Проводка

Меры по обеспечению электробезопасности на производстве. Защитные меры электробезопасности Основные меры электробезопасности при работе

Меры по обеспечению электробезопасности на производстве. Защитные меры электробезопасности Основные меры электробезопасности при работе

- 2 часа.

Электробезопасность - это система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги и статического электричества с целью сокращения электротравматизма до приемлемого уровня риска и ниже.

Отличительной особенностью электрического тока от других производственных опасностей и вредностей (кроме радиации) является то, что человек не в состоянии обнаружить электрическое напряжение дистанционно своими органами чувств.

В большинстве стран мира статистика несчастных случаев по причинам электропоражения показывает , что общее число травм, вызванных электрическим током с потерей трудоспособности, невелико и составляет приблизительно 0,5-1% (в энергетике - 3-3,5%) от общей численности несчастных случаев на производстве.

Однако со смертельным исходом такие случаи на производстве составляют 30-40%, а в энергетике до 60%.

Согласно статистике, 75-80% смертельных поражений электрическим током происходит в установках до 1000 В.

Действие электрического тока на организм человека

Опасность поражения людей электрическим током на производстве обусловлена несоблюдением мер предосторожности, а также отказом или неисправностью электрического оборудования. Следствием этого могут быть местные и общие нарушения в организме. Местные нарушения могут варьироваться от незначительных болевых ощущений до тяжелых ожогов с обгоранием и обугливанием отдельных частей тела. Общие нарушения вызывают сбои в функционировании центральной нервной системы, органов дыхания и кровообращения. При этом наблюдаются обмороки, потеря сознания, расстройства речи, судороги, нарушение дыхания вплоть до остановки. При тяжелых поражениях электрическим током может наступить мгновенная смерть.

По характеру воздействия различают биологическое, термическое, механическое, химическое и раздражающее действия электрического тока .

Биологическое действие проявляется в раздражении и возбуждении живых тканей организма, что может сопровождаться непроизвольным судорожным сокращением мышц, в том числе мышц сердца и легких. В результате могут возникнуть различные нарушения в организме, в том числе нарушение и даже полное прекращение деятельности органов дыхания и кровообращения.

Термическое действие вызывает ожоги отдельных участков тела, нагрев кровеносных сосудов и нервных волокон. Внешнее проявление ожогов начинается с покраснения кожи и образования пузырей с жидкостью до почернения и обугливания кожи и мягких тканей.

Механическое действие связано с сильным сокращением мышц вплоть до их разрыва, вывихом суставов и даже повреждением костей.



Химическое, или электролитическое действие выражается в разложении крови и других органических жидкостей, вызывая значительные нарушения их физико-химических составов.

Раздражающее действие тока на ткани может быть прямым, когда ток проходит непосредственно по этим тканям, и рефлекторным, то есть через центральную нервную систему, когда путь тока лежит вне этих органов.

Опасность электрического тока как поражающего фактора состоит в том, что его присутствие не ощущается органами чувств человека. Только в момент прикосновения тела человека к источнику электрического напряжения и возникновения поражающего воздействия организм начинает ощущать болевые проявления от протекания тока.

Все многообразие действия электрического тока приводит к двум видам поражения : электрическим травмам и электрическим ударам.

Электрические травмы - это четко выраженные местные повреждения тканей организма, вызванные воздействием электрического тока или электрической дуги (электрические ожоги, электрические знаки, металлизация кожи, механические повреждения).

Электрический удар - это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся непроизвольным судорожным сокращением мышц.

Различают четыре степени электрических ударов :

I степень - судорожное сокращение мышц без потери сознания;

II степень - судорожное сокращение мышц с потерей сознания, но с сохранившимся дыханием и работой сердца;

III степень - потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

IV степень - клиническая смерть, то есть отсутствие дыхания и кровообращения.

Клиническая ("мнимая") смерть - это переходный процесс от жизни к смерти, наступающий с момента прекращения деятельности сердца и легких. Длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток коры головного мозга (4-5 мин., а при гибели здорового человека от случайных причин - 7-8 мин.). Биологическая (истинная) смерть - это необратимое явление, характеризующееся прекращением биологиче­ских процессов в клетках и тканях организма и распадом белковых структур. Биологическая смерть наступает по истечении периода клинической смерти.

Таким образом, причинами смерти от электрического тока могут быть прекращение работы сердца, прекращение дыхания и электрический шок.

Остановка сердца или его фибрилляция , то есть хаотические быстрые и разновременные сокращения волокон (фибрилл) сердечной мышцы, при которых сердце перестает работать как насос, в результате чего в организме прекращается кровообращение, может наступить при прямом или рефлекторном действии электрического тока.

Прекращение дыхания как первопричина смерти от электрического тока вызывается непосредственным или рефлекторным воздействием тока на мышцы грудной клетки, участвующие в процессе дыхания (в результате - асфиксия или удушье по причине недостатка кислорода и избытка углекислоты в организме).

Электрический шок - это тяжелая нервно-рефлекторная реакция организма в ответ на сильное электрическое раздражение, сопровождающаяся опасными расстройствами кровообращения, дыхания, обмена веществ и т.п. Такое состояние может продолжаться от нескольких минут до суток.

Факторы, влияющие на степень поражения

Исход воздействия электрического тока на организм человека зависит от ряда факторов, основными из которых являются :

· электрическое сопротивление тела человека;

· величина электрического тока;

· длительность его воздействия на организм;

· величина напряжения, воздействующего на организм;

· род и частота тока;

· путь протекания тока в теле;

· психофизиологическое состояние организма, его индивидуальные свойства;

· состояние и характеристика окружающей среды (температура воздуха, влажность, загазованность и запыленность воздуха) и др.

Общее электрическое сопротивление человеческого организма складывается из сопротивлений участков тела, расположенных на пути тока. Отдельные части тела обладают различной электропроводимостью : наименьшая проводимость свойственна верхнему слою кожи, в котором отсутствуют нервные окончания и кровеносные сосуды (его сопротивление - до 100000 Ом), более высокой проводимостью обладают костные, нервные, мышечные ткани и жидкости. В качестве расчетных значений сопротивления человеческого организма принимают -1000 Ом при напряжении 50 В и выше и 6000 Ом при напряжении 36 В.

В связи с большими различиями значений сопротивления тканей человека и невозможностью заранее предвидеть место контакта тела человека с токоведущей частью оборудования определить поражающую величину силы тока невозможно . Поэтому для оценки безопасных условий исходят из допустимого напряжения. Безопасным напряжением считают 36 В (для светильников местного стационарного освещения, переносных светильников и электроинструмента в помещениях с повышенной опасностью) и 12 В (для переносных светильников при работе внутри металлических резервуаров, котлов, в осмотровых канавах). Однако и такие напряжения при определенных ситуациях могут представлять опасность для жизни и здоровья работающих. При электросварочных работах устанавливают величину напряжения 65 В.

Безопасные уровни напряжения получают из осветительной сети, используя для этого понижающие трансформаторы . Распространить применение безопасного напряжения на все электрические устройства не представляется возможным, так как уменьшение рабочего напряжения ведет к уменьшению мощности, что экономически не оправдано.

Тяжесть поражения человека пропорциональна силе тока, прошедшего через его тело. Сила тока (в амперах) зависит от приложенного напряжения (в вольтах) и электрического сопротивления организма (в омах).

В производственных процессах используются два рода тока : постоянный и переменный. Они оказывают различное воздействие на организм при напряжениях до 500 В. Опасность поражения постоянным током меньше, чем переменным . Переменный ток с повышением частоты представляет меньшую опасность . Наибольшую опасность представляет ток частотой 50 Гц , которая является стандартной для отечественных электрических сетей.

Продолжительность воздействия тока часто является фактором, от которого зависит конечный исход поражения. Чем длительнее воздействует электрический ток на организм, тем тяжелее последствия .

Путь, по которому электрический ток проходит через тело человека , во многом определяет степень поражения организма. Возможны следующие варианты направлений движения тока по телу человека :

· человек обеими руками дотрагивается до токоведущих проводов (частей оборудования). В этом случае возникает направление движения тока от одной руки к другой, то есть "рука-рука";

· при касании одной рукой к источнику путь тока замыкается через обе ноги на землю "рука-ноги";

· при пробое изоляции токоведущих частей оборудования на корпус руки работающего оказываются под напряжением, вместе с тем стекание тока с корпуса оборудования на землю приводит к тому, что и ноги оказываются под напряжением, но с другим потенциалом, так возникает путь тока "руки-ноги";

· при стекании тока на землю от неисправного электрооборудования земля поблизости получает изменяющийся потенциал напряжения, и человек, вступивший обеими ногами на такую землю, оказывается под разностью потенциалов, то есть каждая из его ног получает разный потенциал напряжения, в результате возникает шаговое напряжение и электрическая цепь "нога-нога";

· прикосновение головой к токоведущим частям может вызвать, в зависимости от характера выполняемой работы, путь тока на руки или на ноги - "голова-руки", "голова-ноги".

Перечисленные варианты прохождения тока через тело человека не являются исчерпывающими. Наблюдались случаи, когда ток проходил через тело по другим путям: "спина-руки", "плечо-кисть руки" и т.п.

Все варианты различаются степенью опасности. Наиболее опасными являются варианты "голова-руки", "голова-ноги", "руки-ноги". Это объясняется тем, что в зону поражения попадают жизненно важные системы организма - головной мозг, сердце.

Проявление индивидуальных особенностей организма человека выражается в физическом и психическом состоянии организма: высокая или низкая активность, степень концентрации внимания, безволие, утомление, алкогольное опьянение, ослабление организма в связи с болезнью. При снижении жизненного тонуса организма опасность поражения электрическим током возрастает.

Условия внешней среды , окружающей человека в ходе производственной деятельности, могут повысить опасность поражения электрическим током. Например, работа в жарких и сырых помещениях с большими энергозатратами приводит к повышенному потовыделению и к уменьшению сопротивления поверхностного слоя кожи. Стесненный характер помещений увеличивает вероятность случайного прикосновения к токопроводящим частям оборудования. Металлический или другой токопроводящий пол также создает повышенную электроопасность.

Степени воздействия электрического тока

Доля людей, подвергшихся действию электрического тока на производстве, относительно невелика и составляет около 1% от общего числа травмированных на автомобильном транспорте, 3% - на морском транспорте и значительно возрастает на железнодорожном транспорте - до 10-15% ввиду широкого применения электроэнергии в производственных процессах и развитого энергохозяйства. Однако тяжесть последствий воздействия электрического тока такова, что значительное число электротравм приводят к смерти пострадавшего .

По степени воздействия на человека различают три пороговых значения тока : ощутимый, неотпускающий и фибрилляционный.

Ощутимым называют электрический ток, который при прохождении через организм вызывает ощутимое раздражение.

Неотпускающим считают ток, который при прохождении через человека вызывает непреодолимые судорожные сокращения мышц руки, ноги или других частей тела, соприкасающихся с токоведущим проводником.

Фибрилляционным является ток, вызывающий при прохождении через организм фибрилляцию сердца - разновременное и разрозненное сокращение отдельных мышечных волокон сердца и паралич дыхания.

Пороговыми ощутимыми, неотпускающими и фибрилляционными токами называют соответствующие их наименьшие значения.

Влияние воздействия величины тока на организм человека при условии его прохождения по путям "рука-рука" и "рука-ноги" представлено в табл. 1.

Таблица 1 - Характер воздействия тока на человека

Ток, мА Переменный ток 50 Гц Постоянный ток
0,6-1,5 Порог ощущения - слабый зуд, пощипывание кожи Не ощущается
2-4 Сильное дрожание пальцев Не ощущается
5-7 Судороги во всей кисти руки Порог ощущения - зуд, нагрев кожи
10-15 Неотпускающие токи, непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Человек не может самостоятельно освободить руку от контакта с проводом Значительное усиление ощущения нагрева, сокра-щение мышц рук
20-25 Оторвать руки от провода невозможно. Сальные боли, дыхание затруднено Еще большее усиление ощущения нагрева, судороги
50-80 Паралич дыхания через несколько секунд, сбои в сердце. При длительном протекании тока может возникнуть фибрилляция сердца Неотпускающие токи, то же, что при переменном токе 10 -15 мА
Фибрилляция сердца через 2 - 3 с, дыхание прекращается Паралич дыхания при длительном протекании тока

Опасность поражения электрическим током тесно связана с условиями выполнения работ в производственных помещениях.

По степени опасности поражения человека током все помещения делят на три класса : помещения без повышенной опасности, помещения с повышенной опасностью, особо опасные помещения.

Помещения без повышенной опасности характеризуются нормальными температурой и влажностью, отсутствием пыли, наличием нетокопроводящих полов. В таких помещениях можно пользоваться электрифицированным инструментом напряжением до 220 В. К помещениям без повышенной опасности относятся рабочие комнаты административно-управленческого персонала, вычислительные центры, приборные участки, диспетчерские, инструментальные и др.

Помещения с повышенной опасностью имеют либо повышенную относительную влажность воздуха, длительно превышающую 75%, либо температуру, постоянно или периодически превышающую 35°С, либо технологическую токопроводяшую пыль, оседающую на проводах и внутри электрических машин и аппаратов, либо токопроводящие полы - металлические, земляные, железобетонные, кирпичные. Такие условия встречаются в производственных помещениях транспортных предприятий: зонах технического обслуживания и ремонта, кузнечно-рессорных, сварочных, термических, вулканизационных и других отделениях.

Особо опасные помещения характеризуются наличием двух или более условий, относящихся к помещениям с повышенной опасностью, или чрезмерной влажностью, достигающей 100% и постоянно вызывающей образование конденсата внутри помещения, или наличием в помещении агрессивных паров, газов, жидкостей, действующих разрушающе на изоляцию и токоведущие части электрооборудования. На предприятиях транспорта особо опасными считаются места хранения топливо-смазочных материалов, аккумуляторные, малярные отделения, склады для хранения опасных грузов.

Работы на открытом воздухе, выполняемые с применением электрооборудования и приборов, приравнивают к работам в особо опасных помещениях с соблюдением правил и норм техники безопасности для таких помещений.

Меры первой помощи пострадавшим от электрического тока

Первая доврачебная помощь при несчастных случаях от поражения электрическим током состоит из двух этапов:

I - освобождение пострадавших от действия тока;

II - оказание пострадавшему медицинской помощи.

Так как исход поражения зависит от длительности воздействия тока, важно быстрее освободить пострадавшего от дальнейшего действия тока. Очень важно также быстрее начать оказание пострадавшему медицинской помощи, так как период клинической смерти продолжается не более 7-8 мин.

Известны случаи оживления поражения электрическим током людей после 3-4 часов, а в отдельных случаях - даже после 10-20 часов правильно выполняемых мер по реанимации (оживлению) пострадавших. Заключение о смерти пострадавшего может вынести только врач .

При невозможности быстрого отключения установки необходимо отделить пострадавшего от токоведущих частей, которых он касается. При этом оказывающий помощь должен принять меры, чтобы самому не оказаться в контакте с токоведущей частью или телом пострадавшего.

Меры первой помощи зависят от состояния пострадавшего после освобождения его от действия тока .

Если пострадавший в сознании , но до этого был в состоянии обморока, его следует уложить на подстилку и до прибытия врача обеспечить ему покой и наблюдение за пульсом и дыханием.

Если пострадавший находится в бессознательном состоянии , но с сохранившимися дыханием и пульсом, то его следует уложить на подстилку, обеспечить приток свежего воздуха, поднести к носу вату, смоченную в нашатырный спирт, обрызгивать лицо холодной водой.

При плохом дыхании пострадавшего (очень редко, судорожном) необходимо делать искусственное дыхание и массаж сердца.

Если у пострадавшего отсутствуют признаки жизни (дыхание и пульс), надо считать его в состоянии клинической смерти и немедленно приступить к его реанимации,то есть производству искусственного дыхания и массажа сердца.

Искусственное дыхание выполняется с целью насыщения крови кислородом, необходимым для функционирования всех органов и систем. Кроме того, искусственное дыхание вызывает рефлекторное возбуждение дыхательного центра головного мозга, что обеспечивает восстановление самостоятельного (естественного) дыхания пострадавшего.

Наиболее эффективным из ручных способов искусственного дыхания является способ "изо рта в рот" или "изо рта в нос" . Он заключается во вдувании воздуха из своих легких в легкие пострадавшего через его рот или нос.

Массаж сердца - это искусственные ритмические сжатия сердца пострадавшего, имитирующие его самостоятельные сокращения, с целью искусственного поддержания кровообращения в организме пострадавшего и восстановления нормальных естественных сокращений сердца.

При поражении электрическим током производится непрямой массаж сердца - ритмическое надавливание на переднюю стенку грудной клетки пострадавшего.

Причиной длительного отсутствуя пульса у пострадавшего при появлении других признаков реанимации (восстановление самостоятельного дыхания, сужение зрачков и т.д.) может явиться фибрилляция сердца. В таких случаях должна быть произведена дефибрилляция с помощью дефибриллятора силами медицинских работников, а до этого момента должны непрерывно производиться искусственное дыхание и массаж сердца.

Явления при стекании тока в землю. Напряжение прикосновения и шага.

Анализ опасности поражения током в однофазных и трехфазных сетях

с изолированной и глухозаземленной нейтралью

при нормальных и аварийных режимах работы

Оценка опасности поражения электрическим током . Оценка опасности электропоражения заключается в расчете (или измерении) протекающего через человека тока или напряжения прикосновения и сравнения этих величин с предельно допустимыми в зависимости от продолжительности воздействия тока.

Оценка электропоражения проводится в нормальном режиме работы электроустановки и в аварийном (при котором могут возникнуть опасные ситуации, приводящие к электротравмированию людей, взаимодействующих с установкой).

Оценка опасности позволяет определить необходимость применения способов и средств защиты, а возможные (или фактические) и предельно допустимые значения тока через тело человека и напряжения прикосновения служат исходными данными для их проектирования и расчета.

Расчетные значения тока через тело человека I h и напряжения прикосновения U пр в различных электрических сетях (двухпроводных переменного и постоянного тока, трехфазных с различным режимом нейтрали по отношению к земле) могут быть определены из формул, приведенных в табл. 2).

Таблица 2 - Формулы для расчета тока, проходящего через тело человека при однопроводном (однополюсном) и однофазном прикосновении в двухпроводных сетях переменного и постоянного тока и в трехфазных сетях с различным режимом нейтрали по отношению к земле

Примечание. В таблице приняты следующие обозначения: U - напряжение источника питания (трансформатора, генератора, выпрямителя и т.п.); R, С - соответственно активное сопротивление и емкость провода сети относительно земли; R ch - полное сопротивление в цепи человека (R ch = R h + R об + R ос , где R h - сопротивление тела человека, R об - сопротивление обуви, R ос - сопротивление основания, на котором стоит человек); U ф - фазное напряжение трехфазной сети; U л - линейное напряжение трехфазной сети, U л =U ф.

При расчете I h по формулам, приведенным в табл. 2, необходимо знать сопротивление тела человека R ch , которое включает в себя сумму сопротивлений тела человека (R h ), обуви (R об ) и основания (пола или грунта), на котором стоит человек (R ос ).

Сопротивление тела человека R h при напряжении прикосновения U пр 50 В принимается равным 1 кОм и при U пр 42 В - 6 кОм.

Предельно допустимые значения напряжения прикоснове­ния и токов через тело человека для нормального и аварийного режимов работы электроустановок приведены в табл. 3 - 4.

Таблица 3 - Предельно допустимые напряжения прикосновения (U прПД и токи I h ПД, проходящие через человека, при нормальном (неаварийном) режиме работы электроустановки

Примечание. Настоящие нормы (табл. 3) соответствуют продолжительности воздействия тока на человека не более 10 мин. в сутки. Для лиц, выполняющих работу в условиях высокой температуры (более 25°С) и влажности (более 75%), приведенные нормы должны быть уменьшены в 3 раза.

Таблица 4 - Предельно допустимые напряжения прикосновения U прПД и токи I h ПД при аварийном режиме электроустановок напряжением до 1000 В с заземленной или изолированной нейтралью

Примечания: 1. Для переменных токов в табл.4 указаны действительные (эффективные) значения нормируемых величин, а для выпрямленных - амплитудные.

2. Предельно допустимые значения напряжений и токов, протекающих через человека в течение более 1 с, соответствуют отпускающим (переменным) и неболевым (постоянным) токам.

3. U пр и I h установлены для путей тока в теле человека "рука-рука" и "рука-ноги".

Защита от воздействия электрического тока

Для обеспечения безопасности жизнедеятельности при обслуживании электроустановок и надежности работы необходимо точное соблюдение правил технической эксплуатации электроустановок и проведение мероприятий по защите от электротравматизма.

Мероприятия по предупреждению поражения человека электрическим током и повседневная профилактическая работа включают в себя определенные аспекты деятельности (рис. 1).

Одним из аспектов является применение безопасного напряжения - 12 В и 36 В. Для его получения используют понижающие трансформаторы, которые включают в стандартную сеть с напряжением 220 В или 380 В.

В целях уменьшения опасности поражения человека электрическим током применяют малое номинальное напряжение - не более 42 В. Оно используется для питания ручного электрифицированного инструмента, переносных светильников и местного освещения в помещениях с повышенной опасностью и особо опасных. Однако безопасность малое напряжение не гарантирует, поэтому должны применяться и другие меры защиты .


Рис. 1 - Защитные меры обеспечения электробезопасности

По условиям электробезопасности электрические устройства разделены по напряжению : до 1000 В включительно, выше 1000 В, а также устройства с малым напряжением, не превышающим 42 В.

Для защиты от случайного прикосновения человека к токоведупщм частям электроустановок используют ограждения в виде переносных щитов, стенок, экранов, располагаемых в непосредственной близости от опасного оборудования или открытых токоведущих шин. Ограждения создают помехи для неконтролируемого перемещения работающего и исключают возможность его попадания в опасную зону. Другой прием для предупреждения случайных электротравм состоит в размещении опасных или незащищенных электрических проводов на недоступной высоте в помещении.

Часто оградительные устройства применяют совместно с сигнализацией и блокировкой . Конструкция таких устройств предполагает определенный порядок доступа к электрическим аппаратам или оборудованию, нарушение или несоблюдение которого вызывает автоматическое отключение напряжения (блокировку) на защищаемом участке.

Важное значение для защиты от случайных прикосновений играет изоляция токоведущих частей и деталей электрооборудования . Приборы и электроустройства всегда имеют рабочую изоляцию, обеспечивающую нормальную работу и защиту от поражения электрическим током. Для повышения надежности и электробезопасности оборудования используют двойную изоляцию , состоящую из рабочей и дополнительной. В некоторых ответственных электрических устройствах применяют усиленную изоляцию , обеспечивающую такую же степень защиты, как и двойная изоляция.

Сопротивление изоляции зависит от напряжения сети . В сетях с напряжением менее 1 000 В оно должно быть не менее 0,5 МОм.

Для защиты людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, используют заземление или зануление .

Заземлением называется преднамеренное электрическое соединение металлического корпуса электроустановки с землей или ее эквивалентом (водопроводные трубы, железобетонные балки и др.).

Занулечием называется электрическое соединение металлических частей электрического устройства с заземленной точкой источника питания электроэнергией при помощи нулевого защитного проводника.

Защитное заземление и зануление следует выполнять при номинальном напряжении переменного тока 380 В и выше во всех случаях. В условиях работ с повышенной опасностью и особо опасных защитное заземление и зануление выполняют, начиная с малых напряжений, а во взрывоопасных помещениях - независимо от величины напряжения.

Для заземления электроустановок используют , в первую очередь, естественные заземлители :

· проложенные под землей водопроводные трубы;

· железобетонные конструкции зданий, сооружений;

· свинцовые оболочки кабелей, проложенных в земле, и т.п.

В качестве искусственных заземлителей используют заглубленные стальные полосы или прутки, укладываемые на дно котлована по периметру фундаментов, угловую сталь со стенкой толщиной не менее 4 мм и длиной до 3 м, забиваемую вертикально. Для повышения прочности искусственных заземлителей их сваривают между собой электросваркой.

Защитное отключение - это система защиты, обеспечивающая безопасность путем быстрого автоматического отключения электроустановки при возникновении на ее корпусе опасного напряжения. Продолжительность срабатывания защитного отключения составляет 0,1-0,2 с.

Данный способ защиты используют как единственную защиту или в сочетании с защитным заземлением и занулением .

На транспорте часто приходится встречаться с явлениями статического и атмосферного электричества . Защита от опасного воздействия статического электричества занимает важное место, так как многие производственные процессы и работа подвижного состава связаны с явлениями статической электризации. В результате этих явлений при операциях с наливом или сливом топлив, полете летательных аппаратов, движении по трубам воздуха, работе ременных передач или транспортирующих устройств, а также во многих других случаях на корпусных деталях отдельных устройств или целиком на кузове автомобиля, планере летательного аппарата возникает заряд статического электричества. Отмечаются частые случаи воспламенения горючих сред от разрядов статического электричества. Даже при наливе автомобильного бензина в пластмассовую канистру могут возникнуть загорания от искры статического электричества. Иногда воспламеняется горючая среда от искрового разряда с одежды человека.

В связи с реальной опасностью статического электричества разработаны приемы и средства защиты, позволяющие отводить электрические заряды с трубопроводов, емкостей, фильтров и другого оборудования.

Основным средством борьбы со статическим электричеством на всех объектах является применение заземляющих устройств. Они позволяют снизить разность потенциалов между объектом и землей до нуля и тем самым исключить возможность накопления опасного потенциала. Для гарантии надежности заземления сопротивление заземляющего устройства не должно превышать 100 Ом .

Эффективным средством защиты от статического электричества является увлажнение помещений . Установлено, что при относительной влажности 70% накопления электростатических зарядов на поверхностях не происходит.

Рассмотренные направления деятельности по обеспечению электробезопасности должны осуществлятьсяв комплексе с использованием средств коллективной и индивидуальной защиты . Последние защищают людей, работающих с электроустановками, от поражения электрическим током или от воздействия электрической дуги и электромагнитного поля. По назначению электрозащитные средства подразделяются на изолирующие, ограждающие и вспомогательные .

Изолирующие средства делят на основные и дополнительные. Основные средства обладают высокой электрической прочностью и позволяют работать без отключения напряжения на установках до и выше 1000 В. К таким средствам относят :

Диэлектрические перчатки;

Инструмент с изолированными рукоятками;

Изолирующие и электроизмерительные клещи;

Изолирующие штанги;

Токоискатели.

Дополнительные изолирующие средства усиливают защитное действие основных средств, с которыми их применяют совместно. В их число входят :

Изолирующие подставки;

Диэлектрические галоши, перчатки, боты, коврики.

Вспомогательные защитные средства применяют для защиты от случайного падения с высоты, предохранения от световых и тепловых воздействий. Вспомогательными средствами являются : канаты, когти, защитные очки, рукавицы, противогазы, предохранительные пояса, суконные костюмы и др.

К организационным мероприятиям , обеспечивающим безопасность работы на электроустановках, относятся: отбор персонала по обслуживанию электроустановок, оформление работы, допуск к работе, надзор во время работы, оформление перерыва в работе, перевода на другое рабочее место и окончания работы.

К работам по обслуживанию действующих электроустановок допускаются лица не моложе 18 лет, прошедшие предварительный медицин­ский осмотр и не имеющие медицинских противопоказаний. В процессе работы персонал, занятый на электроустановках, должен проходить медицинское освидетельствование не реже одного раза в 2 года.

Лица, допускаемые к обслуживанию, ремонтно-монтажным и наладочным работам на электроустановках, обязаны пройти инструктаж и обучение безопасным методам труда , проверку знаний правил безопасности и инструкций и иметь квалификационную группу по технике безопасности, присвоенную в соответствии с требованиями Правил технической эксплуатации (ПТЭ) и Правил техники безопасности (ПТБ).

Способы и средства обеспечения электробезопасности

Электробезопасность персонала должна обеспечиваться конструкцией электроустановок, организационными и техническими мероприятиями, а также техническими способами, средствами и приспособлениями.

Требования электробезопасности к конструкции и устройству электроустановок устанавливаются стандартами системы безопасности (ССБТ) и техническим условиями на электротехнические изделия.

Организационные мероприятия включают в себя :

· требования к персоналу; назначение лиц, ответственных за организацию и производство работ;

· оформление наряда (распоряжения) на производство работ;

· осуществление допуска к проведению работ;

· организацию надзора за проведением работ и др.

Технические мероприятия в действующих установках со снятым напряжением при работах в электроустановках или вблизи их – это:

· отключение установки (или ее части) от источника;

· механическое запирание приводов отключающих коммутационных аппаратов;

· снятие предохранителей;

· отсоединение концов питающих линий;

· установка знаков безопасности и ограждений;

· наложение заземления и др.

Технические мероприятия при выполнении работ под напряжением - это непременное применение защитных средств (изолирующих, ограждающих и вспомогательных).

Технические способы включают в себя :

· применение малых напряжений для электропитания оборудования;

· электрическое разделение сетей;

· защитное заземление;

· зануление;

· устройство защитного отключения и др.

Применение малых напряжений (в пределах допустимого напряжения прикосновения) для электропитания различного рода приборов, электрифицированного инструмента и установок является наиболее эффективным способом обеспечения электробезопасности . Поэтому в тех случаях, где это возможно, необходимо использовать более низкие напряжения.

Для обеспечения электробезопасности на производстве в переносных электроустановках и ручном электрифицированном инструменте допускаются следующие максимальные значения напряжений для его электропитания :

220 В (50 Гц) при использовании установок в помещениях без повышенной опасности поражения «электрическим током , т.е. помещениях, в которых отсутствуют признаки повышенной опасности (наличие токопроводящих полов, поддерживание в помещении температуры воздуха равной или более 25°С и относительной влажности его равной или более 75%, наличие в воздухе токопроводящей пыли, наличие возможности одновременного прикосновения к корпусам и другим частям оборудования, на которых может оказаться напряжение, с одной стороны, и к каким-либо заземленным конструкциям, с другой) и особой опасности (наличие в помещении двух и более признаков повышенной опасности, наличие в воздухе помещения химически агрессивной среды, поддержание в помещении более высокой относительной влажности, близкой к 100%);

42 В (50 Гц) в помещениях с повышенной опасностью и при работах в наружных установках . В таких условиях работы допускается использовать инструмент (установки) на 220 В, но с обязательным применением изолирующих средств);

42 В (50 Гц) в особо опасных помещениях с обязательным применением защитных средств.

Для электропитания переносных светильников допускаются следующие максимальные значения напряжений :

42 В (50 Гц) в помещениях с повышенной опасностью и особо опасных помещениях;

12 В (50 ГЦ) - при работах в особо неблагоприятных условиях .

В качестве источников малого напряжения применяются гальванические элементы, выпрямители, преобразователи частоты (для уменьшения массы ручного инструмента на частотах 200 и 400 Гц), трансформаторы. Использовать в качестве источников низкого напряжения автотрансформаторы запрещается .

Электрическое разделение сетей

В сетях большой протяженности, изолированных от земли, имеется значительная емкость и небольшое сопротивление исправной изоляции . Поэтому в таких сетях (в том числе и в сетях с напряжением до 1000 В) прикосновение к фазе становится опасным.

С целью уменьшения проводимости таких сетей на землю применяется разделение их на небольшие сети такого же напряжения. Для этого чаще всего отдельные потребители подключаются через разделительные трансформаторы (рис. 1).

Для разделения сетей могут также применяться преобразователи частоты и выпрямительные установки.

Защитное заземление

Защитное заземление - это преднамеренное электрическое соединение с землей металлических частей оборудования (например, корпуса), которые могут оказаться под напряжением в результате нарушения изоляции токоведущих частей оборудования и по другим причинам (рис. 2).

Принцип действия защитного заземления заключается в уменьшении опасности электропоражения за счет снижения напряжения на заземленном корпусе (при замыкании на него питающего напряжения по отношению к земле) до значения U к = I з х R з и выравнивания потенциалов между корпусом установки и землей за счет подъема потенциала земли (основания, на котором стоит человек), возникшего в результате растекания в нем тока.

Таким образом, напряжение, действующее на человека в данном случае (напряжение прикосновения) будет равно разности потенциалов на корпусе установки (потенциал рук () и на основании (потенциал ног ).

U пр = -=(1-/).

Так как потенциал рук = U к = I з R з , напряжение прикосновения при заземленном корпусе станет равно

U пр = I з R з ,

где - коэффициент напряжения прикосновения, равный 1-/и зависящий от разности потенциалов на корпусе установки и основании (на земле).

В связи с тем, что потенциал на поверхности грунта уменьшается в зависимости от расстояния до заземлителя (места стекания тока в землю) по гиперболическому закону (рис. 3), то по мере удаления от места заземления разность потенциалов между корпусом и основанием будет увеличиваться и в зоне электротехнической земли (расстояние равно около 15-20 м), где потенциал на основании (поверхности грунта) приблизительно равен нулю, она станет равной напряжению на корпусе. В этом случае коэффициент напряжения прикосновения = 1, а U пр = U к = I з R з

Зона, в пределах которой потенциалы на поверхности грунта не равны нулю, называется зоной растекания тока (рис. 3).

Рис. 3 - Гиперболический закон распределения потенциала на основании земли в зависимости от расстояния до заземления

Для того, чтобы обеспечить достаточно безопасное значение напряжения прикосновения (= 36 В для 50 Гц при t > 1 с) необходимо, как видно из последнего выражения, уменьшить значение сопротивления заземляющего устройства R з (или R з.у. ).

Значение сопротивления заземления не должно превышать в электроустановках до 1000 В 4 Ом во всех случаях и 10 Ом при суммарной мощности источников напряжения сети до 100 кВхА.

Чтобы получить заземление, обеспечивающее безопасность , применяют сложные групповые заземлители.

Если расстояние между отдельными электродами (одиночными заземлителями) меньше 20 м, то их поля растека­ния накладываются, то есть они экранируют друг друга (рис. 4).

Рис. 4 - Экранирование единичных заземлителей группового заземляющего устройства

Общее сопротивление группового заземлителя определяется как сопротивление всех параллельно соединенных одиночных заземлителей с учетом экранирования

где - сопротивление одиночного заземлителя;

n - количество одиночных заземлителей;

Коэффициент экранирования, учитывающий взаимное экранирование (определяется по справочным таблицам).

Заземляющие устройства (заземления) бывают двух типов :

· выносные;

· контурные (распределительные) или выполненные в ряд.

Выносные заземления устраиваются при отсутствии возможности разместить заземлитель в пределах защищаемой площадки, высоком сопротивлении грунта на этой территории и на­личии на сравнительно небольшом удалении мест с повышенной проводимостью, а также при рассредоточенном размещении заземляемого оборудования.

При выносном заземлителе коэффициент напряжения прикосновения () близок или равен единице, то есть заземление защищает в данном случае только за счет малого сопротивления заземления, поэтому этот тип заземлителя следует применять при малых токах замыкания на землю (I з ).

К достоинству выносных заземлений можно отнести возможность выбора места размещения электродов с наименьшим сопротивлением грунта.

Контурное (распределенное) заземляющее устройство применяют в случаях, когда необходимо выровнять потенциал на защищаемой площадке с возможными потенциалами на заземленных частях оборудования и тем самым уменьшить напряжение прикосновения (а также напряжение шага) до допустимых значений.

Для заземления электроустановок в первую очередь должны использоваться естественные заземлители :

· водопроводные и другие трубопроводы, проложенные в земле (за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов и смесей);

· металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;

· свинцовые оболочки кабелей, проложенные в земле;

· нулевые провода воздушных линий напряжением до 1000 В;

· рельсовые пути магистральных неэлектрифицированных железных дорог и др.

Защитное заземление применяется в сетях, изолированных от земли (трехфазные, трехпроводные сети с изолированной от земли нейтралью, двухпроводные сети переменного и постоянного тока с изолированными от земли проводами и полюсами).

Заземлению подлежат корпуса электрооборудования :

· во всех случаях при величине номинального напряжения переменного тока 380 В, постоянного - 440 В и выше;

· при номинальных напряжениях, равных и выше переменного тока 42 В, постоянного - 110 В в помещениях с повышенной и особой опасностью поражения электрическим током, а также в наружных условиях;

· во взрывоопасных помещениях при любых значениях постоянного и переменного напряжения.

Конструктивное исполнение и порядок расчета защитного заземления

Для искусственных заземлителей в качестве вертикальных электродов обычно используются стальные стержни диаметром 10-16 мм и длиной до 10 м, угловую сталь от 40х40 до 60х60 мм и, как исключение, стальные трубы диаметром 50-60 мм с толщиной стенок не менее 3,5 мм и длиной 2,5-3,0 м. Для связи вертикальных электродов и в качестве самостоятельного горизонтального электрода применяют полосовую сталь шириной 20-40 мм и толщиной 4 мм, а также сталь круглого сечения диаметром 10-12 мм.

Для установки вертикальных заземлителей предварительно роют траншеи глубиной 0,7-0,8 м, после чего их заглубляют специальными механизмами (копры, гидропрессы, вибраторы и др.).

Расстояние между соседними вертикальными электродами (если позволяют размеры отведенной под заземлитель площади) берут не менее 2,5 м. Для заземлителей, расположенных в ряд, отношение этого расстояния к длине электрода предпочтительно выбирать равным 2-3, а при расположении электродов по контуру - равным 3.

Расчет защитного заземления в установках до 1000 В выполняют по допустимому сопротивлению заземляющего устройства растеканию тока. При этом определяют количество, размеры и схему размещения в земле электродов заземлителя и заземляющих проводников, при которых сопротивление заземляющего устройства растеканию тока для напряжения прикосновения при замыкании напряжения на заземленные части установок не превышают допустимых.

Сопротивление заземлителя определяют по допустимому напряжению на заземляющем устройстве и току замыкания на землю (рис. 2), который в сетях до 1000 В не превышает 10 А.

Если на территории проектируемого заземляющего устройства имеются естественные заземлители , которые можно использовать, то общее сопротивление заземляющего устройства (R з.у. ) будет складываться из сопротивления естественных (R ест. ) и искусственных (R иск ) заземлителей

Так как требуемое значение R з.доп. может быть обеспечено только естественными заземлителями , то сначала производится расчет сопротивления естественных заземлителей и полученный результат сравнивается с требуемым значением сопротивления допустимого (R з.доп. ).

Если естественные заземлители отсутствуют или рассчитанное (измеренное) сопротивление их растеканию тока велико, то необходимо устраивать искусственные заземлители и подключать их параллельно к естественным .

Расчет искусственного заземлителя осуществляется в следующей последовательности .

Вначале рассчитывают сопротивление одиночного вертикального электрода с помощью соответствующих расчетных формул, которые зависят от вида материала, габаритов и взаимного расположения электродов.

Так, для трубчатых электродов длиной I и диаметром d, середина которых находится от поверхности грунта на глубине t (рис. 5), сопротивление растеканию тока такого электрода R эл.труб определяется по формуле

где Р рас. =, - удельное сопротивление земли, К - коэффициент сезонности.

Рис. 5 - Схема к расчету сопротивления растеканию тока вертикального электрода и горизонтального проводника

Далее определяют ориентировочное количество вертикальных электродов . Для этого используют известное соотношение для расчета общего сопротивления при наличии нескольких электродов. Для этого используют известное соотношение для расчета общего сопротивления при наличии нескольких электродов .

Подставляя вместо необходимое сопротивление заземляющего устройства R з.у. , находят ориентировочное количество одиночных электродов п

где - коэффициент использования вертикальных электродов (коэффициент экранирования).

Затем рассчитывают сопротивление растеканию тока горизонтального проводника , соединяющего одиночные электроды.

Если в качестве соединяющего проводника используется стальная полоса шириной b и длиной L (рис. 5), то сопротивление его растеканию тока рассчитывается по формуле

Результирующее сопротивление искусственного грунтового заземлителя будет равно

Отличие результирующего сопротивления от допустимого (нормируемого) по экономическим соображениям не должно быть значительным . Изменяя количество электродов, их размеры и повторяя расчет методом последовательного приближения, добиваются выполнения необходимого требования к сопротивлению проектируемого заземляющего устройства.

Зануление

Опасность электропоражения при прикосновении к корпусу или металлическим частям оборудования, оказавшихся под напряжением вследствие замыкания на них питающего напряжения и по другим причинам, может быть устранено быстрым отключением такой поврежденной установки от питающей сети.

Эту роль выполняет зануление , электрическая схема которого показана на рис. 6.

Рис. 6 - Электрическая схема зануления

Зануление - это преднамерен-ное электрическое соединение с нуле-вым защитным проводником сети металлических нетоковедущих частей оборудования, которые могут оказаться под напряжением.

Нулевым защитным проводником называется проводник, соединяющий зануляемые части с заземленной нейтральной точкой источника в трехфазных сетях или с заземленным выводом любого источника.

Принцип действия зануления состоит в превращении замыкания напряжения на зануленные части оборудования в короткое замыкание источника тока (например, однофазное замыкание в трехфазных сетях) с целью образования большого тока, способного обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети.

В качестве срабатывающей защиты могут использоваться плавкие предохранители или автоматические выключатели (магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловыми реле и др.).

Так как плавкие предохранители и автоматические выключатели с тепловой защитой срабатывают в течении нескольких секунд, для снижения напряжения по отношению к земле на зануленных частях в течение этого времени обязательно применение повторного заземления (r повт. ) нулевого защитного проводника (рис. 6). При этом напряжение прикосновения будет равно

где - ток, протекающий через повторное заземление r повт. .

Для надежной работы зануления необходимо обеспечить следующие требования :

1) Ток короткого замыкания I к.з. должен в несколько раз превышать номинальный ток I н. срабатывания защиты, т.е.

I к.з. I н. ,

где k - коэффициент кратности. Для плавких предохранителей он выбирается равным 3 (во взрывоопасных помещениях 4). При использовании автоматических выключателей k > 1,25 (для автоматов с номинальным током до 100 А k > 1,4).

2) Полная проводимость защитного проводника должна быть не менее 50% проводимости фазных проводов, т.к.

Z н. 2 Z ф. .

3) Чтобы обеспечить непрерывность цепи зануления, запрещается установка в нулевой провод предохранителей и выключателей.

4) Для уменьшения опасности поражения персонала током, возникающей при обрыве защитного проводника, обязательно применение повторного его заземления.

Сопротивление току растекания повторных заземлений не должно превышать 5, 10 или 20 Ом при напряжениях в сети соответственно 660/380, 380/220 и 220/127 В.

5) Зануление однофазных потребителей должно осуществляться специальным проводником (или жилой кабеля), который не может одновременно служить проводником для рабочего тока.

Зануление применяется только в сетях с заземленной нейтралью (или заземленным полюсом, проводом), т.к. в противном случаепри аварийном режиме работы сети , когда одна из фаз сети замыкается на землю через незначительное сопротивление (r зм. ), человек, касающийся корпуса запуленной установки окажется под фазным напряжением (в трехфазных сетях), а при пробое питающего напряжения (одной фазы) на корпус до срабатывания защиты - под линейным (рис. 7).

Рис. 7 - Схема зануления в трехфазной сети с изолированной централью

При заземленной же нейтрали в аварийном режиме работы сети, напряжение, действующее на человека, будет равно

что значительно ниже U ф .

Применение защитного заземления в сетях с заземленной нейтралью (заземленным полюсом или проводом) малоэффективно , т.к. при замыкании питающего напряжения на нем по отношению к земле напряжение достигнет значения больше или равного половине фазного (в трехфазных сетях при R з =)

В этом случае ток замыкания на землю через защитное заземление R з будет недостаточным для срабатывания защиты (рис. 7).

Расчет зануления

Цель расчета - определить условия надежной работы зануления. Для этого оно рассчитывается на отключающую способность и на безопасность прикосновения к корпусу при замыкании фазы на землю (в этом случае производится расчет заземления нейтрали) и замыкании на корпус (в этом случае производится расчет повторного заземления нулевого защитного проводника).

Расчет заземлений осуществляется по методике, аналогичной расчету защитного заземления .

Расчет на отключающую способность заключается в проверке правильности выбора проводимости нулевого защитного проводника и всей петли "фаза-нуль", то есть соблюдения условия надежности срабатывания защиты

Помещения без повышенной опасности - отсутствуют условия повышенной опасности

Помещения с повышенной опасностью - характеризующиеся наличием одного из следующих условий, создающих повышенную опасность:

а) сырость(более 75%);

б) токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т.п.);

в) высокая температура;

г) токопроводящая пыль;

д) возможность одновременного прикосновения человека к металлоконструкциям зданий, имеющим соединение с землей, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования (открытым проводящим частям), с другой;

Особо опасные помещения

а) особая сырость;

б) химически активная или органическая среда;

в) одновременно 2 или более условий повышенной опасности.

Территория открытых электроустановок в отношении опасности поражения людей электрическим током приравнивается к особо опасным помещениям.

Сырые помещения - относительная влажность выше 75%

Особо сырые помещения -относительная влажность близка к 100%

Жаркие помещения - температура постоянно или периодически (более суток) превышает 35°C

Пыльные помещения - по условиям производства выделяется технологическая пыль.

Помещение с химически активной или органической средой - постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образуются отложения, плесень.

Переносные и передвижные электроприемники (ПОТЭУ п. 44.1-44.10)

Классы переносного электроинструмента

0 - электроприемники, имеющие рабочую изоляцию, не имеющие элементов для заземления и не отнесенные к классу II или III

I - электроприемники, имеющие рабочую изоляцию и элемент для заземления. Провод для присоединения к источнику питания должен иметь заземляющую жилу и вилку с заземляющим контактом. Обозначение у заземляющего контакта - PE или бело-зеленые полосы или слово «земля» в кружке

II - имеющие двойную или усиленную изоляцию и не имеющие элементов для заземления. Обозначение - двойной квадрат

III - электроприемники для работы при безопасном сверхнизком напряжении, не имеющие ни внешних, ни внутренних электрических цепей, работающих при другом напряжении. Обозначение - ромб с III

Сверхнизкое (малое) напряжение - не превышающее 50 В переменного или 120 В постоянного напряжения.

К работе с переносным электроинструментом и ручными электрическими машинами классов 0 и I в помещениях с повышенной опасностью должны допускаться работники, имеющие группу II.

Подключение вспомогательного оборудования (трансформаторов, преобразователей частоты, устройств защитного отключения) к электрической сети и отсоединение его от сети должен выполнять электротехнический персонал, имеющий группу III, эксплуатирующий эту электрическую сеть.

Класс переносного электроинструмента и ручных электрических машин должен соответствовать категории помещения и условиям производства работ с применением в отдельных случаях электрозащитных средств согласно требованиям.

В помещениях с повышенной опасностью и особо опасных переносные электрические светильники должны иметь напряжение не выше 50 В.

При работах в особо неблагоприятных условиях (колодцах выключателей, отсеках КРУ, барабанах котлов, металлических резервуарах) переносные светильники должны иметь напряжение не выше 12 В.

Перед началом работ с ручными электрическими машинами, переносными электроинструментами и светильниками следует:

Определить по паспорту класс машины или инструмента;

Проверить комплектность и надежность крепления деталей;

Убедиться внешним осмотром в исправности кабеля (шнура), его защитной трубки и штепсельной вилки, целости изоляционных деталей корпуса, рукоятки -и крышек щеткодержателей, защитных кожухов;

Проверить четкость работы выключателя;

Выполнить (при необходимости) тестирование устройства защитного отключения (УЗО);

Проверить работу электроинструмента или машины на холостом ходу;

Проверить у машины I класса исправность цепи заземления (корпус машины - заземляющий контакт штепсельной вилки).

Не допускается использовать в работе ручные электрические машины, переносные электроинструменты и светильники с относящимся к ним вспомогательным оборудованием, имеющие дефекты и не прошедшие периодической проверки (испытания).

При пользовании электроинструментом, ручными электрическими машинами, переносными светильниками их провода и кабели должны по возможности подвешиваться.

Непосредственное соприкосновение проводов и кабелей с горячими, влажными и масляными поверхностями или предметами не допускается.

Кабель электроинструмента должен быть защищен от случайного механического повреждения и соприкосновения с горячими, сырыми и масляными поверхностями.

Не допускается натягивать, перекручивать и перегибать кабель, ставить на него груз, а также допускать пересечение его с тросами, кабелями, шлангами газосварки.

При обнаружении каких-либо неисправностей работа с ручными электрическими машинами, переносными электроинструментами и светильниками должна быть немедленно прекращена.

Выдаваемые и используемые в работе ручные электрические машины, переносные электроинструменты и светильники, вспомогательное оборудование должны быть учтены в организации (обособленном подразделении), проходить проверку и испытания в сроки и объемах, установленных техническими регламентами, национальными и межгосударственными стандартами, техническими условиями на изделия, действующими объемом и нормами испытания электрооборудования и аппаратов электроустановок.

Для поддержания исправного состояния, проведения периодических испытаний и проверок ручных электрических машин, переносных электроинструментов и светильников, вспомогательного оборудования распоряжением руководителя организации должен быть назначен ответственный работник, имеющий группу III.

При исчезновении напряжения или перерыве в работе электроинструмент и ручные электрические машины должны отсоединяться от электрической сети.

Работникам, пользующимся электроинструментом и ручными электрическими машинами, запрещается:

Передавать ручные электрические машины и электроинструмент, хотя бы на непродолжительное время, другим работникам;

Разбирать ручные электрические машины и электроинструмент, производить какой-либо ремонт;

Держаться за провод электрической машины, электроинструмента, касаться вращающихся частей или удалять стружку, опилки до полной остановки инструмента или машины;

Устанавливать рабочую часть в патрон инструмента, машины и изымать ее из патрона, а также регулировать инструмент без отключения его от сети;

работать с приставных лестниц;

Вносить внутрь барабанов котлов, металлических резервуаров переносные трансформаторы и преобразователи частоты.

При использовании разделительного трансформатора необходимо руководствоваться следующими требованиями:

От разделительного трансформатора разрешается питание только одного электроприемника;

Заземление вторичной обмотки разделительного трансформатора не допускается;

Корпус трансформатора в зависимости от режима нейтрали питающей электрической сети должен быть заземлен или занулен. В этом случае заземление корпуса электроприемника, присоединенного к разделительному трансформатору, не требуется.

Периодичность проверки переносных и передвижных электроприемников, вспомогательного оборудование к ним - не реже 1 раза в 6 мес. Результаты проверки отражают в журнале регистрации, инвентарного учета, периодической проверки и ремонта переносных передвижных электроприемников.

В периодическую проверку входит:

1. внешний осмотр

2. проверка работы на холостом ходу в течение не менее 5 минут

3. измерение сопротивления изоляции

4. проверка исправности цепи заземления

ЭЛЕКТРОБЕЗОПАСНОСТЬ

в вопросах и ответах

Вопрос: Область и порядок применения правил ПТЭ и ПТБ.

Ответ: Настоящие правила являются обязательными для всех потребителей электроэнергии независимо от их ведомственной принадлежности. Настоящие правила распространяются на действующие электроустановки потребителей.

Вопрос: Что означает термин «электробезопасность»?

Ответ: Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Вопрос: Что означает термин электроустановка?

Ответ: Электроустановками называется совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии. Электроустановки по условиям электробезопасности подразделяются на электроустановки напряжением до 1000 В и электроустановки напряжением выше 1000 В.

Электроустановка здания – совокупность взаимосвязанного электрооборудования в пределах здания.

Вопрос: Какие электроустановки считаются действующими?

Классификация электроустановок по напряжению?

Ответ: Действующими электроустановками считаются такие установки, которые содержат в себе источники электроэнергии (химические, гальванические и полупроводниковые элементы), которые находятся под напряжением полностью или частично или на которые в любой момент может быть подано напряжение включением коммутационной аппаратуры.

Вопрос: Дайте характеристику электропомещениям.

Ответ: Электропомещениями называются помещения или отгороженные, например, сетками, части помещения, доступные только для квалифицированного обслуживающего персонала, в которых расположены электроустановки.

Сухими помещениями называются помещения, в которых относительная влажность воздуха не превышает 60%.

Влажные помещения - относительная влажность воздуха в них более 60%, но не превышает 75%.

Сырые помещения - относительная влажность воздуха в них длительно превышает 75%.

Особо сырые - относительная влажность воздуха близка к 100%.

Жаркие – температура в них превышает постоянно или периодически (более 1 суток) +35°С.

В пыльных помещениях по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин и аппаратов.

В помещениях с химически активной или органической средой постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образуются отложения или плесень, разрушающие изоляцию электрооборудования.

Вопрос: На какие категории подразделяются помещения в отношении опасности поражения людей электрическим током?

Ответ: В отношении опасности поражения людей электрическим током различают:

Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность.

Помещения с повышенной опасностью, которые характеризуются наличием в них одного из следующих условий, создающих повышенную опасность:

Сырость,

Токопроводящая пыль,

Токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т.п.),

Высокая температура,

Возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям, технологическим аппаратам, с одной стороны, и к металлическим корпусам электрооборудования - с другой.

Особо опасные помещения, которые характеризуются наличием одного из следующих условий, создающих особую опасность: особой сырости, химически активной или органической среды, одновременно двух или более условий повышенной опасности.

Территории размещения наружных электроустановок в отношении опасности поражения людей электрическим током приравниваются к особо опасным помещениям.

Вопрос: Зануление, назначение и принцип действия.

Ответ: Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам.

Задача зануления – устранение опасности поражения током в случае прикосновения к корпусу и другим не токоведущим металлическим частям электроустановки, оказавшимся под напряжением вследствие замыкания на корпус. Решается эта задача иным способом, нежели при защитном заземлении: быстрым отключением поврежденной электроустановки от сети. Однако поскольку корпус оказывается заземленным через нулевой защитный провод, то в аварийный период, т.е. с момента возникновения замыкания на корпус и до отключения установки от сети, проявляется защитное свойство этого заземления подобно тому, как это имеет место при защитном заземлении.

Принцип действия зануление – превращение замыкания на корпус в однофазное короткое замыкание (т.е. замыкание между фазным и нулевым проводами) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети. Такой защитой являются: плавкие предохранители или максимальные автоматы, устанавливаемые перед потребителями электроэнергии для защиты их от токов короткого замыкания; магнитные пускатели с встроенной тепловой защитой, предназначенные для дистанционного пуска и остановки электродвигателей контакторы в сочетании с тепловым реле, осуществляющие защиту потребителя от перегрузки; и, наконец, автоматы с комбинированными расцепителями, осуществляющие защиту потребителей одновременно от токов короткого замыкания и от перегрузки.

Область применения зануления - трехфазные четырехпроводные сети до 1000 В с глухозаземленной нейтралью. Обычно это сети 380/220 В и 220/127 В, а также сети 660/380 В.

Вопрос: Какой проводник называется защитным?

Ответ: Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током.

В электроустановках до 1000 В защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.

Вопрос: Какой проводник называется нулевым рабочим?

Ответ: Нулевым рабочим проводником (N) в электроустановках до 1000 В называется проводник, используемый для питания электроприемников, соединенный с гаухозаземленной нейтралью генератора или трансфор­матора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземлениой точкой источника в трехпроводных сетях постоянного тока.

Вопрос: Для какой дели должны быть сооружены заземляющие устройства и заземлены металлические части электрооборудования?

Ответ: Для обеспечения безопасности людей в ЭУ с изолированной нетралью в соответствии с требованиями Правил устройства электроуста­новок должны быть сооружены заземляющие устройства, к которым надежно подключаются корпуса электрооборудования, которые вследствие нарушения изоляции могут оказаться под напряжением.

Вопрос: Какие части электроустановок и электрооборудования подлежат заземлению или занулению?

Ответ: К частям, подлежащим заземлению или занулению относятся:

Корпуса электрических машин, трансформаторов, аппаратов, светильников и т.п.;

    приводы электрических аппаратов;

    вторичные обмотки измерительных трансформаторов;

Каркасы распределительных щитов, щитов управления, щитков и шкафов;

Металлические конструкции распределительных устройств, металличе­ские кабельные конструкции, металлические корпуса кабельных муфт, металлические оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, стальные трубы электропроводки и другие металлические конструкции, связанные с установкой электрооборудования;

- металлические корпуса передвижных: и переносных электроприемников.

Вопрос: Защитное заземление, назначение и область применения?

Ответ: Назначение и область применения . Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние, вынос потенциала) и т.д. Замыкание на корпус или точнее электрическое замыкание на корпус – это случайное электрическое соединение токоведущей части с металлическими нетоковедущими частями электроустановки. Замыкание на корпус может стать результатом, например: случайного касания токоведущей части корпуса машины, поврежденная изоляция, падение провода, находящегося под напряжением, на указанные металлические нетоковедущие части и т.п.

Задача защитного заземления - устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением.

Область применения защитного заземления – трехфазные сети до 1000 В с изолированной нетралью и выше 1000 В любым режимом нейтрали. Защитное заземление следует отличать от так называемого рабочего заземления – преднамеренного электрического соединения с землей отдельных точек электрической сети (например, нейтральной точки, фазного провода и т.п.), необходимого для надлежащей работы установки в нормальных или аварийных условиях. Рабочее заземление осуществляется непосредственно или через специальные аппараты – пробивные предохранители, разрядники, резисторы и т.п.

Вопрос: Какие правила установки заземлении?

Ответ: Заземления устанавливаются на токоведущей части непосредст­венно после проверки отсутствия напряжения. Переносное заземление сна­чала присоединяется к заземляющему устройству, а затем, после проверки отсутствия напряжения, устанавливается на токоведущие части. Переносное заземление снимается в обратной последовательности; сначала с токоведущих частей, а потом отсоединяется от заземляющего устройства.

Установка и снятие переносных заземлений проводится в диэлектрических перчатках с применением в электроустановках выше 1000 В изолирующей штанги. Закрепляются зажимы переносных заземлений этой же штангой или непосредственно руками в диэлектрических перчатках.

Запрещается использовать для заземления проводники, не предназна­ченные для этой цели, а также производить присоединение заземлений пу­тем их скрутки.

Допускается, в тех случаях, когда сечение жил кабеля не позволяет применить переносные заземления, у электродвигателей до 1000В необхо­димо заземлять кабельную линию медным проводником сечением не менее сечения жилы кабеля либо соединять между собой жилы кабеля и изолировать их. Такое заземление или соединение жил кабеля учитывается в оперативной документации наравне с переносным заземлением.

Вопрос: Как осуществляется присоединение заземляющих и нулевых защитных проводников?

Ответ: Присоединение заземляющих и нулевых защитных проводников к заземлителям, заземляющему контуру к заземляющим конструкциям выполняется сваркой, а к корпусам аппаратов, машин и опор ВЛ - сваркой или надежным болтовым соединением.

Каждая часть электроустановки, подлежащая заземлению или занулению, присоединяется к сети заземления или зануления с помощью отдельного проводника. Последовательное включение в заземляющий или нулевой защитный проводник заземляемых или зануляемых частей электроустановки запрещается.

Заземляющие и нулевые защитные проводники должны иметь покры­тие, предохраняющее от коррозии.

Вопрос: Как осуществляется заземление или зануление переносных электроприёмников?

Ответ: Заземление или зануление переносных электроприемников осу­ществляется специальной жилой (третья - для электроприемников однофазного и постоянного тока, четвертая - для электроприемников трёхфазного тока), расположенной в одной оболочке с фазными жилами переносного провода и присоединяемой к "корпусу" электроприемника и к специальному контакту вилки втычного соединения. Сечение этой жилы должно быть равным сечению фазных проводников. Использование для этой цели нулевого рабочего проводника, в том числе расположенного в общей оболочке, не допускается. Жилы проводов и кабелей, используемые для заземления или зануления переносных электроприёмников, должны быть медными, гибкими, сечением не менее 1,5 мм кв. для переносных электроприемников в промышленных установках и не менее 0,75 мм кв. для бытовых переносных электроприёмников.

Вопрос: Что относится к электрозащитным средствам?

Ответ: К электрозащитным средствам относятся:

    изолирующие штанги всех видов (оперативные, измерительные, для наложения заземления);

    изолирующие и электроизмерительные клещи;

    указатели напряжения всех видов и классов напряжений (с газоразрядной лампой, бесконтактные, импульсного типа, с лампой накаливания и др.);

    бесконтактные сигнализаторы наличия напряжения;

    изолированный инструмент;

    диэлектрические перчатки, боты и галоши, ковры, изолирующие под­ ставки;

    защитные ограждения (щиты, ширмы, изолирующие накладки, колпаки);

    переносные заземления;

    устройства и приспособления для обеспечения безопасности труда при приведении испытаний в измерении в электроустановках (указатели напряжения для проверки совпадения фаз, устройства для прокола кабеля, устройство для определения разности напряжения в транзите, указатели повреждения кабелей и т.п.),

    плакаты и знаки безопасности;

    прочие средства защиты, изолирующие устройства и приспособления для ремонтных работ под напряжением 110 кВ и выше, а также в электросетях до 1000 В (полимерные и гибкие изоляторы; изолирующие лестницы, канаты, вставки телескопических вышек и подъемников; штанги для переноса и выравнивания потенциала; гибкие изолирующие покрытия и накладки и т. п.).

Вопрос: Что называется основным электрозащитным средством?

Ответ: Основным электрозащитным средством называется изолирующее электрозащитное средство, изоляция которого длительно выдерживает рабочее напряжение электроустановки и которое позволяет работать на токоведущих частях, находящихся под напряжением.

Основные электрозащитные средства изготавливаются из изоляционных материалов (фарфор, эбонит, гетинакс, древесно-слоистые пластики и т.п.).

Материалы, поглощающие влагу (бакелит, дерево и др.) должны быть покрыты влагостойким лаком и иметь гладкую поверхность без трещин, отслоений и царапин.

Вопрос: Что относятся к основным электрозащитным средствам в электроустановках выше 1000 В?

Ответ: К основным электрозащитным средствам в электроустановках напряжением выше 1000 В относятся:

Изолирующие штанги всех видов;

Указатели напряжения;

Устройства и приспособления для обеспечения безопасности труда при проведении испытаний и измерений в электроустановках (указатели напряжения для проверки совпадения фаз, устройства для прокола кабеля, указатели повреждения кабелей и т.п.);

Прочие средства защиты, изолирующие устройства и приспособления для ремонтных работ под напряжением в электроустановках напряжением 110 кВ и выше (полимерные изоляторы, изолирующие лестницы и т.п.)

Вопрос: Что относится к основным электрозащитным средствам в элек­троустановках до 1000 В?

Ответ: К основным электрозащитным средствам и электроустановках напряжением до 1000 В относятся:

Изолирующие штанги;

Изолирующие и электроизмерительные клещи;

Указатели напряжения;

Диэлектрические перчатки;

Изолированный инструмент.

Вопрос: Что называется дополнительным электрозащитным средством?

Ответ: Дополнительным электрозащитным средством называется изо­лирующее электрозащитное средство, которое само по себе не может при данном напряжении обеспечить защиту от поражения электрическим током, но дополняет основное средство защиты, а также служит для защиты от напряжения прикосновения и напряжения шага.

Вопрос: Что относится к дополнительным электрозащитным средствам в электроустановках выше 1000 В?

Ответ: К дополнительным электрозащитным средствам в электроуста­новках напряжением выше 1000 В относятся:

Диэлектрические перчатки;

Диэлектрические боты;

Диэлектрические ковры;

Изолирующие колпаки.

Вопрос: Что относится к дополнительным электрозащитным средствам в электроустановках до 1000 В?

Ответ: К дополнительным электрозащитным средствам в электроустановках до 1000 В относятся:

Диэлектрические галоши;

Диэлектрические ковры;

Изолирующие подставки и накладки;

Изолирующие колпаки.

Вопрос: Как подразделяются плакаты и знаки безопасности?

Ответ: Плакаты и знаки безопасности применяются для:

Запрещения действия с коммутационными аппаратами (запрещающие);

- предупреждающие об опасности приближения к токоведущим частям,находящимся под напряжением (предупреждающие);

Разрешение определенных действий только при выполненияконкретных требований безопасности труда (предупреждающие),

Указания местонахождения различных объектов и устройств (указательные).

Запрещающие: "НЕ ВКЛЮЧАТЬ! РАБОТАЮТ ЛЮДИ". "НЕ ВКЛЮЧАТЬ! РАБОТА НА ЛИНИИ","НЕ ОТКРЫВАТЬ! РАБОТАЮТ ЛЮДИ", "ОПАСНОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ БЕЗ СРЕДСТВ ЗАЩИТЫ ПРОХОДЗАПРЕЩЕН", "РАБОТА ПОД НАПРЯЖЕНИЕМ ПОВТОРНО НЕ ВКЛЮЧАТЬ".

Предупреждающие: знак "ОСТОРОЖНО! ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ"и плакаты "СТОЙ! НАПРЯЖЕНИЕ", "ИСПЫТАНИЕ ОПАСНО ДЛЯ ЖИЗНИ", НЕВЛЕЗАЙ! УБЪЕТ".

Предписывающие: "РАБОТАТЬ ЗДЕСЬ", "ВЛЕЗАТЬ ЗДЕСЬ".

Указательный: "ЗАЗЕМЛЕНО".

Вопрос: Какой порядок содержания и хранения электрозащитных средств в электроустановках напряжением до и выше 1000 В?

Ответ: Электрозащитные средства, находящиеся в эксплуатации и в за­пасе, должны храниться в перевозиться в условиях, обеспечивающих их исправность и пригодность к: применениюбез предварительного восстано­вительного ремонта, поэтому защитные средства должны быть защищены от увлажнения, загрязнения и механических повреждений.

Электрозащитные средства из бакелита, пластических материалов, эбонита, дерева должны храниться в закрытых помещениях.

Электрозащитные средства из резины, находящиеся в эксплуатации, должны храниться в закрытых помещениях, в специальных шкафах, на стеллажах, в ящиках и т.п., отдельно от инструмента. Они должны быть защищены от воздействия масел, бензина, прямого воздействия солнечных лучей.

Запасные электрозащитные средства из резины должны храниться в отапливаемом темном, сухом помещении при температуре О...5°С.

Изолирующие штанги хранятся и вертикальном положении подвешенными или установленными в стояках безсоприкосновения со стеной. Допускается хранение штангв горизонтальном положении. При этом должка быть исключена возможность их прогиба.

Изолирующие клещи хранятся на специальных полках так, чтобы они не касались стен.

Указатели напряжения и электроизмерительные клещи должныхра­ниться в футлярах.

Изолирующие устройства и приспособления для работ под напряжением: изолирующие лестницы, площадки и другие аналогичные устройства хранятсяв определенных местах, где защищаются от влаги и пыли.

Вопрос: Какие общие правила пользования электрозащитными средст­вами, применяемыми в электроустановках напряжением до и выше 1000 В?

Ответ: Использование электрозащитных средств производится по их прямому назначению в электроустановках напряжением не выше того, на которое они рассчитаны.

Все основные электрозащитные средств рассчитаны на применение их в закрытых или открытых распределительных устройствах и навоздушных линиях только в сухую погоду. Потому использование этих средств на открытом воздухе и в сырую погоду (во время дождя, снега, изморози, тумана) запрещается. При этом используются средства специальной конструкции, которые предназначены для работы в такихусловиях.

Перед каждым употреблением, электрозащитного средства персонал обязан:

Проверить его исправность и отсутствие внешних повреждений, очистить и обтереть от пыли, резиновые перчатки проверить на отсутствие проколов;

Проверить по штампу, для какого напряжения допустимо применение данного средства и не истек ли срок периодического его испытания.

Пользоваться защитными средствами, срок испытания которых истек, запрещается, так как такие средства считаются непригодными.

Вопрос: В чем заключается поражающее действие электрического тока на организм человека?

Ответ: Биологическое действие электрического тока на организм чело­века, оказывающегося под напряжением, проявляется в судорожном сокра­щении различных групп мышц, в том числе мышц, осуществляющих дыхательное движение грудной клетки и регулирующих работу сердца. Наи­большую опасность представляет нарушение сердечной деятельности вследствие возникновения фибрилляции сердца, которое характеризуется разновременным несогласованным сокращением отдельных волокон сер­дечной мышцы, приводящим к нарушению ритмичного сокращения сердца или даже к его параличу.

Вид поражения человека электрическим током, при котором нарушается дыхание и не пульсирует сердце, носит название электрического удара. Степень физиологического воздействия электрического тока в основном определяется его родом и величиной, длительностью протекания и зависит от пути тока через тело человека и индивидуальных свойств человека. Наиболее вероятный путь рука-рука, рука-нога, нога-нога.

Кроме того, поражение может произойти и без непосредственного прохождения тока через тело человека в результате ожогов, вызванных открытой электрической дугой.

Вопрос: Какое напряжение считается опасным для жизни человека?

Какая величина тока считается смертельной для человека?

Ответ: В отношении величины «допустимого» или «безопасного» напряжения все еще нет установившейся точки зрения, так как электрическое сопротивление человека изменяется в широких пределах в зависимости от конкретных условий. Поэтому различные страны регламентируют свои нормы. Например, во Франции принято 24 В для переменного и 50 В для постоянного тока. Наша практика в зависимости от окружающих условий принимает за допустимое напряжение до 50 В переменного тока.

Однако и эти напряжения не могут рассматриваться как обеспечиваю­щие полную безопасность. Так, например, в литературе описаны случаи смертельного поражения человека напряжением 12 В и ниже.

Опасной величиной тока, протекающего через тело человека, следует считать 10 мА, смертельной - 100 мА.

Вопрос: Какие бывают ожоги?

Ответ: Ожоги бывают термические - вызванные огнем, паром, горячими предметами и веществами, химические - кислотами и щелочами и элек­трические - воздействием электрического тока или электрической дуги.

По глубине поражения все ожоги делятся на четыре степени:

Первая - покраснение и отек кожи;

Вторая - водяные пузыри;

Третья-омертвление поверхностных и глубоких слоев кожи;

Четвертая - обугливание кожи, поражение мышц, сухожилий и костей.

Вопрос: Чем определяется опасность для человека при прохождения через него электрического тока?

Ответ: Величиной тока, прошедшего через тело, временем нахождения человека под электротоком, частотой тока, индивидуальными свойствами человека.

Вопрос: Какова последовательность оказания первой помощи постра­давшим от электрического тока?

Ответ: Последовательность оказания первой помощи следующая:

Устранить воздействие на организм повреждающих факторов, угро­жающих здоровью и жизни пострадавшего (освободить от действия элек­трического тока, погасить горящую одежду и т.д.), оценить состояние по­страдавшего;

Определить характер и тяжесть травмы, наибольшую угрозу для жизни пострадавшего и последовательность мероприятий по его спасению;

- выполнять необходимые мероприятия по спасению пострадавшего в порядке срочности (восстановить, проходимость дыхательных путей, про­вести искусственное дыхание, наружный массаж сердца, остановить кровотечение и т.п.);

Поддержать основные жизненные функции пострадавшего до прибытия медицинского работника;

Вызвать скорую медицинскую помощь или врача либо принять меры для транспортировки пострадавшего в ближайшее лечебное учреждение.

Спасение пострадавшего от действия электрического тока в большинстве случаев зависит от быстроты освобождения его от тока, а также от быстроты и правильности оказания ему помощи. Промедление в ее подаче может повлечь за собой гибель пострадавшего.

Вопрос: Какие существуют виды поражения электрическим током?

Ответ: Электрический удар вызывает поражения внутренних органов человека (паралич сердца, паралич дыхания); электрические травмы, поражения внешних частей тела.

Вопрос: Каковы правила освобождения пострадавшего от электрического тока?

Обеспечение электробезопасности на производстве может быть достигнуто целым комплексом организационно-технических мероприятий: назначение ответственных лиц, производство работ по нарядам и распоряжениям, про ведение в срок плановых ремонтов и проверок электрооборудования, обучение персонала и пр.
Рассмотрим некоторые меры по предотвращению электротравматизма:

1. Заземление (зануление) корпусов электрооборудования. В нормальных рабочих условиях никакой ток не течет через заземленные соединения. При аварийном состоянии цепи величина электрического тока (через заземленные соединения с низким сопротивлением) достаточно высока для того, чтобы расплавить предохранители или вызвать действие защиты, которая снимет электрическое питание с электрооборудования.

Выполнялся монтаж колонн теплотрассы с помощью автокрана КС-З561. Машинист крана в отсутствие мастера установил его под проводами ВЛ 6 кВ, пересекающими теплотрассу. После окончания работ крановщик повернул стрелу крана для установки в транспортное положение и коснулся ею провода ВЛ, в результате чего автокран оказался под напряжением Стропальщик, убиравший в этот момент выносную опору автокрана, был смертельно поражен электрическим током. Стреловой кран не был заземлен переносным заземлителем.

2. Применение двойной изоляции. Ручные электрические машины с двойной изоляцией не требуется заземлять. На корпусе такой машины должен иметься специальный знак (квадрат в квадрате).


3. Применение светильников с пониженным напряжением. В помещениям с повышенной опасностью и особо опасных переносные электрические светильники должны иметь напряжение не выше 50 В. При работах в особо неблагоприятных условиях (колодцах выключателей, барабанах котлов и т.п.) переносные светильники должны иметь напряжение не выше 12 В.


4. Подключение и отключение электрооборудования разрешается производить только электротехническому персоналу с группой по электробезопасности не ниже 3.

Проводились работы на территории троллейбусного парка с использованием крана КС-25. По просьбе строителей подключение произвел аккумуляторщик предприятия, который ошибочно подключил фазу на корпус крана. Стропальщик был смертельно поражен электрическим током, коснувшись стропа на крюке крана

5. Применение устройств защитного отключения (УЗО). Данное устройство реагирует на ухудшение изоляции электрических проводов: когда ток утечки повысится до предельной величины 30 мА, происходит отключение электрических проводов в течение 30 микросекунд. УЗО применяется для защиты внутриквартирных электрических проводов, для безопасности работы с ручными электрическими машинами и при про ведении электросварочных работ в помещениях повышенной опасности и особо опасных.


6. Применение средств защиты (диэлектрических перчаток, ковров, бот и галош, подставок, изолирующего инструмента и т.п.).

Меры личной электробезопасности

Во время работы, а также в домашних условиях следует строго выполнять следующие правила электробезопасности:

  • включение электрооборудования про изводить вставкой исправной вилки в исправную розетку;
  • не передавать электрооборудование лицам, не имеющим права работать с ним;
  • если во время работы обнаружится неисправность электрооборудования или работающий с ним почувствует хотя бы слабое действие тока, работа должна быть немедленно прекращена и неисправное оборудование должно быть, сдано для проверки или ремонта;
  • отключать электрооборудование при перерыве в работе и по окончании рабочего процесса;
  • перед каждым применением средства защиты работник обязан про верить его исправность, отсутствие внешних повреждений, загрязнений и срок годности (по штампу на нем);
  • не наступать на проложенные на земле электрические про вода и кабели временной проводки;
  • неукоснительно выполнять требования плакатов и знаков безопасности.


Плакаты и знаки безопасности применяют:

  • для запрещения действий с коммутационными аппаратами, при ошибочном включении которых может быть подано напряжение на место работы;
  • для запрещения передвижения без средств защиты в ОРУ 330 кВ и выше с напряженностью электрического поля выше 15 кВ/м (запрещающие плакаты);
  • для предупреждения об опасности приближения к токоведущим частям, находящимся под напряжением (предупреждающие плакаты и знаки);
  • для разрешения определенных действий только при выполнении конкретных требований безопасности труда (предписывающие плакаты);
  • для указания местонахождения различных объектов и устройств (указательные плакаты).

По характеру применения плакаты и знаки могут быть постоянными и переносными.

Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства защиты: недоступность токоведущих частей, находящихся под напряжением; электрическое разделение сети; малые напряжения; двойная изоляция; выравнивание потенциалов; защитное заземление; зануление; защитное отключение и др. К техническим способам и средствам также относятся: предупредительная сигнализация, знаки безопасности, средства индивидуальной и коллективной защиты, предохранительные приспособления и др.

Недоступность токоведущих частей электроустановок для случайного прикосновения может быть обеспечена рядом способов: изоляцией токоведущих частей, ограждением, различными блокировками, размещением токоведущих частей на недоступном расстоянии.

Изоляция является основным способом электробезопасности в сетях до 1000 В, так как применение изолированных проводов обеспечивает достаточную защиту от напряжения при прикосновении к ним. В то же время использование изолированных проводов при напряжении выше 1000 В не менее опасно, чем применение голых, так как повреждения изоляции обычно остаются незамеченными, если провод подвешен на изоляторах. А при высоких напряжениях опасно даже приближение к токоведущим частям, так как возможен пробой воздуха при малом расстоянии до человека и последующее поражение его током.

Ограждения в виде корпусов, кожухов, оболочек используются в электрических машинах, аппаратах, приборах. Сплошные ограждения являются обязательными для электроустановок, расположенных в местах, где бывает неэлектротехнический персонал (уборщицы и др.).

На испытательных стендах и других установках с повышенным напряжением, где часто работают люди, применяются блокировки: механические и электрические. Механические блокировки находят применение в электрических аппаратах – рубильниках, пускателях, автоматических выключателях и др., работающих в условиях, в которых предъявляются повышенные требования безопасности (судовые, подземные и тому подобные электроустановки). Электрические блокировки осуществляют разрыв цепи специальными контактами, которые устанавливаются на дверях ограждений, крышках и дверцах кожухов.

Расположение токоведущих частей на недоступной высоте или в недоступном месте позволяют обеспечить безопасность без ограждений. При этом учитывается возможность случайного прикосновения к токоведущим частям посредством длинных предметов, которые человек может держать в руках. Поэтому вне помещений неизолированные провода при напряжении до 1000 В должны быть расположены на высоте не менее 6 м, а внутри помещений – не ниже 3,5 м.


Электрическое разделение сетей – это разделение электрической сети на отдельные электрически несвязанные между собой участки с помощью разделительных трансформаторов.

Малое напряжение – это номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Для повышения безопасности в условиях с повышенной опасностью и в особо опасных условиях для ручного электроинструмента (дрель, гайковерт и др.) применяется напряжение 42 В и ниже, а для ручных ламп 12 В. Кроме того, в шахтерских лампах и некоторых бытовых приборах применяются очень малые напряжения, вплоть до 2,5 В.

Надежным средством защиты человека от поражения электрическим током является двойная изоляция, состоящая из основной и дополнительной. Основная (рабочая) электрическая изоляция токоведущих частей электроустановки обеспечивает нормальную ее работу и защите от поражения электрическим током, а дополнительная электрическая изоляция предусматривается дополнительно к основной изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

К защитным мерам относится контроль и профилактика поврежденной изоляции.

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей электроустановки, которые могут оказаться под напряжением.

Защитное действие заземления основано на снижении напряжения прикосновения при попадании напряжения на нетоковедущие части (вследствие замыкания на корпус или других причин), что достигается уменьшением разности потенциалов между корпусом электроустановки и землей как из-за малого сопротивления заземления, так и повышения потенциала примыкающей к оборудованию поверхности земли. Чем меньше сопротивление заземления, тем выше защитный эффект.

Защитное заземление применяется в трехфазной трехпроводной сети напряжением до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали (в четырехпроводных трехфазных сетях с заземленной нейтралью напряжением до 1000 В в качестве защитной меры в стационарных установках применяется зануление).

Зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Защитное действие зануления состоит в следующем. При пробое изоляции на корпус образуется цепь с очень малым сопротивлением: фаза – корпус – нулевой провод – фаза. Следовательно, пробой на корпус при наличии зануления превращается в однофазное короткое замыкание.

Для схемы зануления необходимо наличие в сети нулевого провода, заземления нейтрали источника и повторного заземления нулевого провода.

Назначение нулевого провода – создание для тока КЗ цепи с малым сопротивлением, чтобы этот ток был достаточным для срабатывания защиты, т.е. быстрого отключения поврежденной установки от сети.

Назначение повторного заземления нулевого провода, которое для воздушных сетей осуществляется через каждые 250 м, состоит в уменьшении потенциала зануленных корпусов при обрыве нулевого провода и замыкания фазы на корпус за местом обрыва. Поскольку повторное заземление значительно уменьшает опасность поражения током, но не устраняет ее полностью, необходима тщательная прокладка нулевого провода, чтобы исключить обрыв. Нельзя ставить в нулевом проводе предохранители, рубильники и другие приборы, нарушающие целостность нулевого провода.

Назначение заземления нейтрали – снижение до минимального значения напряжения относительно земли нулевого провода и всех присоединенных к нему корпусов при случайном замыкании фазы на землю.

Защитное отключение – это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении опасности поражения током. Такая опасность может возникнуть, в частности: при замыкании фазы на корпус электрооборудования; при снижении сопротивления изоляции фаз относительно земли ниже определенного предела; при появлении в сети более высокого напряжения; при прикосновении человека к токоведущей части, находящейся под напряжением.

Любой из этих параметров, а точнее – изменение его до определенного предела, при котором возникает опасность поражения человека током, может служить импульсом, вызывающим срабатывание защитно-отключающего устройства, т.е. автоматическое отключение опасного участка цепи.

К устройствам защитного отключения (УЗО) предъявляются ряд требований: быстродействие – длительность отключения поврежденного участка сети должна быть не более 0,2 с; надежность; высокая чувствительность – входной сигнал по току не должен превышать нескольких миллиампер, а по напряжению – нескольких десятков вольт; избирательность отключения только аварийного участка.

Средства защиты, используемые в электроустановках, по своему назначению подразделяются на две категории: основные и дополнительные.

Основные электрозащитные средства – это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные электрозащитные средства – это средства защиты, дополняющие основные средства, а также служащие для защиты от напряжения прикосновения и напряжения шага, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

Электрозащитные средства следует использовать по их прямому назначению и только в тех электроустановках, на напряжение которых они рассчитаны. Перед применением электрозащитных средств производятся проверка их исправности, осмотр на отсутствие внешних повреждений, очистка от пыли, проверка по штампу срока годности и напряжения, на которое рассчитано защитное средство.

Первую доврачебную помощь пораженному током должен уметь оказывать каждый человек.

Первая помощь при несчастных случаях, вызванных поражением электрическим током, состоит из двух этапов: освобождение пострадавшего от действия тока и оказание ему первой доврачебной медицинской помощи.

Освобождение пострадавшего от действия тока. Первым действием должно быть быстрое отключение той части установки, к которой прикасается пострадавший. Если быстро отключить установку нельзя, надо отделить пострадавшего от токоведущих частей.

Способы оказания первой помощи. Оказание первой помощи зависит от состояния, в котором находится пораженный электрическим током. Для определения этого состояния необходимо немедленно:

Уложить пострадавшего на спину на твердую поверхность;

Проверить наличие у пострадавшего дыхания, пульса;

Выяснить состояние зрачка – узкий или расширенный (расширенный зрачок указывает на резкое ухудшение кровоснабжения мозга).

Во всех случаях поражения электрическим током необходимо вызвать врача независимо от состояния пострадавшего.

При этом следует немедленно начать оказание соответствующей помощи пострадавшему:

Если пострадавший находится в сознании, но до этого был в состоянии обморока, или продолжительное время находился под током, его следует удобно уложить на подстилку, накрыть чем-нибудь (одеждой) и до прибытия врача обеспечить полный покой, непрерывно наблюдая за дыханием и пульсом;

Если сознание отсутствует, но сохранились устойчивые пульс и дыхание, нужно ровно и удобно уложить пострадавшего на подстилку, расстегнуть пояс и одежду, обеспечить приток свежего воздуха и полный покой; давать пострадавшему нюхать нашатырный спирт и обрызгивать его водой;

Если пострадавший плохо дышит (резко, судорожно), делать искусственное дыхание и наружный массаж сердца;

Если отсутствуют признаки жизни (дыхание, сердцебиение, пульс), нельзя считать пострадавшего мертвым, так как смерть часто бывает лишь кажущейся. В этом случае также надо делать искусственное дыхание и массаж сердца. Заключение о смерти пострадавшего может сделать только врач.