применение поли­мербетоны на основе органических смол, которые обладают высокой стойкостью к действию концентрированных кислот, щелочей, бен­зола, толуола и фторсодержащих сред.

Природные силикатные материалы: диабаз, базальт, асбест, хри­зотил, андезит обладают высокой кислотостойкостью, исключение составляет хризотил, который не стоек в кислотах, но устойчив к дейст­вию щелочей. Все эти материалы обладают хорошими физико-механи­ческими свойствами и широко используются в качестве конструкци­онных теплоизоляционных и футеровочных материалов.

Все конструкционные материалы можно условно разделить на однородные икомпозиционные, металлические и неметаллические (Рисунок 6.1).

Металлы – химические элементы, образующие в свободном состоянии простые вещества с металлической связью между атомами.

Сплавы – твердые вещества, образованные сплавлением двух или более компонентов. Сплав образуется в результате как чисто физических процессов (растворение, перемешивание), так и в результате химического взаимодействия между элементами. Разнообразие состава типов межатомной связи и кристаллических структур сплавов обуславливает значительное различие их физико-химических, электрических, магнитных, механических, оптических и других свойств. Сплавы на основе железа называютсячерными , на основе других металловцветными .

Неметаллические материалы – неорганические и органические материалы, композиционные материалы на неметаллической основе, клеи, герметики, лакокрасочные покрытия, графит, стекло, керамика и т.д.

Полимеры – вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры.

Композиционные материалы – гетерофазные (состоящие из различных по физическим и химическим свойствам фаз) системы, полученные из двух и более компонентов с сохранением индивидуальности каждого отдельного компонента.

При этом:

      материал является однородным в макромасштабе и неоднородным в микромасштабе (компоненты различаются по свойствам, между ними существует явная граница раздела);

      один из компонентов, обладающий непрерывностью по всему объему, является матрицей; компонент прерывистый, разделенный в объеме композиции, считается усиливающим или армирующим.

В приборостроении большое применение находят различные неметаллические материалы, такие как пластмассы, резина, стекло, керамика, лакокрасочные и клеевые материалы, причем с развитием химии и новых технологий доля неметаллических материалов в приборостроении постоянно увеличивается.

Выбор пластмасс определяется назначением детали и характерной особенностью ее получения (прессование, литье и другие способы), причем особенности строения, механические и физические свойства пластмасс существенно влияют на конструкцию детали и способ ее изготовления.

Применение порошковых материалов определяется необходимостью изготовления изделий с особыми свойствами и структурой, которые недостижимы другими методами производства, либо изделий с обычным составом, структурой и свойствами, но при значительно более выгодных экономических показателях производства.

Свойства конструкционных материалов подразделяются на:

      механические;

      технологические;

      эксплуатационные.

К механическим свойствам относятся:

      прочность;

      упругость;

      пластичность;

      твердость;

      ударная вязкость.

Эти свойства определяют прочность и долговечность конструкции.

Прочность – это способность материала сопротивляться деформации и разрушению.

Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.

Пластичность – способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений – отверстий, вырезов и т.п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.

Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).

При растяжении образцов с площадью поперечного сечения S 0 и рабочей (расчетной) длиной l о строят диаграмму растяжения в координатах: нагрузкаP– удлинение ∆lобразца (рисунок 6.2).

Рисунок 6.2 – Диаграмма растяжения

Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:

      упругой деформации – до нагрузки Р упр;

      равномерной пластической деформации от Р упр до Р мах;

      и сосредоточенной пластической деформации от Р мах до Р к.

Если образец нагрузить в пределах Р упр, а затем полностью разгрузить и замерить его длину, то никаких последствий нагружения не обнаружится.

Закон Гука для линейного участка диаграммы: σ = Е ε, где Е – называется модулем упругости или модулем Юнга. Е имеет размерность кг/см 2 и является одной из физических констант материала. Модуль упругости при растяжении численно равен тангенсу угла наклона диаграммы напряжений к оси абсцисс.

Между относительной поперечной деформацией и относительной продольной деформацией при простом растяжении и сжатии в пределах применимости закона Гука существует постоянное соотношение, абсолютная величина которого называется коэффициентом Пуассона μ = ε 1 /ε – безразмерная величина и для всех изотропных материалов лежит в пределах 0 – 0,5 (0 для пробки, 0,5 для каучука, для стали 0,3).

При нагружении образца более Р упр появляетсяостаточная (пластическая) деформация. Пластическое деформирование идет при возрастающей нагрузке, так как металл упрочняется в процессе деформирования. Упрочнение металла при деформировании называетсянаклепом .

При дальнейшем нагружении пластическая деформация, а вместе с ней и наклеп все более увеличиваются, равномерно распределяясь по всему объему образца. После достижения максимального значения нагрузки Р мах в наиболее слабом месте появляется местное утонение образца – шейка, в которой в основном и протекает дальнейшее пластическое деформирование. В связи с развитием шейки, несмотря на продолжающееся упрочнение металла, нагрузка уменьшается отР мах до Р к, и при нагрузке Р к происходит разрушение образца. При этом упругая деформация образца исчезает, а пластическая ∆l ост остается.

При деформировании твердого тела внутри него возникают внутренние силы. Величину сил, приходящуюся на единицу площади поперечного сечения образца, называют напряжением . Размерность напряжения МПа.

Пользуясь указанными характеристиками, и зная площадь сечения образца S 0 , определяют основные характеристики прочности материала:

σ пц = Р пц /S 0 - предел пропорциональности; σ уп = Р уп /S 0 - предел упругости; σ т = Р т /S 0 - предел текучести; σ в = Р мах /S 0 - предел прочности или временной сопротивление; σ к = Р к /S 0 - напряжение в момент разрыва.

Поскольку диаграмма растяжения металлов характеризует не только свойства металлов, но и размеры образца, то ее принято перестраивать в относительных координатах σ – ε, такая диаграмма называется диаграммой напряжений.

Пластичность характеризуется относительным удлинениеми относительным сужением:

где l 0 ,S 0 - начальные длина и площадь поперечного сечения образца;l k ,S k - конечная длина и площадь в месте разрыва.

Допустимые значения напряжений в расчетах выбирают меньше в 1,5 - 2,5 раза.

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методыопределения твердости Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на Рисунке 3.4.

Рисунок 6.3 – Схема определения твердости материала по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).

Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром Д = 2,5; 5; 10 мм, в зависимости от толщины изделия.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка.

Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230) используется стальной шарик диаметром 1/16” (1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка Р 0 (100 н) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р 1 , в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечникаhпод нагрузкойP.

Твердость по Виккерсу определяется по величине отпечатка индентора: алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки Р к площади поверхности отпечатка.

Нагрузка Р составляет 50…1000 н. Диагональ отпечатка dизмеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.

Способ микротвердости – используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливанииPсоставляют 5…500 н.

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров. Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту. Ее определяют по ГОСТ как удельную работу разрушения призматического образца с концентратором (надрезом) посередине одним ударом маятникового копра: КС = К/S, где К - работа разрушения;S- площадь поперечного сечения образца в месте концентратора. Измеряется в МДж/м 2 .ОбозначаютKCU,KCV,KCT,U,V,T- вид концентратора (U,V- образный; Т - трещина усталости).

Технологические свойства конструкционных материалов.

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

К технологическим свойствам металлов и сплавов относятся:

      литейные свойства;

      деформируемость;

      свариваемость;

      обрабатываемость режущим инструментом.

Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства характеризуют способность материала к получению из него качественных отливок.

Литейные свойства определяются способностью расплавленного металла или сплава к заполнению литейной формы (жидкотекучесть), степенью химической неоднородности по сечению полученной отливки (ликвация), а также величиной усадки – сокращением линейных размеров при кристаллизации и дальнейшем охлаждении.

Способность материала к обработке давлением – это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь (обработка без снятия стружки). Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб. Критерием годности материала является отсутствие дефектов после испытания.

Свариваемость – это способность материала образовывать неразъемные соединения требуемого качества при сварке. Свойство оценивается по качеству сварного шва.

Обрабатываемость резанием – характеризует способность материала поддаваться обработке режущим инструментом. Оценивается по стойкости инструмента и по качеству обработанной поверхности.

Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям.

Современное автоматизированное производство, предъявляет к технологическим свойствам материала особые требования: проведение сварки на больших скоростях, ускоренное охлаждение отливок, обработка резанием на повышенных режимах и т. п. при обеспечении необходимого условия – высокого качества получаемой продукции.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях:

      износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения;

      коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных и щелочных сред;

      жаростойкость – способность материала сопротивляться окислению в газовой среде при высокой температуре;

      жаропрочность – это способность материала сохранять прочность и твердость при высоких температурах;

      хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах;

      антифрикционность – способность материала прирабатываться к другому материалу.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий. При выборе материала для создания конструкции необходимо учитывать конструкционные, технологические и эксплуатационные свойства.

Конструктор подбирает конструкционный материал с учетом его механических, физических, химических и технологических и эксплуатационных свойств. Механические свойства определяются способностью материала противостоять различным внешним физическим воздействиям. К основным механическим свойствам конструкционных материалов относятся следующие свойства:

– прочность – это способность материала сопротивляться пластической деформации и разрушению под действием внешних нагрузок;

– пластичность – это способность материала необратимо изменять форму и размеры без разрушения под действием нагрузки;

– вязкость – это способность материала, пластически деформируясь, необратимо поглощать энергию внешних сил;

– упругость – это способность материала восстанавливать форму и размеры после снятия нагрузки, вызвавшей деформацию;

– твердость – это способность материала сопротивляться внедрению в него другого более твердого тела;

– хрупкость – это способность материала разрушаться под воздействием внешних сил без видимой пластической деформации.

К физическим свойствам относят характеристики физического состояния материалов и отношение материала к различным физическим процессам. К основным физическим свойствам конструкционных материалов относятся следующие свойства:

– плотность – физическая величина, определяемая для однородного вещества массой его единичного объёма;

– теплопроводность – это процесс переноса энергии от более нагретых частей тела к менее нагретым, осуществляемый хаотически движущимися частицами тела;

– электропроводность – это способность вещества проводить электрический ток;

– температура плавления вещества – это температура фазового перехода «твердая фаза → расплав». Ее определяют, как при плавлении вещества, так и при кристаллизации расплава.

Химические свойства зависят от состава материала и его атомно-электронного строения. Химические свойства материала проявляются в его способности к химическому взаимодействию с окружающей средой, в возможности образования химических соединений и превращений. К основным химическим свойствам конструкционных материалов относятся следующие свойства:

– химическая стойкость – способность материалов противостоять разрушающему действию кислот, щелочей, растворенных в воде солей и газов, органических растворителей;

– биологическая стойкость – свойство материалов и изделий сопротивляться разрушающему действию грибков и бактерий;

– растворимость – способность материала растворяться в воде, масле, бензине, скипидаре и других растворителях;

Технологические свойства – это свойства материала поддаваться различным способам горячей и холодной обработки, и дающие возможность получать заготовки, а из заготовок – детали машин. К технологическим свойствам относят следующие свойства:

– ковкость – это способность материала подвергаться деформированию в горячем или холодном состоянии и принимать требуемую форму, под внешним воздействием не разрушаясь;

– свариваемость – это способность материалов образовывать неразъемное соединение (сварочный шов) с другими сплавами и материалами, обладающее требуемым уровнем прочностных и эксплуатационных свойств;

– обрабатываемость резанием – это способность материалов в отделении поверхностных слоев материала в виде стружки под воздействием режущего инструмента;

– склонность к термической обработке – способность материалов изменять свою структуру под влиянием различных воздействий (тепло, давление, излучения и поля различной природы) с приобретением требуемого комплекса свойств;

– литейные свойства – определяются способностью материала обладать в расплавленном состоянии жидкотекучестью, обладать минимальной объемной и линейной усадкой при затвердевании.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях. К эксплуатационным свойствам относятся:

– жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре;

– жаропрочность – эти свойства характеризует способность материала сохранять механические свойства при высокой температуре;

– износостойкость – это способность материала сопротивляться разрушению его поверхностных слоев при трении;

– коррозионная стойкость – это свойство характеризует способность материалов сопротивляться коррозии в различных средах;

– холодостойкость – способность материала сохранять пластические свойства при отрицательных температурах;

– антифрикционность – способность материала прирабатываться к другому материалу.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий.

Выбор материалов деталей - важный этап, от которого в значительной степени зависят вес, габариты, стоимость и долговечность машин. Для снижения стоимости машин большое значение имеет замена дорогостоящих и дефицитных материалов, однако применение более дешевых материалов может привести к увеличению веса, габаритов и снижению долговечности машин.

Таким образом, вопрос о выборе материала представляет собой сложную технико-экономическую задачу, в решении которой необходимо учитывать экономические, технологические и эксплуатационные соображения. Наряду с другими обстоятельствами при выборе материалов для деталей машин следует учитывать такие производственные вопросы, как снабжение, хранение и учет материалов на предприятии, и по возможности сокращать номенклатуру наименований и марок применяемых материалов.

По принципиальной классификации все конструкционные материалы принято делить на следующие виды (рисунок 2.2).

Рисунок 2.2 – Принципиальная классификация конструкционных материалов

Металлы (от латинского metallum – шахта, рудник) – группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, высокая пластичность. Металлические материалы наиболее распространены в машиностроении, к этой группе материалов относятся все металлы и их сплавы. Среди них можно выделить несколько групп, отличающихся друг от друга по свойствам:

– Черные металлы. Это железо и сплавы на его основе – стали и чугуны.

– Цветные металлы. В эту группу входят металлы и их сплавы, такие как медь, алюминий, титан, никель и др.

Под чистыми металлами понимают твёрдые вещества, состоящие только из одного компонента. Чистые металлы редко используют в машиностроении. Наиболее распространено использование металлических конструкционных материалов в виде сплавов. Под сплавами понимают твёрдые вещества, образованные сплавлением двух или более металлических компонентов. Сплавы на основе железа принято называются черными, а на основе цветных металлов – цветными. Среди цветных сплавов различают легкие и тяжелые сплавы. Легкими цветными сплавами называют сплавы на основе алюминия, магния, титана и бериллия, имеющие малую плотность. Тяжелыми цветными сплавами называют сплавы на основе меди, олова. Такие сплавы имеют большую плотность. По температуре плавления цветные сплавы бывают легко – и тугоплавкие. Легкоплавкими цветными сплавами называют сплавы на основе цинка, кадмия, олова, свинца, висмута. Тугоплавкими цветными сплавами называют сплавы на основе молибдена, ниобия, циркония, вольфрама, ванадия и др.

Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные материалы. Среди них также можно выделить несколько групп:

Пластмассы – это материалы на основе высокомолекулярных соединений (полимеров), как правило, с наполнителями. Наполнителями пластмасс называют порошкообразные, кристаллические, волокнистые листовые, газообразные материалы, которые определяют свойства пластмасс. Различают пластмассы с твердым наполнителем (полиэтилены, полистиролы, поликарбонаты и т.п.), а также с газофазовым наполнителем (пенопласты, поропласты и т.п.).

Керамика – это материал на основе порошков тугоплавких соединений типа карбидов, боридов, нитридов и оксидов. Например: TiC, SiC, Si 3 N 4 , Al 2 O 3 , SiO 2 , ZrO 2 . Керамика превосходит другие материалы по твердости и износостойкости. К преимуществам керамики относятся низкий коэффициент трения и стойкость к воздействию агрессивных сред и высокой температуры.

Стекло – это материал на 75% состоящий из двуокиси кремния, которую можно получить из кварцевого песка при помощи очистки его от всевозможных загрязнений. В стекле также присутствует окись кальция, благодаря которой материал приобретает стойкость, а также привычный блеск, оксид калия или натрия, которые необходимы для плавки самого стекла.

Резина – это материалы на основе каучука – углеродно-водородного полимера с добавлением серы и других элементов. Различают естественный (сок бразильской гевеи) и синтетический (изопреновый, бутадиеновый) каучуки.

Дерево – это сложная органическая ткань древесных растений.

Композиты получают путем введения в основной материал определенного количества другого материала в целях получения специальных свойств. Композиционный материал может состоять из двух, трех и более компонентов. Основной конструкционный компонент композита называется матрицей. Усиливающие элементы в виде нитей, волокон или хлопьев более прочного материала называются армирующий элементом. Характеристика композитов по материалу матрицы и армирующих элементов указывает на природу композитов. Название композитов состоит обычно из двух частей: в первой указывается материал армирующего элемента, второй материал матрицы (например, углепластик – материал на основе полимера, армированный волокнами твердого углерода). Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемыми свойствами.

Для оптимального выбора материалов в машиностроении используют более подробные классификации . Так, например классификация сталей и сплавов производится: по химическому составу; по структурному составу; по качеству (по способу производства и содержанию вредных примесей); по степени раскисления и характеру затвердевания металла в изложнице; по назначению. Например, по химическому составу углеродистые стали делят в зависимости от содержания углерода на группы: малоуглеродистые – менее 0,3% С; среднеуглеродистые – 0,3...0,7% С; высокоуглеродистые – более 0,7 %С. По качеству, то есть по способу производства и содержанию примесей, стали и сплавы делятся на четыре группы (таблица 2.1).

Таблица 2.1. Классификация сталей по качеству

Группа Сера S, %, ≤ Фосфор Р, %, ≤
Обыкновенного качества (рядовые) 0,06 0,07
Качественные 0,04 0,035
Высококачественные 0,025 0,025
Особовысококачественные 0,015 0,025

По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами. В свою очередь конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионностойкие, жаростойкие, жаропрочные, износостойкие стали.

Контрольные вопросы к лекции 2:

1. Перечислите механические свойства материалов.

2. Перечислите технологические свойства материалов.

3. В чем заключается способность материалов к обработке резанием.

4. В чем заключаются литейные свойства материалов.

5. Охарактеризуйте эксплуатационные свойства материалов.

6. Опишите особенности металлических конструкционные материалы и принципиально классифицируйте такие материалы.

7. Классифицируйте неметаллические конструкционные материалы.

8. Чем руководствуются при выборе материалов в машиностроении и на что влияет этот выбор.

При выборе материалов в первую очередь требуется всесторонне рассмотреть условия его работы и разграничить факторы, воздействующие на материал, по степени их влияния на надежность машины или механизма. Определяющие факторы должны быть учтены обязательно, менее определяющие - по возможности.

Следующим этапом выбора материала должен быть процесс определения комплекса необходимых свойств материала, обеспечивающих надежную и долговечную работу конструкций, машин и оборудования в заданных условиях эксплуатации. Так как конструкционные материалы характеризуются механическими, физикохимическими и технологическими свойствами, то рассматривать необходимо всю гамму свойств, особенно, если в конструкции должны работать разные материалы.

Более правильным является формирование технических требований к материалу на основании моделирования условий работы изделия в реальных условиях эксплуатации с использованием специальных стендов, на которых с помощью тензометрирования можно определить уровень локальных пиковых напряжений изделия. В том случае, когда не имеется возможности использовать стенд для измерения рабочего напряжения, возникающего в изделии при его эксплуатации, следует использовать расчетные методы.

Физико-химические свойства. Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. Из важных физических свойств можно выделить теплопроводность, плотность, коэффициент линейного расширения. Применение в соединениях деталей из различных материалов обусловливает необходимость учета их коэффициентов линейного расширения.

Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Детали любого изделия должны быть совместимы с рабочей средой. Коррозия, коррозионная усталость, коррозия под напряжением, водородное охрупчивание и т.д. могут вызвать повреждение в металле и привести к хрупкому разрушению конструкции. Такие химически активные металлы, как титан и его сплавы, магниевые сплавы, алюминиевые сплавы, при ударном нагружении могут самопроизвольно загораться при контакте с жидким кислородом.

Механические свойства. Основой выбора материалов для создания надежной и работоспособной техники являются их механические свойства, в первую очередь, прочностные, которые характеризуют способность материалов сопротивляться деформации и разрушению под действием различного рода нагрузок, в разных средах и при различных температурных условиях.

Расчет конструкции на прочность производят по допустимым напряжениям [о], определяемым из условий прочности при статическом нагружении или долговечности при циклическом нагружении. При статическом нагружении допускаемое напряжение равно отношению предельного для данного материала напряжения к коэффициенту безопасности , т.е. к коэффициенту запаса прочности п. Для пластичных материалов за предельное напряжение принимают предел текучести, для квазихрупких - временное сопротивление:

[ = а Т /п Т или [а] = а в /я в. (2.1)

Значение коэффициента запаса прочности зависит от многих факторов: разброса характеристик прочности; присутствия в материале дефектов, допускаемых техническими условиями; степени схематизации расчетной процедуры и т.д.

В России за допускаемое принимается минимальное напряжение, определяемое по пределу текучести или временному сопротивлению. Такая же методика принята во многих странах. Однако в некоторых странах, например в Чехии, Словакии, Германии, Польше, для определения допускаемых напряжений расчет ведется только по пределу текучести, а в Японии - только по временному сопротивлению.

Коэффициент запаса может меняться в широких пределах в зависимости от условий работы оборудования и опыта работы с данным материалом.

Для сосудов и аппаратов, работающих под давлением, коэффициент запаса по пределу текучести находится в пределах от 1,5 до 1,65, а по временному сопротивлению - от 2,35 до 4.

Однако расчеты на прочность конструкций по номинальным напряжениям с учетом коэффициентов запаса не всегда гарантируют необходимый ресурс их работы. Это связано с тем, что назначаемые запасы прочности не учитывают ряда факторов, которые способствуют возникновению повреждений и разрушений несущих элементов конструкций и машин. К этим факторам относятся: присутствие в металле дефектов типа трещин, как исходных, так и возникающих в процессе эксплуатации; наличие микро- и макронеоднородностей металла по толщине, в зонах сварных швов и т.д.; появление локальных напряжений вследствие их концентрации, а также остаточных технологических напряжений; нестабильность эксплуатационного нагружения из-за статических и импульсных перегрузок, стационарных и нестационарных циклических нагрузок. Для учета этих факторов необходим переход от расчета по номинальным напряжениям к анализу локальных напряжений, возникающих в отдельных зонах изделия.

Для высокопрочных и среднепрочных материалов расчет допустимых значений следует проводить на основе принципов механики разрушения с учетом максимальных размеров дефектов. Это связано с тем, что повышение прочности обычно сопровождается уменьшением пластичности и вязкости материала.

Пластичность характеризует способность материала к пластическому течению при превышении предела текучести, а вязкость - способность поглощать энергию внешних сил при разрушении.

У разных материалов соотношение пластичности и вязкости может очень сильно различаться. Например, алюминий имеет малую вязкость при высоком относительном удлинении. Наоборот, термообработанная (улучшенная), легированная сталь при сравнительно небольшом относительном удлинении может иметь высокую вязкость.

Пластичность и вязкость в конструкционные расчеты не входят и являются качественными показателями.

Пластичность показывает способность металла к перераспределению напряжений в зонах концентрации (пиков). Пластическая деформация как бы предохраняет металл от резких локальных перегрузок вблизи концентраторов напряжений.

Широко принятым критерием работоспособности металлических сплавов и сварных соединений, особенно используемых при низких температурах, является ударная вязкость, определенная на образцах с надрезом. При этом сложность представляет выбор необходимого уровня вязкости и вида образцов для ее оценки. В разных странах принят различный гарантированный уровень ударной вязкости. За рубежом сталь обычно допускается к эксплуатации, если ее ударная вязкость, определенная на образцах типа Шарли размером 10 х 10 х 55 мм с надрезом радиусом 0,25 мм, составляет КСУ> 0,30 МДж/м 2 .

Надежность конструкций, работающих в условиях многократного подъема и сброса давления, зависит от сопротивления материалов усталостному разрушению. Поэтому для таких изделий проводятся имитирующие циклические испытания стандартных образцов либо циклические стендовые испытания. База испытаний выбирается в зависимости от условий эксплуатации оборудования.

Металл установок или изделий, подвергаемых многократному нагреву или охлаждению, испытывается на сопротивление термической усталости.

В случае длительного нагружения конструкций при высоких температурах производятся испытания ползучести и длительной прочности материала.

При циклическом или длительном статическом нагружении номинальные эксплуатационные напряжения выбираются с введением коэффициентов запаса п а и п п по пределам длительной прочности и ползучести.

Коэффициенты Яд и л п обычно имеют значения в пределах 2,0-3,5.

Технологические свойства (литейные свойства у литейных сплавов; обрабатываемость давлением у деформируемых сплавов, обрабатываемость резанием, свариваемость) весьма важны и могут быть решающими при выборе материала для изготовления высококачественных изделий в производственных условиях. Например, нельзя изготовить литьем тонкостенные протяженные детали из сплава с низкой жидкотекучестью и плохой заполняемостью. Нельзя также изготавливать сварные конструкции из сталей с высоким содержанием углерода (высоким углеродным эквивалентом), так как в зоне сварного шва всегда будут образовываться сварные трещины.

При рассмотрении обрабатываемости материалов следует исходить из условий серийности изготавливаемого изделия и необходимости применения смягчающей термообработки. Так, при изготовлении изделий крупносерийного или массового производства следует ориентироваться на их механическую обработку с использованием станков с ЧПУ и обрабатывающих центров. В этом случае твердость обрабатываемых деталей должна быть невысокой (до 250 НВ). Для обеспечения низкой твердости для этих деталей может применяться предварительная термообработка: отжиг, нормализация, высокий отпуск.

Оценка свариваемости конструкционных материалов должна включать анализ уровня механических свойств сварного соединения и основного металла, определение склонности к образованию дефектов, прежде всего трещин в металле шва и зоне термического влияния, определение чувствительности сварного соединения к концентраторам напряжений и склонности к хрупкому разрушению. Для получения бездефектных равнопрочных сварных соединений, обладающих высоким сопротивлением хрупкому разрушению, необходима разработка специальной системы легирования сварного шва.

Приняты следующие термины, характеризующие свариваемость металлов: хорошая, удовлетворительная, ограниченная, неудовлетворительная. Хорошая свариваемость характерна для металлических материалов, не имеющих ограничений в проведении процесса сварки при температуре окружающей среды по массе и сложности конструкций. Такие материалы не требуют предварительного подогрева. При удовлетворительной свариваемости на морозе сварка не допускается и должна производиться при комнатной температуре. В сварных элементах должны отсутствовать жесткие стыки; для сложных узлов необходим предварительный сопутствующий подогрев; после сварки при большом объеме наплавленного металла необходим отпуск; при вваривании вкладышей рекомендуется проводить промежуточную термическую обработку. Ограниченная свариваемость подразумевает возможность сварки небольших деталей простой формы с подогревом до 300-400 °С и проведении отпуска после сварки; в случае жестких контуров температура подогрева должна быть увеличена до 600 °С. Неудовлетворительная свариваемость характерна для материалов, нуждающихся в отжиге перед сваркой; даже при сварке простых узлов их необходимо подогревать до температур более 450 °С с обязательным проведением высокого отпуска после сварки.

Выбранные материалы и технологии изготовления из них изделий обязательно должны быть привязаны к возможностям конкретного производства. Например, не следует ориентироваться на лазерную термообработку изделий массового производства, так как это окажется технически невыполнимым, а следует выбрать один из видов химико-термической обработки, который используется на предприятии - изготовителе изделий.

Важный этап выбора материала - оценка его стоимости и дефицитности. Выбранный материал должен быть по возможности дешевым, с учетом всех затрат, включающих как стоимость самого материала, так и стоимость изготовления из него деталей, а также эксплуатационную стойкость. Необходимо учитывать также наличие дефицитных составляющих материала. Например, в последние годы такие элементы в стали, как вольфрам, кобальт, никель являются дефицитными и их использование в качестве легирующих добавок в сталях должно быть ограничено. Однако в тех случаях, когда без них нельзя обеспечить необходимые служебные свойства, их применение оправдано (быстрорежущие стали, жаропрочные стали и сплавы).

Таким образом, основой при выборе материалов являются назначение и условия работы изделия или конструкции. При ЭТОМ КОНструктор опирается на опыт изготовления и эксплуатации изделий и конструкций данного профиля, уровень технологии производства и контроля, а также учитывает экономические соображения. При выборе материалов большую роль могут сыграть результаты стендовых и натурных испытаний изделий.

Использование при выборе материалов, ранее хорошо зарекомендовавших себя в подобных конструкциях и изделиях, вполне оправдано, но может привести, с одной стороны, к отказу от совершенствования конструкций и изделий, а с другой - к повторению уже сделанных ошибок.