Проводка

Как определить вид уравнения. Виды дифференциальных уравнений

Как определить вид уравнения. Виды дифференциальных уравнений

Найти функцию f по некоторой заданной зависимости, в которую входят сама функция с аргументами и ее производные. Подобный тип задач актуален в физики, химии, экономики, технике и других областях науки. Подобные зависимости носят название дифференциальных уравнений. К примеру, y" - 2xy = 2 - это дифференциальное уравнение 1-го порядка. Посмотрим, как подобные типы уравнений решаются.

Что это?

Уравнение, выглядящее следующим образом:

  • f(y, y", ..., y(10), y(11), ..., y(k), x) = 0,

носит название обыкновенного дифура и характеризуется как уравнение порядка k, и зависит оно от x и производных y", y"", ... - вплоть до k-й.

Разновидности

В случае, когда функция, которую нужно найти, в дифференциальном уравнении зависима только от одного аргумента, тип дифференциального уравнения именуется обыкновенным. Иными словами, в уравнении функция f и все ее производные зависят только от аргумента x.

При зависимости же искомой функции от нескольких разных аргументов уравнения носят название дифференциальных в частных производных. В общем случае они выглядят:

  • f(x, fx", ..., y, fy"..., z, ..., fz"", ...),

где под выражением fx" понимается производная функции по аргументу x, а fz"" - двойная производная функции по аргументу z, и т. д.

Решение

Несложно догадаться, что именно считается решением диф. уравнения. Это функция, подстановка которой в уравнение дает тождественный результат по обе стороны знака равно, называется решением. Например, уравнение t""+a2t = 0 имеет решение в виде t = 3Cos(ax) - Sin(ax):

1 t"= -3aSin(ax) - aCos(ax) 2 t""= -3a2Cos(ax) + a2Sin(ax) 3 t""+a2t= (-3a2Cos(ax) + a2Sin(ax)) + a2(3Cos(ax) - Sin(ax))

Проведя упрощение уравнения 3 мы выясним, что t""+a2t = 0 при всех значения аргумента x. Однако стоит сразу оговориться. Уравнение t = 3Cos(ax) - Sin(ax) является не единственным решением, а лишь одним из бесконечного множества, которое описывается формулой mCos(ax) + nSin(ax), где m и n - это произвольные числа.

Причина такого соотношения заключается в определение первообразной функции в интегральном исчислении: если Q - первообразная (точнее одна из многих) для функции q , то ∫q(x) dx = Q(x) + C, где С - произвольная константа, которая обнуляется при обратной операции - взятии производной функции Q"(x).


Опустим определение того, что такое решение уравнения k-го порядка. Не трудно представить, чем больше порядок производной, тем больше констант возникает в процессе интегрирования. Также следует уточнить, что описанное выше определение для решения не является полным. Но для математиков XVII века оно было достаточным.

Ниже будут рассмотрены лишь основные типы дифференциальных уравнений первого порядка. Самые базовые и простые. Помимо них существуют и другие диф. уравнения: однородные, в полных дифференциалах и Бернулли. Но решение всех часто связано с методом разделяющихся переменных, который будет рассмотрен ниже.

Разделение переменных как способ решения

F = 0 - представляет собой диф. уравнение порядка 1. При решении данного типа дифференциальных уравнений они легко приводятся к виду y" = f. Так, например, уравнение ey" - 1 - xy = 0 приводится к виду y" = ln(1 + xy). Операция приведения дифференциального уравнения к подобному виду называется его разрешением относительно производной y".

После разрешения уравнения нужно привести его к дифференциальному виду. Это делается путем умножения на dx всех частей равенства. Из y" = f получается y"dx = fdx. С учетом того, что y"dx = dy, получим уравнение в виде:

  • dy = f dx - которое называется дифференциальной формой.

Очевидно, y" = f(x) - наиболее простое дифференциальное уравнение первого порядка. Его решение достигается простым интегрированием. Более сложным видом является q(y)*y" = p(x), в котором q(y) - это функция, зависящая от y, а p(x) - функция зависящая от x. Приведя его к дифференциальному виду, получим:

  • q(y)dy = p(x)dx

Легко понять, почему уравнение называется разделенным: его левая часть содержит только переменную y, а правая - только x. Решается такое уравнение с применением следующей теоремы: если у функции p существует первообразная P, а у q - Q, то интеграл дифура будет Q(y) = P(x) + C.


Решим уравнение z"(x)ctg(z) = 1/x. Приведя это уравнение к дифференциальному виду: ctg(z)dz = dx/x; и взяв интеграл от обеих частей ∫ctg(z)dz = ∫dx/x; получим решение в общем виде: C + ln|sin(z)| = ln|x|. Красоты ради данное уравнение по правилам логарифмов может быть записано в иной форме, если положить C = ln W - получим W|sin(z)| = |x| или, еще проще, WSin(z) = x.

Уравнения вида dy/dx = q(y)p(x)

Разделение переменных можно применить на уравнениях вида y" = q(y)p(x). Нужно только учесть случай, когда q(y) при некотором числе а обращается в нуль. То есть q(a) = 0. В таком случае функция y = a будет решением, т. к. для нее y" = 0, следственно, q(a)p(x) также равно нулю. Для всех остальных значений, где q(y) не равно 0, можно записать дифференциальную форму:

  • p(x) dx = dy / q(y),

интегрируя которую, получают общее решение.


Решим уравнение S" = t2(S-a)(S-b). Очевидно, корнями уравнения являются числа a и b. Поэтому S=a и S=b - решения данного уравнения. Для других значений S имеем дифференциальную форму: dS/[(S-a)(S-b)] = t2dt. Откуда легко получить общий интеграл.

Уравнения вида H(y)W(x)y" + M(y)J(x) = 0

Разрешив данный вид уравнение относительно y" получим: y" = - C(x)D(y) / A(x)B(y). Дифференциальная форма данного уравнения будет такова:

  • W(x)H(y)dy + J(x)M(y)dx = 0

Для решения данного уравнения нужно рассмотреть нулевые случаи. Если а - корень W(x), то x = a - интеграл, т. к. из этого следует, что dx = 0. Аналогично, со случаем, если b - корень M(y). Тогда для области значений x, при которых W и M не обращаются в ноль, можно провести разделение переменных путем деления на выражение W(x)M(y). После чего выражение можно интегрировать.


Множество видов уравнений, к которым на первый взгляд невозможно применить разделение переменных, оказываются таковыми. Например, в тригонометрии это достигается за счет тождественных преобразований. Также часто может быть уместной какая-либо остроумная замена, после которой можно будет использовать метод разделенных переменных. Типы дифференциальных уравнений 1 порядка могут выглядеть самым разным образом.

Линейные уравнения

Не менее важный тип дифференциальных уравнений, решение которых происходит путем подстановки и сведения их к методу разделенных переменных.

  • Q(x)y + P(x)y" = R(x) - представляет собой уравнение, линейное при рассмотрении относительно функции и ее производной. P, Q, R - представляют собой непрерывные функции.

Для случаев, когда P(x) не равном 0, можно привести уравнение к разрешенному относительно y" виду, поделив все части на P(x).

  • y" + h(x)y = j(x), в котором h(x) и j(x) представляют собой соотношения функций Q/P и R/P, соответственно.

Решение для линейных уравнений

Линейное уравнение можно назвать однородным в случае, когда j(x) = 0, то есть h(x)y+ y" = 0. Такое уравнение называется однородным и легко разделяется: y"/y = -h(x). Интегрируя его, получаем: ln|y| = -H(x) + ln(C). Откуда y выражается в виде y = Ce-H(x).

Например, z" = zCos(x). Разделяя переменные и приводя уравнение к дифференциальному виду, после чего интегрируя, получим, что общее решение будет иметь выражение y = CeSin(x).

Неоднородным называется линейное уравнение в его общем виде, то есть j(x) не равно 0. Его решение состоит из нескольких этапов. Сначала следует решить однородное уравнение. То есть приравнять j(x) к нулю. Пусть u - одно из решений соответствующего однородного линейного уравнения. Тогда имеет место быть тождество u" + h(x)u = 0.

Проведем в y" + h(x)y = j(x) замену вида y = uv и получим (uv)" + h(x)uv = j(x) или u"v + uv" + h(x)uv = j(x). Приведя уравнение к виду u(u" + h(x)u) + uv" = j(x) можно заметить, что в первой части u" + h(x)u = 0. Откуда получаем v"(x) = j(x) / u(x). Отсюда вычисляем первообразную ∫v = V+С. Проведя обратную замену, находим y = u(V+C), где u - решение однородного уравнения, а V - первообразная соотношения j / u.

Найдем решение для уравнения y"-2xy = 2, которое относится к типу дифференциальных уравнений первого порядка. Для этого сначала решим однородное уравнение u" - 2xu = 0. Получим u = e2x + C. Для простоты решения положим C = 0, т. к. для решения поставленной задачи нам нужно лишь одно из решений, а не всевозможные варианты.

После чего проведем подстановку y = vu и получим v"(x)u + v(u"(x) - 2u(x)x) = 2. Затем: v"(x)e2x = 2, откуда v"(x) = 2e-2x. Тогда первообразная V(x) = -∫e-2xd(-2x) = - e-2x + С. В итоге общее решение для y" - 2xy = 2 будет y = uv = (-1)(e2x + С) e-2x = - 1 - Ce-2x.


Как определить тип дифференциального уравнения? Для этого следует разрешить его относительно производной и посмотреть, можно воспользоваться методом разделения переменных напрямую или подстановкой.

Дифференциальные уравнения первого порядка, разрешенные относительно производной

Как решать дифференциальные уравнения первого порядка

Пусть мы имеем дифференциальное уравнение первого порядка, разрешенное относительно производной:
.
Разделив это уравнение на , при , мы получим уравнение вида:
,
где .

Далее смотрим, не относятся ли эти уравнения к одному из перечисленных ниже типов. Если нет, то перепишем уравнение в форме дифференциалов. Для этого пишем и умножаем уравнение на . Получаем уравнение в форме дифференциалов:
.

Если это уравнение не является уравнением в полных дифференциалах, то считаем, что в этом уравнении - независимая переменная, а - это функция от . Разделим уравнение на :
.
Далее смотрим, не относится ли это уравнение к одному из, перечисленных ниже типов учитывая, что и поменялись местами.

Если и для этого уравнения не найден тип, то смотрим, нельзя ли упростить уравнение простой подстановкой. Например, если уравнение имеет вид:
,
то замечаем, что . Тогда делаем подстановку . После этого уравнение примет более простой вид:
.

Если и это не помогает, то пытаемся найти интегрирующий множитель.

Уравнения с разделяющимися переменными

;
.
Делим на и интегрируем. При получаем:
.

Уравнения, приводящиеся к уравнениям с разделяющимися переменными

Однородные уравнения

Решаем подстановкой:
,
где - функция от . Тогда
;
.
Разделяем переменные и интегрируем.

Уравнения, приводящиеся к однородным

Вводим переменные и :
;
.
Постоянные и выбираем так, чтобы свободные члены обратились в нуль:
;
.
В результате получаем однородное уравнение в переменных и .

Обобщенные однородные уравнения

Делаем подстановку . Получаем однородное уравнение в переменных и .

Линейные дифференциальные уравнения

Есть три метода решения линейных уравнений.

2) Метод Бернулли.
Ищем решение в виде произведения двух функций и от переменной :
.
;
.
Одну из этих функций мы можем выбрать произвольным образом. Поэтому в качестве выбираем любое не нулевое решение уравнения:
.

3) Метод вариации постоянной (Лагранжа).
Здесь мы сначала решаем однородное уравнение:

Общее решение однородного уравнения имеет вид:
,
где - постоянная. Далее мы заменяем постоянную на функцию , зависящую от переменной :
.
Подставляем в исходное уравнение. В результате получаем уравнение, из которого определяем .

Уравнения Бернулли

Подстановкой уравнение Бернулли приводится к линейному уравнению.

Также это уравнение можно решать методом Бернулли. То есть ищем решение в виде произведения двух функций, зависящих от переменной :
.
Подставляем в исходное уравнение:
;
.
В качестве выбираем любое не нулевое решение уравнения:
.
Определив , получаем уравнение с разделяющимися переменными для .

Уравнения Риккати

Оно не решается в общем виде. Подстановкой

уравнение Риккати приводится к виду:
,
где - постоянная; ; .
Далее, подстановкой:

оно приводится к виду:
,
где .

Свойства уравнения Риккати и некоторые частные случаи его решения представлены на странице
Дифференциальное уравнение Риккати >>>

Уравнения Якоби

Решается подстановкой:
.

Уравнения в полных дифференциалах

При условии
.
При выполнении этого условия, выражение в левой части равенства является дифференциалом некоторой функции:
.
Тогда
.
Отсюда получаем интеграл дифференциального уравнения:
.

Для нахождения функции , наиболее удобным способом является метод последовательного выделения дифференциала. Для этого используют формулы:
;
;
;
.

Интегрирующий множитель

Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то можно попытаться найти интегрирующий множитель . Интегрирующий множитель - это такая функция, при умножении на которую, дифференциальное уравнение становится уравнением в полных дифференциалах. Дифференциальное уравнение первого порядка имеет бесконечное число интегрирующих множителей. Однако, общих методов для нахождения интегрирующего множителя нет.

Уравнения, не решенные относительно производной y"

Уравнения, допускающие решение относительно производной y"

Сначала нужно попытаться разрешить уравнение относительно производной . Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.

Уравнения, допускающие разложение на множители

Если удастся уравнение разложить на множители:
,
то задача сводится к последовательному решению более простых уравнений:
;
;

;
. Полагаем . Тогда
или .
Далее интегрируем уравнение:
;
.
В результате получаем выражение второй переменной через параметр .

Более общие уравнения:
или
также решаются в параметрическом виде. Для этого нужно подобрать такую функцию , чтобы из исходного уравнения можно было выразить или через параметр .
Чтобы выразить вторую переменную через параметр , интегрируем уравнение:
;
.

Уравнения, разрешенные относительно y

Уравнения Клеро

Такое уравнение имеет общее решение

Уравнения Лагранжа

Решение ищем в параметрическом виде. Полагаем , где - параметр.

Уравнения, приводящиеся к уравнению Бернулли


Эти уравнения приводятся к уравнению Бернулли, если искать их решения в параметрическом виде, введя параметр и делая подстановку .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.


Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.


Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию , обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Дифференциальное уравнение - это уравнение, в которое входят функция и одна или несколько ее производных. В большинстве практических задач функции представляют собой физические величины, производные соответствуют скоростям изменения этих величин, а уравнение определяет связь между ними.


В данной статье рассмотрены методы решения некоторых типов обыкновенных дифференциальных уравнений, решения которых могут быть записаны в виде элементарных функций , то есть полиномиальных, экспоненциальных, логарифмических и тригонометрических, а также обратных им функций. Многие из этих уравнений встречаются в реальной жизни, хотя большинство других дифференциальных уравнений нельзя решить данными методами, и для них ответ записывается в виде специальных функций или степенных рядов, либо находится численными методами.


Для понимания данной статьи необходимо владеть дифференциальным и интегральным исчислением, а также иметь некоторое представление о частных производных. Рекомендуется также знать основы линейной алгебры в применении к дифференциальным уравнениям, особенно к дифференциальным уравнениям второго порядка, хотя для их решения достаточно знания дифференциального и интегрального исчисления.

Предварительные сведения

  • Дифференциальные уравнения имеют обширную классификацию. В настоящей статье рассказывается об обыкновенных дифференциальных уравнениях , то есть об уравнениях, в которые входит функция одной переменной и ее производные. Обыкновенные дифференциальные уравнения намного легче понять и решить, чем дифференциальные уравнения в частных производных , в которые входят функции нескольких переменных. В данной статье не рассматриваются дифференциальные уравнения в частных производных, поскольку методы решения этих уравнений обычно определяются их конкретным видом.
    • Ниже приведены несколько примеров обыкновенных дифференциальных уравнений.
      • d y d x = k y {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=ky}
      • d 2 x d t 2 + k x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+kx=0}
    • Ниже приведены несколько примеров дифференциальных уравнений в частных производных.
      • ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = 0 {\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}+{\frac {\partial ^{2}f}{\partial y^{2}}}=0}
      • ∂ u ∂ t − α ∂ 2 u ∂ x 2 = 0 {\displaystyle {\frac {\partial u}{\partial t}}-\alpha {\frac {\partial ^{2}u}{\partial x^{2}}}=0}
  • Порядок дифференциального уравнения определяется по порядку старшей производной, входящей в данное уравнение. Первое из приведенных выше обыкновенных дифференциальных уравнений имеет первый порядок, в то время как второе относится к уравнениям второго порядка. Степенью дифференциального уравнения называется наивысшая степень, в которую возводится один из членов этого уравнения.
    • Например, приведенное ниже уравнение имеет третий порядок и вторую степень.
      • (d 3 y d x 3) 2 + d y d x = 0 {\displaystyle \left({\frac {{\mathrm {d} }^{3}y}{{\mathrm {d} }x^{3}}}\right)^{2}+{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=0}
  • Дифференциальное уравнение является линейным дифференциальным уравнением в том случае, если функция и все ее производные стоят в первой степени. В противном случае уравнение является нелинейным дифференциальным уравнением . Линейные дифференциальные уравнения примечательны тем, что из их решений можно составить линейные комбинации, которые также будут решениями данного уравнения.
    • Ниже приведены несколько примеров линейных дифференциальных уравнений.
      • d y d x + p (x) y = q (x) {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+p(x)y=q(x)}
      • x 2 d 2 y d x 2 + a x d y d x + b y = 0 {\displaystyle x^{2}{\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+ax{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+by=0}
    • Ниже приведены несколько примеров нелинейных дифференциальных уравнений. Первое уравнение является нелинейным из-за слагаемого с синусом.
      • d 2 θ d t 2 + g l sin ⁡ θ = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}\theta }{{\mathrm {d} }t^{2}}}+{\frac {g}{l}}\sin \theta =0}
      • d 2 x d t 2 + (d x d t) 2 + t x 2 = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+\left({\frac {{\mathrm {d} }x}{{\mathrm {d} }t}}\right)^{2}+tx^{2}=0}
  • Общее решение обыкновенного дифференциального уравнения не является единственным, оно включает в себя произвольные постоянные интегрирования . В большинстве случаев число произвольных постоянных равно порядку уравнения. На практике значения этих констант определяются по заданным начальным условиям , то есть по значениям функции и ее производных при x = 0. {\displaystyle x=0.} Число начальных условий, которые необходимы для нахождения частного решения дифференциального уравнения, в большинстве случаев также равно порядку данного уравнения.
    • Например, в данной статье будет рассмотрено решение приведенного ниже уравнения. Это линейное дифференциальное уравнение второго порядка. Его общее решение содержит две произвольные постоянные. Для нахождения этих постоянных необходимо знать начальные условия при x (0) {\displaystyle x(0)} и x ′ (0) . {\displaystyle x"(0).} Обычно начальные условия задаются в точке x = 0 , {\displaystyle x=0,} , хотя это и не обязательно. В данной статье будет рассмотрено также, как найти частные решения при заданных начальных условиях.
      • d 2 x d t 2 + k 2 x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+k^{2}x=0}
      • x (t) = c 1 cos ⁡ k x + c 2 sin ⁡ k x {\displaystyle x(t)=c_{1}\cos kx+c_{2}\sin kx}

Шаги

Часть 1

Уравнения первого порядка

При использовании этого сервиса некоторая информация может быть передана YouTube.

Эту страницу просматривали 69 354 раз.

Была ли эта статья полезной?

ВВЕДЕНИЕ

Дифференциальное уравнение -- уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением.

Порядок дифференциального уравнения -- наибольший порядок производных, входящих в него.

Процесс решения дифференциального уравнения называется интегрированием.

Все дифференциальные уравнения можно разделить на линейные и не линейные.

Нелинейное дифференциальное уравнение - дифференциальное уравнение (обыкновенное или с частными производными), в которое по крайней мере одна из производных неизвестной функции (включая и производную нулевого порядка - саму неизвестную функцию) входит нелинейно.

Иногда под Н.Д.У. понимается наиболее общее уравнение определенного вида. Напр., нелинейнымобыкновенным дифференциальным уравнением 1-го порядка наз. уравнение с произвольной функцией при этом линейное обыкновенное дифференциальное уравнение 1-го порядка соответствует частному случаю

Н. д. у. с частными производными 1-го порядка для неизвестной функции z от независимых переменных имеет вид:

где F- произвольная функция своих аргументов;

Виды нелинейных дифференциальных уравнений 1-го порядка

Уравнения с разделенными переменными

Общий интеграл

Общий интеграл

Уравнение в полных дифференциалах

Существует такая функция u(x, y), что

Общий интеграл уравнения в полных дифференциалах u(x, y) = C.

Функция u может быть представлена в виде

Однородное уравнение

где P(x, y), Q(x, y) - однородные функции одной и той же степени

Подстановка y = ux, dy = xdu + udx переводит однородное уравнение в линейное относительно функции u:

Уравнение вида

1. Если прямые и пересекаются в точке (x0; y0), то замена приводит его к однородному уравнению

2. Если прямые и параллельны, то замена приводит к уравнению с разделяющимися переменными

Уравнение Бернулли

Подстановкой сводится к линейному

Уравнение Риккати

Если известно какое-либо из решений, то уравнение сводится к

линейному подстановкой.

Уравнение Лагранжа

Дифференцируя по x и полагая y" = p, приходим к линейному уравнению относительно x как функции p:

Уравнение Клеро

Частный случай уравнения Лагранжа.

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Уравнения Риккати

Решить дифференциальное уравнение

y" = y + y2 + 1.

Данное уравнение является простейшим уравнением Риккати с постоянными коэффициентами. Переменные x, y здесь легко разделяются, так что общее решение уравнения определяется в следующем виде:

дифференциальный уравнение решение бернулли


Решить уравнение Риккати

Будем искать частное решение в форме:

Подставляя это в уравнение, находим:

Получаем квадратное уравнение для c:

Мы можем выбрать любое значение c. Например, пусть c = 2. Теперь, когда частное решение известно, сделаем замену:

Снова подставим это в исходное уравнение Риккати:

Как видно, мы получили уравнение Бернулли с параметром m = 2. Сделаем еще одну замену:

Разделим уравнение Бернулли на z2 (полагая, что z ? 0) и запишем его через переменную v:

Последнее уравнение является линейным и легко решается с помощью интегрирующего множителя:


Общее решение линейного уравнения определяется функцией

Теперь мы будем последовательно возвращаться к предыдущим переменным. Так как z = 1/v, то общее решение для z записывается следующим образом:

Следовательно,

Можно переименовать константу: 3C = C1 и записать ответ в виде

где C1 ? произвольное действительное число.

Уравнения Бернули

Данное уравнение является уравнением Бернулли с дробным параметром m = 1/2. Его можно свести к линейному дифференциальному уравнению с помощью замены

Производная новой функции z(x) будет равна

Разделим исходное уравнение Бернулли на

Аналогично другим примерам на этой веб-странице, корень y = 0 также является тривиальным решением дифференциального уравнения. Поэтому можно записать:

Заменяя y на z, находим:

Итак, мы имеем линейное уравнение для функции z(x). Интегрирующий множитель здесь будет равен

Выберем в качестве интегрирующего множителя функцию u(x) = x. Можно проверить, что после умножения на u(x) левая часть уравнения будет представлять собой производную произведения z(x)u(x):

Тогда общее решение линейного дифференциального уравнения будет определяться выражением:


Возвращаясь к исходной функции y(x), записываем решение в неявной форме:

Итак, полный ответ имеет вид:

Уравнения с разделяющимися переменными

Найти все решения дифференциального уравнения

Преобразуем уравнение следующим образом:

Очевидно, что деление на ey не приводит к потере решения, поскольку ey > 0. После интегрирования получаем

Данный ответ можно выразить в явном виде:


В последнем выражении предполагается, что константа C > 0, чтобы удовлетворить области определения логарифмической функции.

Найти частное решение уравнения, при

Перепишем уравнение в следующем виде:

Разделим обе части на 1 + ex:

Поскольку 1 + ex > 0, то при делении мы не потеряли никаких решений. Интегрируем полученное уравнение:

Теперь найдем константу C из начального условия y(0) = 0.

Следовательно, окончательный ответ имеет вид:

Уравнение Клеро

Полагая y" = p, его можно записать в виде

Продифференцировав по переменной x, находим:

Заменим dy на pdx:

Приравнивая первый множитель к нулю, получаем:

Теперь подставим это во второе уравнение:

В результате получаем общее решение заданного уравнения Клеро. Графически, это решение представляется в виде однопараметрического семейства прямых. Приравнивая нулю второй сомножитель, находим еще одно решение:

Это уравнение соответствует особому решению дифференциального уравнения и в параметрической форме записывается как

Исключая p из системы, получаем следующее уравнение интегральной кривой:

С геометрической точки зрения, парабола

является огибающей семейства прямых, определяемых общим решением.

Найти общее и особое решения дифференциального уравнения

Введем параметр y" = p:

Дифференцируя обе части уравнения по переменной x, получаем:

Поскольку dy = pdx, то можно записать:

Рассмотрим случай dp = 0. Тогда p = C. Подставляя это в уравнение, находим общее решение:

Графически это решение соответствует однопараметрическому семейству прямых линий.

Второй случай описывается уравнением

Найдем соответствующее параметрическое выражение для y:

Параметр p можно исключить из формул для x и y. Возводя последние уравнения в квадрат и складывая их, получаем:

Полученное выражение является уравнением окружности радиусом 1, расположенным в начале координат. Таким образом, особое решение представляется единичной окружностью в плоскости xy, которая является огибающей для семейства прямых линий.

ЛИТЕРАТУРА

1. Н.С. Пискунов "Дифференциальное и интегральное исчисление", том второй, издательство "Наука", Москва 1985

2. В. Ф. Зайцев, А. Д. Полянин. Справочник по обыкновенным дифференциальным уравнениям. М.: Физматлит, 2001.

3. К.Н. Лунгу, В.П. Норин и др. "Сборник задач по высшей математике", второй курс, Москва: Айрис-пресс, 2007

4. Э. Камке. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.

5. Источники информации в интернете.