Проводка

Как выглядят молекулы льда. Гексагональная тирания

Как выглядят молекулы льда. Гексагональная тирания

Пользовательского поиска

Структура воды

К.х.н. О.В. Мосин

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода оголяются. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.

Строение молекулы воды (рисунок справа)

Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Однако, в жидком состоянии вода - неупорядоченная жидкость; эти водородные связи - спонтанные, короткоживущие, быстро рвутся и образуются вновь. Всё это приводит к неоднородности в структуре воды.

Водородные связи между молекулами воды (рисунок ниже слева)

То, что вода неоднородна по своему составу, было установлено давно. С давних пор известно, что лёд плавает на поверхности воды, то есть плотность кристаллического льда меньше, чем плотность жидкости.

Почти у всех остальных веществ кристалл плотнее жидкой фазы. К тому же и после плавления при повышении температуры плотность воды продолжает увеличиваться и достигает максимума при 4C. Менее известна аномалия сжимаемости воды: при нагреве от точки плавления вплоть до 40C она уменьшается, а потом увеличивается. Теплоёмкость воды тоже зависит от температуры немонотонно.

Кроме того, при температуре ниже 30C с увеличением давления от атмосферного до 0,2ГПа вязкость воды уменьшается, а коэффициент самодиффузии - параметр, который определяет скорость перемещения молекул воды относительно друг друга растёт.

Для других жидкостей зависимость обратная, и почти нигде не бывает, чтобы какой-то важный параметр вёл себя немонотонно, т.е. сначала рос, а после прохождения критического значения температуры или давления уменьшался. Возникло предположение, что на самом деле вода это не единая жидкость, а смесь двух компонентов, которые различаются свойствами, например плотностью и вязкостью, а следовательно, и структурой. Такие идеи стали возникать в конце XIX века, когда накопилось много данных об аномалиях воды.

Первым идею о том, что вода состоит из двух компонентов, высказал Уайтинг в1884 году. Его авторство цитирует Э.Ф.Фрицман в монографии "Природа воды. Тяжёлая вода", изданной в1935 году. В 1891 году В.Ренгтен ввёл представление о двух состояниях воды, которые различаются плотностью. После неё появилось множество работ, в которых воду рассматривали как смесь ассоциатов разного состава (гидролей).

Когда в 20-е годы определили структуру льда, оказалось, что молекулы воды в кристаллическом состоянии образуют трёхмерную непрерывную сетку, в которой каждая молекула имеет четырёх ближайших соседей, расположенных в вершинах правильного тетраэдра. В1933 году Дж.Бернал и П.Фаулер предположили, что подобная сетка существует и в жидкой воде. Поскольку вода плотнее льда, они считали, что молекулы в ней расположены не так, как во льду, то есть подобно атомам кремния в минерале тридимите, а так, как атомы кремния в более плотной модификации кремнезёма кварце. Увеличение плотности воды при нагревании от 0 до 4C объяснялось присутствием при низкой температуре тридимитовой компоненты. Таким образом, модель Бернала Фаулера сохранила элемент двухструктурности, но главное их достижение- идея непрерывной тетраэдрическои сетки. Тогда появился знаменитый афоризм И.Ленгмюра: "Океан- одна большая молекула". Излишняя конкретизация модели не прибавила сторонников теории единой сетки.

Только в 1951 году Дж. Попл создал модель непрерывной сетки, которая была не так конкретна, как модель Бернала Фаулера. Попл представлял воду, как случайную тетраэдрическую сетку, связи между молекулами в которой искривлены и имеют различную длину. Модель Попла объясняет уплотнение воды при плавлении искривлением связей. Когда в 60-70-е годы появились первые определения структуры льдов II и IX, стало ясно, как искривление связей может приводить к уплотнению структуры. Модель Попла не могла объяснить немонотонность зависимости свойств воды от температуры и давления так хорошо, как модели двух состояний. Поэтому идею двух состояний ещё долго разделяли многие учёные.

Но во второй половине XX века нельзя было так фантазировать о составе и строении гидролей, как это делали в начале века. Уже было известно, как устроен лёд и кристаллогидраты, и многое знали про водородную связь. Помимо континуальных моделей (модель Попла), возникли две группы смешанных моделей: кластерные и клатратные. В первой группе вода представала в виде кластеров из молекул, связанных водородными связями, которые плавали в море молекул, в таких связях не участвующих. Модели второй группы рассматривали воду как непрерывную сетку (обычно в этом контексте называемую каркасом) водородных связей, которая содержит пустоты; в них размещаются молекулы, не образующие связей с молекулами каркаса. Нетрудно было подобрать такие свойства и концентрации двух микрофаз кластерных моделей или свойства каркаса и степень заполнения его пустот клатратных моделей, чтобы объяснить все свойства воды, в том числе и знаменитые аномалии.

Среди кластерных моделей наиболее яркой оказалась модель Г.Немети и Х.Шераги : предложенные ими картинки, изображающие кластеры связанных молекул, которые плавают в море несвязанных молекул, вошли во множество монографий.

Первую модель клатратного типа в 1946 году предложил О.Я.Самойлов: в воде сохраняется подобная гексагональному льду сетка водородных связей, полости которой частично заполнены мономерными молекулами. Л.Полинг в 1959 году создал другой вариант, предположив, что основой структуры может служить сетка связей, присущая некоторым кристаллогидратам.

В течение второй половины 60-х годов и начала 70-х наблюдается сближение всех этих взглядов. Появлялись варианты кластерных моделей, в которых в обеих микрофазах молекулы соединены водородными связями. Сторонники клатратных моделей стали допускать образование водородных связей между пустотными и каркасными молекулами. То есть фактически авторы этих моделей рассматривают воду как непрерывную сетку водородных связей. И речь идёт о том, насколько неоднородна эта сетка (например, по плотности). Представлениям о воде как о водородно-связанных кластерах, плавающих в море лишённых связей молекул воды, был положен конец в начале восьмидесятых годов, когда Г.Стэнли применил к модели воды теорию перколяции, описывающую фазовые переходы воды.

В 1999 г. известный российский исследователь воды С.В. Зенин защитил в Институте медико-биологических проблем РАН докторскую диссертацию, посвященную кластерной теории, которая явилась существенным этапом в продвижении этого направления исследований, сложность которых усиливается тем, что они находятся на стыке трех наук: физики, химии и биологии. Им на основании данных, полученных тремя физико-химическими методами: рефрактометрии (С.В. Зенин, Б.В. Тяглов, 1994), высокоэффективной жидкостной хроматографии (С.В. Зенин с соавт., 1998) и протонного магнитного резонанса (С.В. Зенин, 1993) построена и доказана геометрическая модель основного стабильного структурного образования из молекул воды (структурированная вода), а затем (С.В. Зенин, 2004) получено изображение с помощью контрастно-фазового микроскопа этих структур.

Сейчас наукой доказано, что особенности физических свойств воды и многочисленные короткоживущие водородные связи между соседними атомами водорода и кислорода в молекуле воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров), воспринимающих, хранящих и передающих самую различную информацию.

Структурной единицей такой воды является кластер, состоящий из клатратов, природа которых обусловлена дальними кулоновскими силами. В структуре кластров закодирована информация о взаимодействиях, имевших место с данными молекулами воды. В водных кластерах за счёт взаимодействия между ковалентными и водородными связями между атомами кислорода и атомами водорода может происходить миграция протона (Н+) по эстафетному механизму, приводящие к делокализации протона в пределах кластера.

Вода, состоящая из множества кластеров различных типов, образует иерархическую пространственную жидкокристаллическую структуру, которая может воспринимать и хранить огромные объемы информации.

На рисунке (В.Л. Воейков) в качестве примера приведены схемы нескольких простейших кластерных структур.

Некоторые возможные структуры кластеров воды

Переносчиками информации могут быть физические поля самой различной природы. Так установлена возможность дистанционного информационного взаимодействия жидкокристаллической структуры воды с объектами различной природы при помощи электромагнитных, акустических и других полей. Воздействующим объектом может быть и человек.

Вода является источником сверхслабого и слабого переменного электромагнитного излучения. Наименее хаотичное электромагнитное излучение создаёт структурированная вода. В таком случае может произойти индукция соответствующего электромагнитного поля, изменяющего структурно-информационные характеристики биологических объектов.

В течение последних лет получены важные данные о свойствах переохлаждённой воды. Изучать воду при низкой температуре очень интересно, поскольку её удаётся сильнее переохладить, чем другие жидкости. Кристаллизация воды, как правило, начинается на каких-то неоднородностях либо на стенках сосуда, либо на плавающих частичках твердых примесей. Поэтому найти температуру, при которой бы переохлаждённая вода самопроизвольно закристаллизовалась нелегко. Но учёным удалось это сделать, и сейчас температура так называемой гомогенной нуклеации, когда образование кристаллов льдов идёт одновременно повсему объёму, известна для давлений вплоть до0,3 ГПа, то есть захватывая области существования льда II.

От атмосферного давления до границы, разделяющей льды I и II, эта температура падает от231 до180 К, а потом слегка увеличивается до 190К. Ниже этой критической температуры жидкая вода невозможна в принципе.

Структура льда (рисунок справа)

Однако с этой температурой связана одна загадка. В середине восьмидесятых годов была открыта новая модификация аморфного льда- лёд высокой плотности, и это помогло возрождению представлений о воде как о смеси двух состояний. В качестве прототипов рассматривались не кристаллические структуры, а структуры аморфных льдов разной плотности. В наиболее внятном виде эту концепцию сформулировали Е.Г.Понятовский и В.В.Синицин, которые в 1999 году написали: "Вода рассматривается как регулярный раствор двух компонентов, локальные конфигурации в которых соответствуют ближнему порядку модификаций аморфного льда". Более того, изучая ближний порядок в переохлаждённой воде при высоком давлении методами дифракции нейтронов, учёным удалось найти компоненты, соответствующие этим структурам.

Следствием полиморфизма аморфных льдов стали также предположения о расслоении воды на два несмешивающихся компонента при температуре ниже гипотетической низкотемпературной критической точки. К сожалению, по оценке исследователей, эта температура при давлении 0,017 ГПа равна 230К ниже температуры нуклеации, поэтому наблюдать расслоение жидкой воды никому ещё неудалось. Так возрождение модели двух состояний поставило вопрос о неоднородности сетки водородных связей в жидкой воде. Разобраться в этой неоднородности можно только спомощью компьютерного моделирования.

Говоря о кристаллической структуре воды, следует отметить, что известно 14 модификаций льда, большинство из которых не встречаются в природе, в которых молекулы воды и сохраняют свою индивидуальность, и соединены водородными связями. С другой стороны существует множество вариантов сетки водородных связей в клатратных гидратах. Энергии этих сеток (льдов высокого давления и клатратных гидратов) ненамного выше энергий кубического и гексагонального льдов. Поэтому фрагменты таких структур также могут появляться в жидкой воде. Можно сконструировать бесчисленное множество различных непериодических фрагментов, молекулы в которых имеют по четыре ближайших соседа, расположенных приблизительно по вершинам тетраэдра, но при этом их структура не соответствует структурам известных модификаций льда. Как показали многочисленные расчёты, энергии взаимодействия молекул в таких фрагментах будут близки друг кдругу, и нет оснований говорить, что какая-то структура должна преобладать в жидкой воде.

Структурные исследования воды можно изучать разными методами; спектроскопией протонного магнитного резонанса, инфракрасной спекроскопии, дифракцией рентгеновских лучей и др. Например, дифракцию рентгеновских лучей и нейтронов вводе изучали много раз. Однако подробных сведений о структуре эти эксперименты дать немогут. Неоднородности, различающиеся по плотности, можно было бы увидеть по рассеянию рентгеновских лучей и нейтронов под малыми углами, однако такие неоднородности должны быть большими, состоящими из сотен молекул воды. Можно было бы их увидеть, и исследуя рассеяние света. Однако вода исключительно прозрачная жидкость. Единственный же результат дифракционных экспериментов функции радиального распределения, то есть расстояния между атомами кислорода, водорода и кислорода-водорода. Из них видно, что никакого дальнего порядка в расположении молекул воды нет. Эти функции для воды затухают гораздо быстрее, чем для большинства других жидкостей. Например, распределение расстояний между атомами кислорода при температуре, близкой к комнатной, даёт только три максимума, на 2,8, 4,5 и 6,7 . Первый максимум соответствует расстоянию до ближайших соседей, и его значение примерно равно длине водородной связи. Второй максимум близок к средней длине ребра тетраэдра: вспомним, что молекулы воды в гексагональном льду располагаются по вершинам тетраэдра, описанного вокруг центральной молекулы. А третий максимум, выраженный весьма слабо, соответствует расстоянию до третьих и более далёких соседей по водородной сетке. Этот максимум и сам не очень ярок, а про дальнейшие пики и говорить не приходится. Были попытки получить из этих распределений более детальную информацию. Так в 1969 году И.С.Андрианов и И.З.Фишер нашли расстояния вплоть до восьмого соседа, при этом до пятого соседа оно оказалось равным 3, а до шестого 3,1 . Это позволяет делать данные о дальнем окружении молекул воды.

Другой метод исследования структуры - нейтронная дифракция на кристаллах воды осуществляется точно также, как и рентгеновская дифракция. Однако из-за того, что длины нейтронного рассеяния различаются у разных атомов не столь сильно, метод изоморфного замещения становится неприемлемым. На практике обычно работают с кристаллом, у которого молекулярная структура уже приблизительно установлена другими методами. Затем для этого кристалла измеряют интенсивности нейтронной дифракции. По этим результатам проводят преобразование Фурье, в ходе которого используют измеренные нейтронные интенсивности и фазы, вычисляемые с учётом неводородных атомов, т.е. атомов кислорода, положение которых в модели структуры известно. Затем на полученной таким образом фурье-карте атомы водорода и дейтерия представлены с гораздо большими весами, чем на карте электронной плотности, т.к. вклад этих атомов в нейтронное рассеяние очень большой. По этой карте плотности можно, например, определить положения атомов водорода (отрицательная плотность) и дейтерия (положительная плотность).

Возможна разновидность этого метода, которая состоит в том, что кристалл образовавшийся в воде, перед измерениями выдерживают в тяжёлой воде. В этом случае нейтронная дифракция не только позволяет установить, где расположены атомы водорода, но и выявляет те из них, способные обмениваться на дейтерий, что особенно важно при изучение изотопного (H-D)-обмена. Подобная информация помогает подтвердить правильность установления структуры.

Другие методы также позволяют изучать динамику молекул воды. Это эксперименты по квазиупругому рассеянию нейтронов, сверхбыстрой ИК-спектроскопии иизучение диффузии воды с помощью ЯМР или меченых атомов дейтерия. Метод ЯМР-спектроскопии основан на том, что ядро атома водорода имеет магнитный момент- спин, взаимодействующий с магнитными полями, постоянными и переменными. По спектру ЯМР можно судить о том, в каком окружении эти атомы и ядра находятся, получая, таким образом, информацию о структуре молекулы.

В результате экспериментов по квазиупругому рассеянию нейтронов в кристаллах воды был измерен важнейший параметр- коэффициент самодиффузии при различных давлениях и температурах. Чтобы судить о коэффициенте самодиффузии по квазиупругому рассеянию нейтронов, необходимо сделать предположение о характере движения молекул. Если они движутся в соответствии с моделью Я.И.Френкеля (известного отечественного физика-теоретика, автора "Кинетической теории жидкостей"- классической книги, переведённой намногие языки), называемой также моделью "прыжок-ожидание", тогда время осёдлой жизни (время между прыжками) молекулы составляет 3,2 пикосекунды. Новейшие методы фемтосекундной лазерной спектроскопии позволили оценить время жизни разорванной водородной связи: протону требуется 200 фс для того, чтобы найти себе партнёра. Однако всё это средние величины. Изучить детали строения и характера движения молекул воды можно только при помощи компьютерного моделирования, называемого иногда численным экспериментом.

Так выглядит структура воды по результатам компьютерного моделирования (по данным д.х.н. Г.Г.Маленкова). Общую беспорядочную структуру можно разбить на два типа областей (показаны тёмными и светлыми шариками), которые различаются по своему строению, например по объёму многогранника Вороного (а), степени тетраэдричности ближайшего окружения (б), значению потенциальной энергии (в), а также по наличию четырёх водородных связей у каждой молекулы (г). Впрочем, эти области буквально через мгновение, спустя несколько пикосекунд, изменят свое расположение.

Моделирование проводится так. Берётся структура льда и, нагревается до расплавления. Затем после некоторого времени, чтобы вода забыла о кристаллическом происхождении, снимаются мгновенные микрофотографии.

Для анализа структуры воды выбираются три параметра:
- степень отклонения локального окружения молекулы от вершин правильного тетраэдра;
-потенциальная энергия молекул;
-объём так называемого многогранника Вороного.

Чтобы построить этот многогранник, берут ребро от данной молекулы до ближайшей, делят его пополам и через эту точку проводят плоскость, перпендикулярную ребру. Получается объём, приходящийся на одну молекулу. Объём полиэдра это плотность, тетраэдричность степень искажения водородных связей, энергия степень устойчивости конфигурации молекул. Молекулы с близкими значениями каждого из этих параметров стремятся сгруппироваться вместе в отдельные кластеры. Области как с низкой, так и с высокой плотностью обладают разными значениями энергии, но могут иметь и одинаковые значения. Эксперименты показали, что области с разным строением кластеры возникают спонтанно и спонтанно распадаются. Вся структура воды живёт и постоянно меняется, причём время, за которое происходят эти изменения, очень маленькое. Исследователи следили за перемещениями молекул и выяснили, что они совершают нерегулярные колебания с частотой около 0,5 пс и амплитудой 1 ангстрем. Наблюдались также и редкие медленные скачки на ангстремы, которые длятся пикосекунды. В общем, за 30 пс молекула может сместиться на 8-10 ангстрем. Время жизни локального окружения тоже невелико. Области, составленные из молекул с близкими значениями объёма многогранника Вороного, могут распасться за 0,5 пс, а могут жить и несколько пикосекунд. А вот распределение времён жизни водородных связей очень велико. Но это время не превышает 40 пс, а среднее значение несколько пс.

В заключение следует подчеркнуть, что теория кластерного строения воды имеет много подводных камней. Например, Зенин предполагает, что основной структурный элемент воды- кластер из 57 молекул, образованный слиянием четырёх додекаэдров. Они имеют общие грани, а их центры образуют правильный тетраэдр. То, что молекулы воды могут располагаться по вершинам пентагонального додекаэдра, известно давно; такой додекаэдр- основа газовых гидратов. Поэтому ничего удивительного в предположении о существовании таких структур в воде нет, хотя уже говорилось, что никакая конкретная структура не может быть преобладающей и существовать долго. Поэтому странно, что этот элемент предполагается главным и что в него входит ровно 57 молекул. Из шариков, например, можно собирать такиеже структуры, которые состоят из примыкающих друг к другу додекаэдров и содержат 200 молекул. Зенин же утверждает, что процесс трёхмерной полимеризации воды останавливается на 57 молекулах. Более крупных ассоциатов, по его мнению, быть не должно. Однако если бы это было так, из водяного пара не могли бы осаждаться кристаллы гексагонального льда, которые содержат огромное число молекул, связанных воедино водородными связями. Совершенно не ясно, почему рост кластера Зенина остановился на 57 молекулах. Чтобы уйти от противоречий, Зенин и упаковывает кластеры в более сложные образования-ромбоэдры- из почти тысячи молекул, причём исходные кластеры друг с другом водородных связей не образуют. Почему? Чем молекулы на их поверхности отличаются от тех, что внутри? По мнению Зенина, узор гидроксильных групп на поверхности ромбоэдров и обеспечивает память воды. Следовательно, молекулы воды в этих крупных комплексах жёстко фиксированы, и сами комплексы представляют собой твёрдые тела. Такая вода не будет течь, а температура её плавления, которая связана с молекулярной массой, должна быть весьма высокой.

Какие свойства воды объясняет модель Зенина? Поскольку в основе модели лежат тетраэдрические постройки, её можно в той или иной степени согласовать с данными по дифракции рентгеновских лучей и нейтронов. Однако вряд ли модель может объяснить уменьшение плотности при плавлении- упаковка додекаэдров менее плотная, чем лёд. Но труднее всего согласуется модель с динамическими свойствами- текучестью, большим значением коэффициента самодиффузии, малыми временами корреляции и диэлектрической релаксации, которые измеряются пикосекундами.

К.х.н. О.В. Мосин


Cписок литературы:
Г.Г. Маленков. Успехи физической химии, 2001
С.В.Зенин, Б.М. Полануер, Б.В. Тяглов. Экспериментальное доказательство наличия фракций воды. Ж. Гомеопатическая медицина и акупунктура. 1997.№2.С.42-46.
С.В. Зенин, Б.В. Тяглов. Гидрофобная модель структуры ассоциатов молекул воды. Ж.Физ.химии.1994.Т.68.№4.С.636-641.
С.В. Зенин Исследование структуры воды методом протонного магнитного резонанса. Докл.РАН.1993.Т.332.№3.С.328-329.
С.В.Зенин, Б.В.Тяглов. Природа гидрофобного взаимодействия. Возникновение ориентационных полей в водных растворах. Ж.Физ.химии.1994.Т.68.№3.С.500-503.
С.В. Зенин, Б.В. Тяглов, Г.Б.Сергеев, З.А. Шабарова. Исследование внутримолекулярных взаимодействий в нуклеотидамидах методом ЯМР. Материалы 2-й Всесоюзной конф. По динамич. Стереохимии. Одесса.1975.с.53.
С.В. Зенин. Структурированное состояние воды как основа управления поведением и безопасностью живых систем. Диссертация. Доктор биологических наук. Государственный научный Центр "Институт медико-биологических проблем" (ГНЦ "ИМБП"). Защищена 1999. 05. 27. УДК 577.32:57.089.001.66.207 с.
В.И. Слесарев. Отчет о выполнении НИР

И здесь уже можно перейти ко второй категории. Под словом «лед» мы привыкли понимать твердое фазовое состояние воды. Но помимо нее замораживанию подвергаются и другие вещества. Таким образом, лед можно различать по химическому составу исходного вещества, например, углекислый, аммиачный, метановый лед и другие.

В-третьих, различают кристаллические решетки (модификации) водяного льда, образование которых обусловлено термодинамическим фактором. Вот о них-то мы и поговорим немного в этой заметке.

В статье Лед мы с вами остановились на том, как происходит перестройка структуры воды с изменением ее агрегатных состояний, и затронули кристаллическое строение обыкновенного льда. Благодаря внутреннему устройству самой молекулы воды и водородным связям, соединяющим все молекулы в упорядоченную систему, образуется гексагональная (шестиугольная) кристаллическая решетка льда. Ближайшие друг к другу молекулы (одна центральная и четыре угловых) расположены в форме трехгранной пирамиды, или тетраэдра, который лежит в основе гексагональной кристаллической модификации (илл.1 ).

Кстати , расстояние между мельчайшими частицами вещества измеряются в нанометрах (нм) или ангстремах (по имени шведского физика XIX века Андерса Йонаса Ангстрема; обозначается символом Å). 1 Å = 0,1 нм = 10−10 м.

Такое шестиугольное строение обыкновенного льда распространяется на весь его объем. Наглядно в этом можно убедиться невооруженным глазом: зимой во время снегопада поймайте снежинку на рукав одежды или на перчатку и приглядитесь к ее форме – она шестилучевая или шестиугольная. Это характерно для каждой снежинки, но при этом ни одна снежинка никогда не повторяет другую (подробнее об этом в нашей статье ). И даже крупные кристаллы льда своей внешней формой отвечают внутреннему молекулярному строению (илл.2 ).

Мы уже говорили, что переход вещества, в частности воды, из одного состояния в другое осуществляется при наличии определенных условий. Привычный лед образуется при температуре от 0°C и ниже и при давлении в 1 атмосферу (нормальное значение). Следовательно, для появления иных модификаций льда требуется изменение этих значений, и в большинстве случаев наличие низких температур и высокого давления, при которых происходит изменение угла водородных связей и реконструкция всей кристаллической решетки.

Каждая модификация льда относится к определенной сингонии – группе кристаллов, в которых элементарные ячейки обладают одной и той же симметрией и системой координат (оси XYZ). Всего же различают семь сингоний. Характеристики каждой из них представлены на иллюстрациях 3-4 . А чуть ниже дано изображение основных форм кристаллов (илл.5 )

Все модификации льда, отличающиеся от обыкновенного, были получены в лабораторных условиях. О первых полиморфных структурах льда стало известно в начале XX века стараниями ученых Густава Таммана (Gustav Heinrich Tammann) и Перси Бриджмена (Percy Williams Bridgman) . Диаграмма модификаций, составленная Бриджменом, периодически дополнялась. Новые модификации выявляли из полученных ранее. Последние изменения в диаграмму были внесены уже в наше время. На данный момент получено шестнадцать кристаллических типов льда. Каждый тип имеет свое наименование и обозначается римской цифрой.

Мы не будем вникать глубоко в физические характеристики каждого молекулярного типа водяного льда, чтобы не утомлять вас, уважаемые читатели, научными подробностями, отметим только основные параметры.

Обыкновенный лед носит наименование лед Ih (приставка «h» означает гексагональную сингонию). На иллюстрации 7 представлена его кристаллическая структура, состоящая из шестиугольных связок (гексамеров), которые отличаются по форме – одна в виде шезлонга (англ. chair-form ), другая в виде ладьи (boat-form ). Эти гексамеры формируют трехмерную секцию – два «шезлонга» находятся по горизонтали вверху и внизу, а три «ладьи» занимают вертикальное положение.

На пространственной схеме показан порядок в расположении водородных связей льда Ih , но в действительности связи выстраиваются случайным образом. Впрочем, ученые не исключают, что водородные связи на поверхности гексагонального льда более упорядочены, чем внутри структуры.

Элементарная ячейка гексагонального льда (т.е. минимальный объем кристалла, повторное воспроизведение которого в трех измерениях, образует всю кристаллическую решетку в целом) включает в себя 4 молекулы воды. Размеры ячейки составляют 4,51 Å по сторонам a,b и 7.35 Å по стороне с (сторона, или ось с на схемах имеет вертикальное направление). Углы между сторонами, как видно из иллюстрации 4: α=β = 90°, γ = 120° . Расстояние между соседними молекулами равно 2.76 Å .

Гексагональные ледяные кристаллы образуют шестиугольные пластины и столбики; верхняя и нижняя грани в них являются базовыми плоскостями, а шесть одинаковых боковых граней называются призматическими (илл.10 ).

Минимальное количество молекул воды, необходимое для начала ее кристаллизации – около 275 (±25) . В значительной степени образование льда происходит на поверхности водной массы, граничащей с воздухом, нежели внутри нее. Кристаллы крупнозернистого льда Ih медленно формируются в направлении оси с, например, в стоячей воде они растут вертикально вниз от кристаллических пластинок, или в условиях, где рост в сторону затруднен. Мелкозернистый лед, образующийся в неспокойной воде или при быстром ее замерзании, имеет ускоренный рост, направленный от призматических граней. Температура окружающей воды определяет степень разветвленности кристаллической решетки льда.

Частицы растворенных в воде веществ, за исключением атомов гелия и водорода, чьи размеры позволяют им поместиться в полостях структуры, при нормальном атмосферном давлении исключаются из кристаллической решетки, вытесняясь на поверхность кристалла или, как в случае с аморфной разновидностью (об этом дальше в статье) образуя слои между микрокристаллами. Последовательные циклы замораживания-оттаивания воды могут быть использованы для очистки ее от примесей, например, газов (дегазация).

Наряду со льдом Ih существует также лед Ic (кубическая сингония ), правда, в природе образование этой разновидности льда изредка возможно только в верхних слоях атмосферы. Искусственно лед Ic получают путем моментального замораживания воды, для чего конденсируют пар на охлажденной от минус 80 до минус 110°С металлической поверхности при нормальном атмосферном давлении. В результате опыта на поверхность выпадают кристаллики кубической формы или в виде октаэдров. Создать кубический лед первой модификации из обычного гексагонального, понижая его температуру, не получится, а вот переход из кубического в гексагональный возможен при нагревании льда Ic выше минус 80°С .

В молекулярной структуре льда Ic угол водородных связей такой же, как и у обычного льда Ih – 109.5° . А вот шестигранное кольцо, образуемое молекулами, в решетке льда Ic присутствует только в форме шезлонга.

Плотность льда Ic равна 0.92 г/см³ при давлении в 1 атм. Элементарная ячейка в кубическом кристалле имеет 8 молекул и размеры: a=b=c = 6.35 Å, а ее углы α=β=γ = 90°.

На заметку. Уважаемые читатели, в данной статье мы неоднократно будем сталкиваться с показателями температуры и давления для того или иного типа льда. И если температурные значения, выраженные в градусах по Цельсию, всем понятны, то восприятие значений давления, возможно, для кого-то будет затруднено. В физике используются различные единицы для его измерения, но мы в нашей статье будем обозначать его в атмосферах (атм), округляя значения. Нормальное атмосферное давление составляет 1 атм, что равняется 760 мм ртутного столба, или чуть более 1 бара, или 0.1 МПа (мегапаскаль).

Как вы поняли, в частности, из примера со льдом Ic , существование кристаллических модификаций льда возможно в условиях термодинамического равновесия, т.е. при нарушении баланса температуры и давления, определяющего наличие какого-либо кристаллического вида льда, этот вид исчезает, переходя в иную модификацию. Диапазон этих термодинамических значений различается, для каждого вида он свой. Рассмотрим другие типы льда, не строго в номенклатурном порядке, а в связи с этими структурными переходами.

Лед II относится к тригональной сингонии. Он может образоваться из гексагонального типа при давлении около 3 000 атм и температуре около минус 75°С, или из другой модификации (лед V ), путем резкого снижения давления при температуре минус 35°С. Существование II типа льда возможно в условиях минус 170°С и давлении от 1 до 50 000 атм (или 5 гигапаскалей (ГПа)). По оценкам ученых, лед такой модификации, вероятно, может входить в состав ледяных спутников дальних планет Солнечной системы. Нормальное атмосферное давление и температура выше минус 113°C создают условия для перехода этого типа льда в обычный гексагональный лед.

На иллюстрации 13 показана кристаллическая решетка льда II . Видна характерная особенность структуры – своего рода, полые шестиугольные каналы, образуемые молекулярными связками. Элементарная ячейка (область, выделенная на иллюстрации ромбом) состоит из двух связок, которые смещены относительно друг друга, условно говоря, «по высоте». В результате образуется ромбоэдрическая система решетки. Размеры ячейки a=b=c = 7.78 Å; α=β=γ = 113.1°. В ячейке 12 молекул. Угол связей между молекулами (О–О–О) варьируется от 80 до 120°.

При нагреве II модификации можно получить лед III , и наоборот, охлаждение льда III превращает его в лед II . Также лед III образуется, когда температуру воды постепенно понижают до минус 23°С, увеличивая давление до 3 000 атм.
Как видно на фазовой диаграмме (илл. 6 ), термодинамические условия для стабильного состояния льда III , а также другой модификации – льда V , невелики.

Льды III и V имеют четыре тройные точки с окружающими модификациями (термодинамические значения, при которых возможно существование разных состояний вещества). Тем не менее, льды II , III и V модификаций могут существовать в условиях нормального атмосферного давления и температуры минус 170°С, а нагревание их до минус 150°С приводит к образованию льда Ic .

По сравнению с другими модификациями высокого давления, известными в настоящее время, лед III облает наименьшей плотностью – при давлении 3 500 атм. она равна 1.16 г/см³.
Лед III является тетрагональной разновидностью кристаллизованной воды, но сама структура решетки льда III имеет нарушения. Если обычно каждую молекулу окружают 4 соседние, то в данном случае этот показатель будет иметь значение 3.2, и кроме того поблизости могут находиться ещё 2 или 3 молекулы, которые не имеют водородных связей.
В пространственном построении молекулы образуют правосторонние спирали.
Габариты элементарной ячейки с 12 молекулами при минус 23°С и около 2800 атм: a=b = 6,66, c = 6,93 Å; α=β=γ = 90°. Угол водородных связей в диапазоне от 87 до 141°.

На иллюстрации 15 условно представлена пространственная схема молекулярного строения льда III . Молекулы (точки голубого цвета), распложенные ближе к зрителю, показаны крупнее, а водородные связи (линии красного цвета) соответственно толще.

А теперь, как говорится, по горячим следам, давайте сразу «перескочим» идущие после льда III в номенклатурном порядке кристаллические модификации, и скажем несколько слов о льде IX .
Этот вид льда, по сути, измененный лед III , подвергнутый быстрому глубокому охлаждению от минус 65 до минус 108°С во избежание трансформирования его в лед II . Лед IX сохраняет устойчивость при температуре ниже 133°С и давлении от 2 000 до 4 000 атм. Его плотность и структура идентична III виду, но в отличие от льда III в структуре льда IX имеется порядок в расположении протонов.
Нагревание льда IX не возвращает его к исходной III модификации, а превращает в лед II . Размеры ячейки: a=b = 6,69, c = 6,71 Å при температуре минус 108°С и 2800 атм.

Кстати , роман писателя-фантаста Курта Воннегута (Kurt Vonnegut) 1963 г. «Колыбель для кошки» строится вокруг вещества, именуемого лед-девять, который описывается как искусственно полученный материал, представляющий большую опасность для жизни, так как вода при контакте с ним кристаллизуется, превращаясь в лед-девять. Попадание даже небольшого количества этого вещества в природную акваторию, выходящую к мировому океану, грозит замерзанием всей воды на планете, что в свою очередь означает гибель всего живого. В конце концов, так все и происходит.

Лед IV представляет собой метастабильное (слабоустойчивое) тригональное образование кристаллической решетки. Его существование возможно в фазовом пространстве льдов III , V и VI модификаций. Получить лед IV можно из аморфного льда высокой плотности, медленно нагревая его, начиная от минус 130°С при постоянном давлении 8 000 атм.
Размер элементарной ромбоэдрической ячейки составляет 7.60 Å, углы α=β=γ = 70.1°. Ячейка включает в себя 16 молекул; водородные связи между молекулами асимметричные. При давлении 1 атм и температуре минус 163°С плотность льда IV равна 1.27 г/см³. Угол связей О–О–О: 88–128°.

Аналогично IV типу льда образуется и лед XII – путем нагревания высокоплотной аморфной модификации (об этом ниже) от минус 196 до минус 90°С при том же давлении 8 000 атм, но уже с более высокой скоростью.
Лед XII также метастабилен в фазовой области V и VI кристаллических типов. Является разновидностью тетрагональной сингонии.
Элементарная ячейка содержит 12 молекул, которые, благодаря водородным связям с углами 84–135°, располагаются в кристаллической решетке, образуя двойную правостороннюю спираль. Ячейка имеет размеры: a=b = 8.27, c = 4.02 Å; углы α=β=γ = 90º. Плотность льда XII составляет 1.30 г/см³ при нормальном атмосферном давлении и температуре минус 146°С. Углы водородных связей: 67–132°.

Из открытых на сегодняшний день модификаций водяного льда самую сложную кристаллическую структуру имеет лед V . 28 молекул составляют его элементарную ячейку; водородные связи пролегают через зазоры в других молекулярных соединениях, а некоторые молекулы образуют связи только с определенными соединениями. Угол водородных связей между соседними молекулами сильно различается – от 86 до 132°, поэтому в кристаллической решетке льда V имеется сильное напряжение и огромный запас энергии.
Параметры ячейки при условиях нормального атмосферного давления и температуры минус 175°С: a= 9.22, b= 7.54, c= 10.35 Å; α=β = 90°, γ = 109,2 °.
Лед V – это моноклинная разновидность, образуемая охлаждением воды до минус 20°С при давлении около 5 000 атм. Плотность кристаллической решетки с учетом давления 3 500 атм составляет 1.24 г/см³.
Пространственная схема кристаллической решетки льда V типа показана на иллюстрации 18 . Серым контуром выделена область элементарной ячейки кристалла.

Упорядоченное расположение протонов в структуре льда V делает его другой разновидностью, именуемой льдом XIII . Данную моноклинную модификацию можно получить в результате охлаждения воды ниже минус 143°С с добавлением соляной кислоты (HCl) для облегчения фазового перехода, создавая давление 5 000 атм. Обратимый переход от XIII типа к V типу возможен в диапазоне температур от минус 193°С до минус 153°С.
Размеры элементарной ячейки льда XIII слегка отличаются от V модификации: а= 9,24, b= 7,47, c= 10.30 Å; α=β = 90°, γ= 109,7 ° (при 1 атм, минус 193°С). Количество молекул в ячейке то же – 28. Угол водородных связей: 82–135°.

В следующей части нашей статьи мы продолжим обзор модификаций водяного льда.

До встречи на страницах нашего блога!

Вы так же можете ознакомиться с другими статьями:

Ледяные композиции в виде елочек

Ледяное оформление Крещенских купаний

Новогодние ледяные композиции

Ледяной джостик SonyPlaystation

Работа с людьми на льдах

Ледяной бар Chivas Regal

Ледяное оформление банкетов

Ледяная стена в Манчестере

Ледяная мебель Хонгтао Жоу

Посуда изо льда

Ледяной замок в Миннесоте

Ледяной дом Майкрософт

Замерзшие пузыри

Ледяной клык в долине Вейл

Белые медведи катаются по льду

Щенок и кубик льда

Ледяной городок в Красногорске

Ледяная скульптура - Ангел

Фигурное катание на тонком льду

Ледяные тени

Ледяные пластинки

Чайка, попавшая в лед

Модные вещи во льду

Космический лед. Часть вторая: кометы.

О. В. Мосин, И. Игнатов (Болгария)

Аннотация Значение льда в поддержании жизни на нашей планете трудно недооценить. Лёд оказывает большое влияние на условия обитания и жизнедеятельности растений и животных и на разные виды хозяйственной деятельности человека. Покрывая воду, лед из-за своей низкой плотности играет в природе роль плавучего экрана, защищающего реки и водоемы от дальнейшего замерзания и сохраняющего жизнь подводным обитателям. Использование льда в различных целях (снегозадержание, устройство ледяных переправ и изотермических складов, льдозакладка хранилищ и шахт) представляет предмет ряда разделов гидрометеорологических и инженерно-технических наук, таких как ледотехника, снеготехника, инженерное мерзлотоведение, а также деятельности специальных служб ледовой разведки, ледокольного транспорта и снегоуборочной техники. Природный лёд используется для хранения и охлаждения пищевых продуктов, биологических и медицинских препаратов, для чего он специально производится и заготавливается, а талую воду, приготовленную при плавлении льда используют в народной медицине – для повышения обмена веществ и выведения шлаков из организма. Статья знакомит читателя с новыми малоизвестными свойствами и модификациями льда.

Лёд – кристаллическая форма воды, обладающая по последним данным четырнадцатью структурными модификациями. Среди них имеются и кристаллические (природный лед) и аморфные (кубический лед) и метастабильные модификации, различающиеся друг от друга взаимным расположением и физическими свойствами молекул воды, связанными водородными связями, формирующими кристаллическую решетку льда. Все они кроме привычного нам природного льда I h , кристаллизующего в гексагональной решетке, образуются в условиях экзотических - при очень низких температурах сухого льда и жидкого азота и высоких давлениях в тысячи атмосфер, когда углы водородных связей в молекуле воды изменяются и образуются кристаллические системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле.

В природе лёд представлен главным образом, одной кристаллической разновидностью, кристаллизующейся в гексагональной решётке, напоминающей структуру алмаза, где каждая молекула воды окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76 ангстрем и размещенных в вершинах правильного тетраэдра . В связи с низким координационным числом структура льда является сетчатой, что влияет на его невысокую плотность, составляющая 0,931 г/см 3 .

Самое необычное свойство льда - это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки льда или гигантских ледниковых масс. Лёд встречается в природе в виде материкового, плавающего и подземного льда, а также в виде снега и инея. Он распространён во всех областях обитания человека. Собираясь в больших количествах, снег и лед формируют особые структуры с принципиально иными, чем у отдельных кристаллов или снежинок, свойствами. Природный лед сформирован в основном льдом осадочно-метаморфического происхождения, образовавшимся из твердых атмосферных осадков в результате последующего уплотнения и перекристаллизации. Характерная особенность природного льда - зернистость и полосчатость. Зернистость обусловлена процессами рекристаллизации; каждое зерно ледникового льда представляет собой кристалл неправильной формы, тесно примыкающий к другим кристаллам в ледяной толще таким образом, что выступы одного кристалла плотно входят в углубления другого. Такой лед получил название поликристаллического. В нем каждый кристалл льда представляет собой слой тончайших листочков, налегающих друг на друга в базисной плоскости, перпендикулярной к направлению оптической оси кристалла.

Общие запасы льда на Земле составляют согласно расчетам около 30 млн. км 3 (табл. 1). Больше всего льда сосредоточено в Антарктиде, где толщина его слоя достигает 4 км. Также имеются данные о наличии льда на планетах Солнечной системы и в кометах. Лед имеет столь большое значение для климата нашей планеты и обитания на ней живых существ, что ученые обозначили для льда особую среду - криосферу, границы которой простираются высоко в атмосферу и глубоко в земную кору .

Табл. 1 . Количество, распространение и время жизни льда.

Кристаллы льда неповторимы по своей форме и пропорциям. Любой растущий природный кристалл, включая кристалл льда льда всегда стремится создать идеальную правильную кристаллическую решетку, поскольку это выгодно с точки зрения минимума его внутренней энергии. Любые примеси, как известно, искажают форму кристалла, поэтому при кристаллизации воды в первую очередь в решётку встраиваются молекулы воды, а посторонние атомы и молекулы примесей вытесняются в жидкость. И только когда примесям деваться уже некуда, кристалл льда начинает встраивать их в свою структуру или оставляет в виде полых капсул с концентрированной незамерзающей жидкостью - рассолом. Поэтому морской лёд пресный и даже самые грязные водоемы покрываются прозрачным и чистым льдом. При плавлении льда он вытесняет примеси в рассол. В планетарном масштабе феномен замерзания и таяния воды, наряду с испарением и конденсацией воды, играет роль гигантского очистительного процесса, в котором вода на Земле постоянно очищает сама себя .

Табл. 2 . Некоторые физические свойства льда I.

Свойство

Значение

Примечание

Теплоемкость, кал/(г·°C)

Теплота таяния, кал/г

Теплота парообразования, кал/г

Сильно уменьшается с понижением температуры

Коэффициент термического расширения, 1/°C

9,1·10 -5 (0 °C)

Поликристаллический лёд

Теплопроводность, кал/(см·сек·°C)

Поликристаллический лёд

Показатель преломления:

Поликристаллический лёд

Удельная электрическая проводимость, ом -1 ·см -1

Кажущаяся энергия активации 11 ккал/моль

Поверхностная электропроводность, ом -1

Кажущаяся энергия активации 32 ккал/моль

Модуль упругости Юнга, дин/см 2

9·10 10 (-5 °C)

Поликристаллический лёд

Сопротивление, МН/м 2:

раздавливанию

Поликристаллический лёд

Поликристаллический лёд

Поликристаллический лёд

Динамическая вязкость, пуаз

Поликристаллический лёд

Энергия активации при деформировании и механической релаксации, ккал/моль

Линейно растет на 0,0361 ккал/(моль·°C) от 0 до 273,16 К

1 кал/(г·°С)=4,186 кДж/(кг·К); 1 ом -1 ·см -1 =100 сим/м; 1 дин = 10 -5 Н; 1 Н = 1 кг·м/с²; 1 дин/см=10 -7 Н/м; 1 кал/(см·сек°С)=418,68 вт/(м·К); 1 пуаз=г/см·с = 10 -1 Н сек/м 2 .

В связи с широким распространением льда на Земле, отличие физических свойств льда (табл. 2) от свойств других веществ играет важную роль во многих природных процессах . Лёд обладает многими другими полезными для поддержания жизни свойствами и аномалиями – аномалиями плотности, давления, объема, теплопроводности. Если бы не было водородных связей, сцепляющих молекулы воды в кристалл, лед плавился бы при –90 °С. Но этого не происходит из-за наличия водородных связей между молекулами воды. Вследствие меньшей, чем у воды, плотности лёд образует на поверхности воды плавучий покров, предохраняющий реки и водоёмы от донного замерзания, поскольку его теплопроводность намного меньше, чем воды. При этом наименьшая плотность и объем наблюдается при +3,98 °С (рис. 1). Дальнейшее охлаждение воды до 0 0 С постепенно приводит не к уменьшению, а к увеличению ее объема почти на 10%, когда вода превращается в лед. Такое поведение воды свидетельствует об одновременном существовании в воде двух равновесных фаз – жидкой и квазикристаллической по аналогии с квазикристаллами, кристаллическая решетка которых имеет не только периодическое строение, но и обладает осями симметрии разных порядков, существование которых ранее противоречило представлениям кристаллографов . Эта теория, впервые выдвинутая известным отечественным физиком-теоретиком Я. И. Френкелем, основана на предположении, что часть молекул жидкости образует квазикристаллическую структуру, тогда как остальные молекулы являются газоподобными, свободно движущимися по объему. Распределение молекул в малой окрестности любой фиксированной молекулы воды имеет определенную упорядоченность, несколько напоминающую кристаллическую, хотя и более рыхлую . По этой причине структуру воды иногда называют квазикристаллической или кристаллоподобной, т. е. обладающей симметрией и наличием упорядоченность во взаимном расположении атомов или молекул.

Рис. 1 . Зависимость удельного объема льда и воды от температуры

Другое свойство состоит в том, что скорость течения льда прямо пропорциональна энергии активации и обратно пропорциональна абсолютной температуре, так что с понижением температуры лёд приближается по своим свойствам к абсолютно твёрдому телу. В среднем при близкой к таянию температуре текучесть льда в 10 6 раз выше, чем у горных пород . Благодаря своей текучести лёд не накопляется в одном месте, а в виде ледников постоянно перемещается. Зависимость между скоростью течения и напряжением у поликристаллического льда гиперболическая; при приближённом описании её степенным уравнением показатель степени увеличивается по мере роста напряжения.

Видимый свет льдом практически не поглощается, поскольку световые лучи проходят кристалл льда насквозь, но задерживает ультрафиолетовое излучение и большую часть инфракрасного излучения Солнца. В этих областях спектра лёд выглядит абсолютно чёрным, поскольку коэффициент поглощения света в этих областях спектра очень велик. В отличие от кристаллов льда, белый свет, падающий на снег, не поглощается, а многократно преломляется в ледяных кристаллах и отражается от их граней. Поэтому снег выглядит белым.

Вследствие очень высокой отражательной способности льда (0,45) и снега (до 0,95) покрытая ими площадь - в среднем за год около 72 млн. км 2 в высоких и средних широтах обоих полушарий - получает солнечного тепла на 65% меньше нормы и является мощным источником охлаждения земной поверхности, чем в значительной мере обусловлена современная широтная климатическая зональность. Летом в полярных областях солнечная радиация больше, чем в экваториальном поясе, тем не менее температура остаётся низкой, т. к. значительная часть поглощаемого тепла затрачивается на таяние льда, имеющего очень высокую теплоту таяния.

К другим необычным свойствам льда относят и генерацию электромагнитного излучения его растущими кристаллами . Известно, что большинство растворенных в воде примесей не передаются льду, когда он начинает расти; они вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. При этом примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом формируется ледовая структура.

Но самое удивительное в структуре льда заключается в том, что молекулы воды при низких температурах и высоких давлениях внутри углеродных нанотрубок могут кристаллизоваться в форме двойной спирали, напоминающей молекулы ДНК. Это было доказано недавними компьютерными экспериментами американских учёных под руководством Сяо Чэн Цзэна из Университете штата Небраска (США). Чтобы вода сформировала спираль в моделируемом эксперименте она помещалась в нанотрубки диаметром от 1,35 до 1,90 нм под высоким давлением, варьирующимися от 10 до 40000 атмосфер и задавалась температура –23 °C . Ожидалось увидеть, что вода во всех случаях образует тонкую трубчатую структуру. Однако, модель показала, что при диаметре нанотрубки в 1,35 нм и внешнем давлении 40000 атмосфер водородные связи в структуре льда искривились, что привело к образованию спирали с двойной стенкой – внутренней и внешней. Внутренняя стенка в этих условиях оказалась скрученной в четверо спиралью, а внешняя стенка состояла из четырёх двойных спиралей, похожих на молекулу ДНК (рис. 2). Данный факт может служить подтверждением связи структуры жизненно-важной молекулы ДНК со структурой самой воды и что вода служила матрицей для синтеза молекул ДНК.

Рис. 2 . Компьютерная модель структуры замерзшей воды в нанотрубках, напоминающая молекулу ДНК (Фото из журнала New Scientist , 2006)

Другое из важнейших свойств воды, открытых исследованых в последнее время, заключается в том, что вода обладает способностью запоминать информацию о прошлых воздействиях. Это впервые доказали японский исследователь Масару Эмото и наш соотечественник Станислав Зенин , одним из первых предложивший кластерную теорию строения воды, состоящей из циклических ассоциатов объемной полиэдрической структуры – кластеров общей формулы (Н 2 О) n , где n по последним данным может достигать сотен и даже тысяч единиц. Именно благодаря наличию в воде кластеров вода обладает информационными свойствами. Исследователи фотографировали процессы замораживания воды в микрокристаллы льда, действуя на неё различными электромагнитными и акустическими полями, мелодиями, молитвой, словами или мыслями. Оказалось, что под действием положительной информации в виде красивых мелодий и слов лёд замораживался в симметричные шестигранные кристаллы. Там, где звучала неритмичная музыка, злые и оскорбительные слова, вода, наоборот, замерзала в хаотичные и бесформенные кристаллы. Это является доказательством того, что вода обладает особой, чувствительной к внешним информационным воздействиям структурой. Предположительно мозг человека, состоящий на 85-90% из воды, обладает сильным структурирующим воздействием на воду.

Кристаллы Эмото вызывают одновременно интерес и недостаточно обоснованную критику. Если рассмотреть их внимательно, можно увидеть, что их структура состоит из шести верхов. Но еще более внимательный анализ показывает, что у снежинок зимой такая же структура, всегда симметричная и с шестью верхами. В какой степени кристализованные структуры содержат информацию об окружении, где были созданы? Структура снежинок может быть красивой или бесформенной. Это указывает на то, что контрольная проба (облако в атмосфере), где они возникают, оказывает на них такое же влияние, как и первоначальные условия. Первоначальными условиями являются солнечная активность, температура, геофизические поля, влажность и др. Все это значит, что из т.н. среднего ансамбля можно сделать вывод о приблизительно одинаковой структуре водных капель, а затем и снежинок. Их масса почти одинакова, и они двигаются в атмосфере с похожей скоростью. В атмосфере они продолжают оформлять свои структуры и увеличиваться в объеме. Даже если они сформировались в разных частях облака, в одной группе всегда есть определенное количество снежинок, возникших при почти одинаковых условиях. А ответ на вопрос, что представляет собой положительная и отрицательная информация о снежинках, можно искать у Эмото. В лабораторных условиях негативная информация (землетрясение, неблагоприятные для человека звуковые вибрации и т.д.) не образует кристаллы, а положительная информация, как раз наоборот. Очень интересно, в какой степени один фактор может оформить одинаковые или подобные структуры снежинок. Наибольшая плотность воды наблюдается при температуре 4 °C. Научно доказано, что плотность воды уменьшается, когда начинают образовываться шестиугольные ледяные кристаллы при понижении температуры ниже нуля. Это является результатом действия водородных связей между молекулами воды.

Какова причина подобного структурирования? Кристаллы представляют собой твердые тела, а составляющие их атомы, молекулы или йоны расположены в правильной, повторяющейся структуре, в трех пространственных измерениях. Структура водных кристаллов немного отличается. По мнению Айзека, всего лишь 10% водородных связей во льде являются ковалентными, т.е. с достаточно стабильной информацией. Водородные связи между кислородом одной молекулы воды и водородом другой проявляют наибольшую чувствительность к внешним воздействиям. Спектр воды при построении кристаллов относительно различный во времени. Согласно доказанному Антоновым и Юскеселиевым эффекту дискретного испарения водной капли и его зависимости от энергетических состояний водородных связей, мы можем искать ответ насчет структурирования кристаллов. Каждая часть спектра зависит от поверхностного напряжения водяных капель. В спектре шесть пиков, которые указывают на разветвления снежинки.

Очевидно то, что в экспериментах Эмото начальная «контрольная» проба оказывает влияние на вид кристаллов. Это означает то, что после воздействия определенного фактора, можно ожидать формирование подобных кристаллов. Почти невозможно получить одинаковые кристаллы. При проверке воздействия слова »любовь» на воду, Эмото не указывает ясно, был ли данный эксперимент осуществлен с разными пробами.

Необходимы вдвойне слепые эксперименты для того, чтобы проверить, достаточно ли дифференцирована методика Эмото. Доказательство Айзека о том, что 10% водяных молекул после замерзания образуют ковалентные связи, показывает нам, что вода использует при замерзании данную информацию. Достижение Эмото даже и без вдвойне слепых экспериментов остается достаточно важным в отношении информационных свойств воды.

Природная снежинка, Уилсон Бентли, 1925

Снежинка Эмото, полученная из природной воды

Одна снежинка - природная, а другая - созданная Эмото, указывает на то, что многообразие в водяном спектре не безгранично.

Earthquake, Sofia, 4.0 Richter scale, 15 November 2008,
Dr. Ignatov, 2008©, Prof. Antonov"s device©

Данная фигура указывает на разницу между контрольной пробой и сделанными в другие дни. Молекулы воды разрывают наиболее энергетические водородные связки в воде, а также два пика в спектре во время природного явления. Исследование было проведено при помощи прибора Антонова. Биофизический результат показывает понижение жизненного тонуса организма при землетрясении. Во время землетрясения вода не может менять свою структуру в снежинках в лаборатории Эмото. Существуют доказательства об изменении электропроводимости воды во время землетрясения.

В 1963 г. танзанийский школьник Эрасто Мпемба заметил, что горячая вода замерзает быстрее холодной. Этот феномен получил название эффект Мпемба. Хотя уникальное свойство воды было замечено намного раньше Аристотелем, Френсисом Беконом и Рене Декартом. Явление было доказано многократно целым рядом независимых друг от друга экспериментов. У воды есть и еще одно странное свойство. По моему мнению, объяснение этому следующее: у дифференциально неравновесного энергетического спектра (ДНЭС) кипяченой воды меньшая средняя энергия водородных связок между водяными молекулами, чем у пробы, взятой при комнатной температуре Это значит, что кипяченой воде необходимо меньше энергии для того, чтобы начать структурировать кристаллы и замерзнуть.

Разгадка структуры льда и его свойств заключается в строении его кристалла. Кристаллы всех модификаций льда построены из молекул воды H 2 O, соединённых водородными связями в трёхмерные сетчатые каркасы с определенным расположением водородных связей. Молекулу воды можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием) . В её центре находится атом кислорода, находящийся в состоянии sp 3 -гибридизации, а в двух вершинах - по атому водорода, по одному из 1s-электронов которых задействованы в образовании ковалентной Н-О связи с кислородом. Две оставшиеся вершины занимают пары неспаренных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, поэтому их называют неподеленными. Пространственная форма молекулы Н 2 О объясняется взаимным отталкиванием атомов водорода и неподеленных электронных пар центрального атома кислорода.

Водородная связь имеет важное значение в химии межмолекулярных взаимодействий и обусловлена слабыми электростатическими силами и донорно-акцепторными взаимодействиями . Она возникает при взаимодействии электронодефицитного электронами атома водорода одной молекулы воды с неподеленной электронной парой атома кислорода соседней молекулы воды (О-Н…О). Отличительной особенностью водородной связи является сравнительно низкая прочность; она в 5-10 раз слабее химической ковалентной связи . По энергии водородная связь занимает промежуточное положение между химической связью и ван-дер-ваальсовыми взаимодействиями, удерживающими молекулы в твердой или жидкой фазе . Каждая молекула воды в кристалле льда может одновременно образовывать четыре водородные связи с другими соседними молекулами под строго определенными углами, равными 109°47", направленных к вершинам тетраэдра, которые не позволяют при замерзании воды создавать плотную структуру (рис. 3). В структурах льда I, Ic, VII и VIII этот тетраэдр правильный. В структурах льда II, III, V и VI тетраэдры заметно искажены . В структурах льда VI, VII и VIII можно выделить две взаимоперекрещивающиеся системы водородных связей. Этот невидимый каркас из водородных связей располагает молекулы воды в виде сетчатой сетки, по структуре напоминающей шестигранные соты с полыми внутренними каналами. Если лед нагреть, сетчатая структура разрушается: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, - этим объясняется, почему вода тяжелее льда.

Рис. 3 . Образование водородной связи между четырьмя молекулами Н 2 О (красные шарики обозначают центральные атомы кислорода, белые шарики – атомы водорода)

Специфика водородных связей и межмолекулярных взаимодействий, характерная для структуры льда, сохраняется в талой воде, так как при плавлении кристалла льда разрушается только 15% всех водородных связей. Поэтому присущая льду связь каждой молекулы воды с четырьмя соседними ("ближний порядок") не нарушается, хотя и наблюдается бoльшая размытость кислородной каркасной решетки. Водородные связи могут сохраняться и при кипении воды. Лишь в водяном пару водородные связи отсутствуют.

Лед, который образуется при атмосферном давлении и плавится при 0 °С, - самое привычное, но всё же до конца не изученное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода тетраэдров молекул воды выстроены упорядоченно, образуя правильные шестиугольники, наподобие шестигранных пчелиных сот, а атомы водорода занимают самые разные положения на соединяющих атомы кислорода водородных связях (рис. 4). Поэтому возможны шесть эквивалентных ориентаций молекул воды относительно их соседей. Часть из них исключается, поскольку нахождение одновременно двух протонов на одной водородной связи маловероятно, но остаётся достаточная неопределённость в ориентации молекул воды. Такое поведение атомов нетипично, поскольку в твердом веществе все атомы подчиняются одному закону: либо они атомы расположены упорядоченно, и тогда это - кристалл, либо случайно, и тогда это - аморфное вещество. Такая необычная структура может реализоваться в большинстве модификаций льда - I h , III, V, VI и VII (и по-видимому в Ic) (табл. 3), а в структуре льда II, VIII и IX молекулы воды ориентационно упорядочены. По выражению Дж. Бернала лёд кристалличен в отношении атомов кислорода и стеклообразен в отношении атомов водорода.

Рис. 4 . Структура льда природной гексагональной конфигурации I h

В других условиях, например в Космосе при больших давлениях и низких температурах, лёд кристаллизуется иначе, образуя другие кристаллические решетки и модификации (кубическая, тригональная, тетрагональная, моноклинная и др.), каждая из которых обладает собственной структурой и кристаллической решеткой (табл. 3). Структуры льдов различных модификаций были расчитаты российскими исследователями д.х.н. Г.Г. Маленковым и к.физ.-мат.н. Е.А. Желиговской из Института физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук . Льды II, III и V-й модификации длительное время сохраняются при атмосферном давлении, если температура не превышает -170 °С (рис. 5). При охлаждении приблизительно до -150 °С природный лёд превращаются в кубический лёд Ic, состоящий из кубов и октаэдров размером в несколько нанометров . Лед I c иногда появляется и при замораживании воды в капиллярах, чему, видимо, способствует взаимодействие воды с материалом стенки и повторение его структуры. Если температура чуть выше -110 0 C, на металлической подложке формируются кристаллы более плотного и тяжелого стеклообразного аморфного льда с плотностью 0,93 г/см 3 . Обе эти формы льда могут самопроизвольно переходить в гексагональный лёд, причём тем быстрее, чем выше температура.

Табл. 3 . Некоторые модификации льда и их физические параметры.

Примечание. 1 Å = 10 -10 м


Рис. 5 . Диаграмма состояния кристаллических льдов различных модификаций.

Существуют и льды высокого давления - II и III тригональной и тетрагональной модификаций, образованные из полых соток, сформированных шестиугольными гофрированными элементами, сдвинутыми друг относительно друга на одну треть (рис. 6 и рис. 7). Эти льды стабилизируются в присутствии благородных газов гелия и аргона. В структуре льда V моноклинной модификации углы между соседними атомами кислорода составляют от 86 0 до 132°, что сильно отличается от валентного угла в молекуле воды, составляющем 105°47’. Лед VI тетрагональной модификации состоит из двух вставленных друг в друга каркасов, между которыми нет водородных связей, в результате чего формируется объёмоцентрированная кристаллическая решётка (рис. 8). Основу структуры льда VI составляют гексамеры - блоки из шести молекул воды. Их конфигурация в точности повторяет строение устойчивого кластера воды, которую дают расчёты. Аналогичную структуру с каркасами льда I, вставленных друг в друга, имеют льды VII и VIII кубической модификации, которые являеются низкотемпературными упорядоченными формами льда VII. При последующем увеличении давления расстояние между атомами кислорода в кристаллической решетке льдов VII и VIII будет уменьшаться, в результате формируется структура льда X, атомы кислорода в котором выстроены в правильную решётку, а протоны упорядочены.

Рис. 7 . Лед III-й конфигурации .

Лед XI образуется при глубоком охлаждении льда I h c добавкой щелочи ниже 72 К при нормальном давлении. В этих условиях образуются гидроксильные дефекты кристалла, позволяющие растущему кристаллу льда изменять свою структуру. Лед XI обладает ромбической кристаллической решёткой с упорядоченным расположением протонов и формируется сразу во многих центрах кристаллизации около гидроксильных дефектов кристалла.

Рис. 8 . Лед VI конфигурации .

Среди льдов имеются и метастабильные формы IV и XII, времена жизни которых составляют секунды, обладающие самой красивой структурой (рис. 9 и рис. 10). Для получения метастабильных льдов нужно сжимать лёд I h до давления 1,8 ГПа при температуре жидкого азота. Эти льды образуются гораздо легче и особенно стабильны, если давлению подвергается переохлажденная тяжёлая вода. Другая метастабильная модификация - лёд IX образуется при переохлаждении льда III и по существу представляет собой его низкотемпературную форму.

Рис. 9 . Лед IV-конфигурации .

Рис. 10 . Лёд XII конфигурации .

Две последние модификации льда - с моноклинной XIII и ромбической конфигурацией XIV были открыты учеными из Оксфорда (Великобритания) совсем недавно - в 2006 году. Предположение о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре -160 °С очень высока, и собраться вместе молекулам чистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Этого удалось достичь с помощью катализатора - соляной кислоты, которая повысила подвижность молекул воды при низких температурах. На Земле подобные модификации льда образовываться не могут, но они могут существовать в Космосе на остывших планетах и замерзших спутниках и кометах. Так, расчёт плотности и тепловых потоков с поверхности спутников Юпитера и Сатурна позволяет утверждать, что у Ганимеда и Каллисто должна быть ледяная оболочка, в которой чередуются льды I, III, V и VI. У Титана льды образуют не кору, а мантию, внутренний слой которой состоит из льда VI, других льдов высокого давления и клатратных гидратов, а сверху расположен лёд I h .

Рис. 11 . Разнообразие и форма снежинок в природе

Высоко в атмосфере Земли при низкой температуре вода кристаллизуется из тетраэдров, формирующих гексагональный лед I h . Центром образования кристаллов льда является твердые частицы пыли, которые поднимает в верхние слои атмосферы ветер. Вокруг этого зародышевого микрокристалла льда в шести симметричных направлениях нарастают иголочки, образованные отдельными молекулами воды, на которых вырастают боковые отросточки - дендриты. Температура и влажность воздуха вокруг снежинки одинаковы, поэтому изначально она симметрична по своей форме. По мере формирования снежинки постепенно опускаются в более низкие слои атмосферы, где температура выше. Здесь происходит плавление и их идеальная геометрическая форма искажается, формируя многообразие снежинок (рис. 11).

При дальнейшем плавлении гексагональная структура льда разрушается и образуется смесь циклических ассоциатов кластеров, а также из три-, тетра-, пента-, гекса-меров воды (рис. 12) и свободных молекул воды. Изучение строения образующихся кластеров часто значительно затруднено, поскольку вода по современным данным – смесь различных нейтральных кластеров (Н 2 О) n и их заряженных кластерных ионов [Н 2 О] + n и [Н 2 О] - n , находящихся в динамическом равновесии между собой со временем жизни 10 -11 -10 -12 секунд .

Рис. 12. Возможные кластеры воды (а-h) состава (Н 2 О) n , где n = 5-20.

Кластеры способны взаимодействовать друг с другом за счет выступающих наружу граней водородных связей, образуя более сложные полиэдрические структуры, такие как гексаэдр, октаэдр, икосаэдр и додекаэдр. Таким образом, структура воды связана с так называемыми Платоновыми телами (тетраэдр, гексаэдр, октаэдр, икосаэдр и додекаэдр), названными в честь открывших их древнегреческого философа и геометра Платона, форма которых определяется золотой пропорцией (рис. 13).


Рис. 13 . Платоновы тела, геометрическая форма которых определяется золотой пропорцией.

Число вершин (В), граней (Г) и рёбер (Р) в любом пространственном многограннике описывается соотношением:

В + Г = Р + 2

Отношение количества вершин (В) правильного многогранника к количеству рёбер (Р) одной его грани равно отношению количества граней (Г) этого же многогранника к количеству рёбер (Р), выходящих из одной его вершины. У тетраэдра это отношение равно 4:3, у гексаэдра (6 граней) и октаэдра (8 граней) - 2:1, а у додекаэдра (12 граней) и икосаэдра (20 граней) - 4:1.

Стуктуры полиэдрических кластеров воды, расчитаные российскими учеными, были подтверждены с помощью современных методов анализа: спектроскопией протонного магнитного резонанса, фемтосекундной лазерной спектроскопией, дифракцией рентгеновских лучей и нейтронов на кристаллах воды . Открытие кластеров воды и способность воды хранить информацию – два самых важных открытия XXI тысячелетия. Это наглядно доказывает, что природе характерна симметрия в виде точных геометрических форм и пропорций, характерным кристаллам льда.

ЛИТЕРАТУРА.

1. Белянин В., Романова Е. Жизнь, молекула воды и золотая пропорция // Наука и жизнь, 2004, Т. 10, № 3, с. 23-34.

2. Шумский П. А., Основы структурного ледоведения. - Москва, 1955б с. 113.

3. Мосин О.В., Игнатов И. Осознание воды как субстанции жизни. // Сознание и физическая реальность. 2011, Т 16, № 12, с. 9-22.

4. Петрянов И. В. Самое необыкновенное вещество в мире.Москва, Педагогика, 1981, с. 51-53.

5 Эйзенберг Д, Кауцман В. Строение и свойства воды. – Ленинград, Гидрометеоиздат, 1975, с. 431.

6. Кульский Л. А., Даль В. В., Ленчина Л. Г. Вода знакомая и загадочная. – Киев, Родянбска школа, 1982, с. 62-64.

7. Зацепина Г. Н. Структура и свойства воды. – Москва, изд. МГУ, 1974, с. 125.

8. Антонченко В. Я., Давыдов Н. С., Ильин В. В. Основы физики воды - Киев, Наукова думка, 1991, с. 167.

9. Simonite T. DNA-like ice "seen" inside carbon nanotubes // New Scientist, V. 12, 2006.

10. Эмото М. Послания воды. Тайные коды кристаллов льда. - София, 2006. с. 96.

11. Зенин С. В., Тяглов Б. В. Природа гидрофобного взаимодействия. Возникновение ориентационных полей в водных растворах // Журнал физической химии, 1994, Т. 68, № 3, с. 500-503.

12. Пиментел Дж., Мак-Клеллан О. Водородная связью - Москва, Наука, 1964, с. 84-85.

13. Бернал Дж., Фаулер Р. Структура воды и ионных растворов // Успехи физических наук, 1934, Т. 14, № 5, с. 587-644.

14. Хобза П., Заградник Р. Межмолекулярные комплексы: Роль Ван-дер-ваальсовых систем в физической химии и биодисциплинах. – Москва, Мир, 1989, с. 34-36.

15. Паундер Э. Р. Физика льда, пер. с англ. - Москва, 1967, с. 89.

16. Комаров С. М. Ледяные узоры высокого давления. // Химия и жизнь, 2007, №2, С. 48-51.

17. Е. А. Желиговская, Г. Г. Маленков. Кристаллические льды // Успехи химии,2006, № 75, с. 64.

18. Fletcher N. H. The chemical physics of ice, Cambreage, 1970.

19. Немухин А. В. Многообразие кластеров // Российский химический журнал, 1996, Т. 40, № 2, с. 48-56.

20. Мосин О.В., Игнатов И. Структура воды и физическая реальность. // Сознание и физическая реальность, 2011, Т. 16, № 9, с. 16-32.

21. Игнатов И. Биоэнергетическая медицина. Зарождение живой материи, память воды, биорезонанс, биофизические поля. - ГеяЛибрис, София, 2006, с. 93.

Лёд - минерал с хим. формулой H 2 O , представляет собой воду в кристаллическом состоянии.
Химический состав льда: Н — 11,2%, О — 88,8%. Иногда содержит газообразные и твердые механические примеси.
В природе лёд представлен, главным образом, одной из нескольких кристаллических модификаций, устойчивой в интервале температур от 0 до 80°C, имеющей точку плавления 0°С. Известны 10 кристаллических модификаций льда и аморфный лёд. Наиболее изученным является лёд 1-й модификации - единственная модификация, обнаруженная в природе. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного и др.), а также в виде снега, инея и т.д.

Смотрите так же:

СТРУКТУРА

Кристаллическая структура льда похожа на структуру : каждая молекула Н 2 0 окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76Α и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является ажурной, что влияет на его плотность (0,917). Лед имеет гексагональную пространственную решётку и образуется путём замерзания воды при 0°С и атмосферном давлении. Решётка всех кристаллических модификаций льда имеет тетраэдрическое строение. Параметры элементарной ячейки льда (при t 0°С): а=0,45446 нм, с=0,73670 нм (с - удвоенное расстояние между смежными основными плоскостями). При понижении температуры они меняются крайне незначительно. Молекулы Н 2 0 в решётке льда связаны между собой водородными связями. Подвижность атомов водорода в решётке льда значительно выше подвижности атомов кислорода, благодаря чему молекулы меняют своих соседей. При наличии значительных колебательных и вращательных движений молекул в решётке льда возникают трансляционные соскоки молекул из узла пространственной их связи с нарушением дальнейшей упорядоченности и образованием дислокаций. Этим объясняется проявление у льда специфических реологических свойств, характеризующих зависимость между необратимыми деформациями (течением) льда и вызвавшими их напряжениями (пластичность, вязкость, предел текучести, ползучесть и др.). В силу этих обстоятельств ледники текут аналогично сильно вязким жидкостям, и, таким образом, природные льды активно участвуют в круговороте воды на Земле. Кристаллы льда имеют относительно крупные размеры (поперечный размер от долей миллиметра до нескольких десятков сантиметров). Они характеризуются анизотропией коэффициента вязкости, величина которого может меняться на несколько порядков. Кристаллы способны к переориентации под действием нагрузок, что влияет на их метаморфизацию и скорости течения ледников.

СВОЙСТВА

Лёд бесцветен. В больших скоплениях он приобретает синеватый оттенок. Блеск стеклянный. Прозрачный. Спайности не имеет. Твердость 1,5. Хрупкий. Оптически положительный, показатель преломления очень низкий (n = 1,310, nm = 1,309). В природе известны 14 модификаций льда. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии и обозначающегося как лёд I , образуются в условиях экзотических - при очень низких температурах (порядка -110150 0С) и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров - это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

МОРФОЛОГИЯ

В природе лёд — очень распространенный минерал. В земной коре существует несколько разновидностей льда: речной, озёрный, морской, грунтовый, фирновый и глетчерный. Чаще он образует агрегатные скопления мелкокристаллических зерен. Известны также кристаллические образования льда, возникающие сублимационным путем, т. е. непосредственно из парообразного состояния. В этих случаях лед имеет вид скелетных кристаллов (снежинки) и агрегатов скелетного и дендритного роста (пещерный лёд, изморозь, иней и узоры на стекле). Крупные хорошо огранённые кристаллы встречаются, но очень редко. Н. Н. Стуловым описаны кристаллы льда северо-восточной части России, встреченные на глубине 55-60 м. от поверхности, имеющие изометрический и столбчатый облик, причем длина наибольшего кристалла равнялась 60 см., а диаметр его основания - 15 см. Из простых форм на кристаллах льда выявлены только грани гексагональной призмы (1120), гексагональной бипирамиды (1121) и пинакоида (0001).
Ледяные сталактиты, называемые в просторечии «сосульки», знакомы каждому. При перепадах температур около 0° в осенне-зимние сезоны они растут повсеместно на поверхности Земли при медленном замерзании (кристаллизации) стекающей и капающей воды. Они обычны также в ледяных пещерах.
Ледяные забереги представляют собой полосы ледяного покрова из льда, кристаллизующегося на границе вода-воздух вдоль краёв водоёмов и окаймляющие края луж, берега рек, озёр, прудов, водохранилищ, и тп. при незамерзающей остальной части водного пространства. При их полном срастании на поверхности водоёма образуется сплошной ледяной покров.
Лёд образует также параллельно-шестоватые агрегаты в виде волокнистых прожилков в пористых грунтах, а на их поверхности — ледяные антолиты.

ПРОИСХОЖДЕНИЕ

Лёд образуется в основном в водных бассейнах при понижении температуры воздуха. На поверхности воды при этом появляется ледяная каша, сложенная из иголочек льда. Снизу на неё нарастают длинные кристаллики льда, у которых оси симметрии шестого порядка размещаются перпендикулярно к поверхности корочки. Соотношения между кристаллами льда при разных условиях образования показаны на рис. Лед распространен всюду, где имеется влага и где температура опускается ниже 0° С. В некоторых районах грунтовый лед оттаивает только на незначительную глубину, ниже которой начинается вечная мерзлота. Это так называемые районы вечной мерзлоты; в областях распространения многолетнемерзлых пород в верхних слоях земной коры встречаются так называемые подземные льды, среди которых различают современный и ископаемый подземный лёд. Не менее 10% всей площади суши Земли покрывают ледники, слагающая их монолитная ледяная порода носит название ледниковый лёд. Ледниковый лёд образуется в основном из скопления снега в результате его уплотнения и преобразования. Ледниковый покров занимает около 75% площади Гренландии и почти всю Антарктиду; самая большая мощность ледников (4330 м.) – установлена близ станции Бэрд (Антарктида). В центральной Гренландии толщина льда достигает 3200 м.
Месторождения льда общеизвестны. В местностях с холодной долгой зимой и коротким летом, а также в высокогорных районах образуются ледяные пещеры со сталактитами и сталагмитами, среди которых наиболее интересными являются Кунгурская в Пермской области Приуралья, а также пещера Добшине в Словакии.
В результате замерзания морской воды образуется морской лёд. Характерными свойствами морского льда являются солёность и пористость, которые определяют диапазон его плотности от 0,85 до 0,94 г/см 3 . Из-за такой малой плотности льдины возвышаются над поверхностью воды на 1/7-1/10 своей толщины. Морской лёд начинает таять при температуре выше -2,3° С; он более эластичен и труднее поддается раздроблению на части, чем лёд пресноводный.

ПРИМЕНЕНИЕ

В конце 1980-х годов лаборатория Аргонн разработала технологию изготовления ледяной гидросмеси (Ice Slurry), способной свободно течь по трубам различного диаметра, не собираясь в ледяные наросты, не слипаясь и не забивая системы охлаждения. Солёная водяная суспензия состояла из множества очень мелких ледяных кристалликов округлой формы. Благодаря этому сохраняется подвижность воды и, одновременно, с точки зрения теплотехники она представляет собой лёд, который в 5-7 раз эффективнее простой холодной воды в системах охлаждения зданий. Кроме того, такие смеси перспективны для медицины. Опыты на животных показали, что микрокристаллы смеси льда прекрасно проходят в довольно мелкие кровеносные сосуды и не повреждают клетки. «Ледяная кровь» удлиняет время, в течение которого можно спасти пострадавшего. Скажем, при остановке сердца это время удлиняется, по осторожным оценкам, с 10-15 до 30-45 минут.
Использование льда в качестве конструкционного материала широко распространено в приполярных регионах для строительства жилищ - иглу. Лёд входит в состав предложенного Д. Пайком материала Пайкерит, из которого предлагалось сделать самый большой в мире авианосец.

Лед (англ. Ice) — H 2 O

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 4/A.01-10
Nickel-Strunz (10-ое издание) 4.AA.05
Dana (8-ое издание) 4.1.2.1
Hey’s CIM Ref. 7.1.1

Положительные заряды в молекуле воды связаны с атомами

водорода. Отрицательные заряды - это валентные электроны

кислорода. Их взаимное расположение в молекуле воды можно

изобразить в виде простого тетраэдра.

Как построена молекула льда?

Никаких особых молекул льда нет. Молекулы воды благодаря своему замечательному строению сое­динены в куске льда друг с другом так, что каждая из них связана и окружена четырьмя другими молеку­лами. Это приводит к возникновению очень рыхлой структуры льда, в которой остается очень много сво­бодного объема. Правильное кристаллическое строение льда выражается в изумительном изяществе снежинок и в красоте морозных узоров на замерзших оконных стеклах.

B н u зу - схематическое расположение атомных ядер водорода и кислорода в молекулах воды, образовавших кристаллическую решетку льда. Вверху - молекулы воды, образовавшие ледя­ной кристалл с сохранением масштабов электронных оболочек. Обратите внимание на рыхлую структуру льда.

Как построены молекулы воды в воде?

К сожалению, этот очень важный вопрос изучен далеко не достаточно. Строение молекул в жидкой воде очень сложно. Когда лед плавится, его сетчатая

структура частично сохраняется в образующейся воде. Молекулы в талой воде состоят из многих простых молекул - из агрегатов, сохраняющих свойства льда. При повышении температуры часть их распадается, их размеры становятся меньше.

Взаимное притяжение ведет к тому, что средняя величина сложной молекулы воды в жидкой воде зна­чительно превышает размеры одной молекулы воды. Такое необычайное молекулярное строение воды обус­ловливает ее необычайные физико-химические свойства,

При какой температуре вода должна кипеть?

Этот вопрос, конечно, странен. Ведь вода кипит при ста градусах. Это знает каждый. Больше того, всем известно, что именно температура кипения воды при давлении в одну атмосферу и выбрана в качестве опорной точки температурной шкалы, условно обоз­наченной 100°Ц.

Однако вопрос поставлен иначе: при какой тем­пературе вода должна кипеть? Ведь температуры кипе­ния различных веществ не случайны. Они зависят от положения элементов, входящих в состав их моле­кул, в периодической системе Менделеева.

Чем меньше атомный номер элемента, чем меньше его атомный вес, тем ниже температура кипения его соединений. Вода по химическому составу может быть названа гидридом кислорода. Н 2 Те, H 2 Se и H 2 S - хи­мические аналоги воды. Если проследить за темпера­турами их кипения и сопоставить, как изменяются температуры кипения гидридов в других группах периодической системы, то можно довольно точно опре­делить температуру кипения любого гидрида, так же как и любого другого соединения. Сам Менделеев таким способом предсказал свойства химических сое­динений еще не открытых элементов.

Если же определить температуру кипения гидрида кислорода по положению его в периодической таблице, то окажется, что вода должна кипеть при 80° ниже нуля. Следовательно, вода кипит приблизительно на сто восемьдесят градусов выше, чем должна кипеть. Температура кипения воды - это наиболее обычное ее свойство - оказывается необычайным и удивительным.

Попробуйте теперь представить себе, что наша вода потеряла вдруг способность образовывать слож­ные, ассоциированные молекулы. Тогда она, вероятно, должна была бы кипеть при той температуре, какая ей положена в соответствии с периодическим законом. Что бы тогда стало на нашей Земле? Океаны внезапно закипят. На Земле не останется ни одной капли воды, а на небе никогда не сможет больше появиться ни одного облачка... Ведь в атмосфере земного шара температура нигде не падает ниже минус 80° - минус 90°Ц.

При какой температуре вода замерзает?

Не правда ли, вопрос не менее странен, чем пре­дыдущий? Ну кто же не знает, что вода замерзает при нуле градусов? Это вторая опорная точка термометра. Это самое обычное свойство воды. Но ведь и в этом слу­чае можно спросить, при какой температуре вода должна замерзать в соответствии со своей химической природой. Оказывается, гидрид кислорода на осно­вании его положения в таблице Менделеева должен был бы затвердевать при ста градусах ниже нуля.