Проводка

Гамма излучение это поток чего. Проникающая радиация

Гамма излучение это поток чего. Проникающая радиация

Ответ от Ёветлана Земцова [новичек]
Протонное излучение - излучение, состоящее из потока протонов (см. Атом). Протонное излучение - основная составная часть космического излучения (см.). В земных условиях в ускорителях заряженных частиц (см.) получают протоны различных энергий. Будучи положительно заряженными частицами, протоны при прохождении через вещество взаимодействуют с отрицательно заряженными электронами атомов и вырывают их с электронных оболочек. В результате этого происходит ионизация (см. Излучения ионизирующие) атомов вещества. Плотность ионизации протонами резко возрастает в конце пробега частиц. Благодаря этому свойству протоны удобно использовать в лучевой терапии (см. Протонная терапия) для избирательного облучения глубоко залегающих опухолей (например, гипофиза). Протоны высоких энергий имеют малый угол рассеяния, что также способствует локализации дозы в одном месте. Протоны высоких энергий, преодолевающие кулоновское отталкивание, попадают в ядро и вызывают различные ядерные реакции, в результате которых образуются вторичные излучения - нейтронное, гамма-излучение и др. В связи с этим при облучении вещества протонами высоких энергий ионизация среды происходит не только за счет первичных протонов; но и за счет вторичных излучений. Это обстоятельство необходимо учитывать при расчете доз, создаваемых протонным излучением.
Протонное излучение - поток положительно заряженных ядерных частиц - протонов. Впервые протонное излучение обнаружено в 1886 г. в виде так называемых каналовых лучей в разрядных трубках.
Источниками интенсивного протонного излучения являются ускорители заряженных частиц (см.). При помощи ускорителей получены пучки П. и. с энергией в десятки миллиардов электрон-вольт. Еще большие энергии П. и. встречаются в космическом пространстве. П. и. является основной компонентой галактического и солнечного космических излучений. Интенсивные потоки П. и. обнаружены в околоземном пространстве - в так называемых радиационных поясах Земли.
Способность П. и. проникать через слои вещества зависит от энергии пучка протонов (см.) и свойств вещества. П. и. с энергией 10 Мэв способно пройти слой воздуха (при нормальной температуре и давлении) около 1 м. При увеличении энергии П. и. до 1000 Мэв толщина слоя возрастает почти до 3 км.
В тяжелых веществах П. п. задерживается более тонкими слоями. Так, в свинце П. и. с энергией 10 Мэв проходит около 1/3 мм, а с энергией 1000 Мэв - несколько менее 60 см. Протонное излучение с энергией выше 100 Мэв способно проникать в тело на глубину до 10 см и более. Биологическое действие протонного излучения с энергией в сотни мегаэлектрон-вольт при остром облучении в общем аналогично действию рентгеновского и гамма-излучений.
Вместе с тем биологическое действие протонов таких энергий имеет некоторые особенности по сравнению с рентгеновским и гамма-излучением (менее отчетливая реакция со стороны органов кроветворения в ранние сроки, большая выраженность геморрагического синдрома и др.). При сравнительно небольших энергиях биологическая эффективность П. и. выше, чем рентгеновского и гамма-излучений. Это связано с более высокой ионизирующей способностью таких протонов. В отличие от рентгеновского и гамма-излучений, протоны, проходя через биологическую ткань, способны производить ядерные реакции. В результате ядерных реакций образуются вторичные частицы, обладающие высокой ионизирующей способностью, что приводит к поглощению в малом объеме ткани относительно большого количества энергии и к соответствующим локальным поражениям ткани. Этим обстоятельством может быть обусловлено большее бластомогенное действие П. и. по сравнению с рентгеновскими и гамма-излучениями.
Для защиты от протонного излучения используют вещества, эффективно тормозящие протоны и образующие относительно мало вторичных частиц при ядерных взаимодействиях

Цель работы

Работа имеет целью практическое обучение методике определения энергии гамма-квантов по ослаблению узкого пучка излучения в веществе путем экспериментального измерения величины массового коэффициента ослабления.

    Введение

    1. Общие понятия

Гамма-излучение – это фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния атомных ядер, ядерных превращениях и при аннигиляции частиц. Гамма-излучение является электромагнитным косвенно ионизирующим излучением. Энергия гамма-квантов, испускаемых радионуклидами, заключена в пределах от 0,01 МэВ до 10 МэВ. Большинство радионуклидов дают гамма-излучение сложного энергетического спектра. Некоторые ядра (их немного) испускают моноэнергетически гамма-излучения.

Для радионуклидов со сложным спектром гамма-излучения в эксперименте может быть определена эффективная энергия фотонов такого моноэнергетического фотонного излучения, относительное ослабление которого в поглотителе определенного состава и определенной толщины то же самое, что и у рассматриваемого немоноэнергетического фотонного излучения.

Характеристиками гамма-излучения являются поток гамма-квантов и плотность потока.

Под потоком гамма-квантов понимают отношение числа квантов dN γ , проникающих через данную поверхность за интервал времени dt, к этому интервалу

Плотность потока гамма-квантов – это отношение потока dФ γ , проникающего в объем элементарной сферы, к площади поперечного сечения этой сферы dS

Аналогичными характеристиками, учитывающими энергию гамма-квантов, является поток энергии и плотность потока энергии гамма-излучения.

Взаимодействие гамма-излучения с веществом осуществляется в основном за счет трех элементарных процессов: фотоэлектрического эффекта, некогерентного рассеяния (эффект Комптона) и образования электронно-позитронных пар (пар-эффекта). При малых энергиях гамма-квантов определенный вклад дает также когерентное рассеяние на электронах.

Вероятность взаимодействия гамма-квантов с веществом характеризуется массовым коэффициентом ослабления. Под ним понимается отношение доли косвенно ионизирующих частиц данной энергии, претерпевших взаимодействие при прохождении элементарного путиdl в среде с плотностью ρ к длине этого пути и к плотности среды

Для фотонного излучения массовый коэффициент ослабления равен сумме массовых коэффициентов ослабления, обусловленных фотоэффектом, некогерентным рассеянием, когерентным рассеянием и образованием электронно-позитронных пар. При этом для гамма-излучения когерентное рассеяние, как правило, не учитывается:

Как видно из приведенного определения, по физическому смыслу массовый коэффициент ослабления – это вероятность для гамма-квантов провзаимодействовать с веществом при единичной массовой толщине мишени.

В расчетах по защите от излучения часто используют линейный коэффициент ослабления гамма-излучения μ, получающийся умножением массового коэффициента ослабления на плотность ρ. По физическому смыслу линейный коэффициент ослабления – это вероятность взаимодействия гамма-кванта с веществом на пути единичной длины. Единицы измерения и μ в системе СИ соответственно м 2 /кг и м -1 .

Величина коэффициентов ослабления сложным образом зависит от энергии гамма-квантов и от материала защиты. Эти зависимости приводятся в справочнике в виде таблиц или графиков (см. приложение 3, рис. 3-6).

Аналитическое выражение для описания ослабления гамма-излучения защитой можно получить для узкого пучка моноэнергетического гамма-излучения. В этом случае в результате любого акта взаимодействия гамма-квант выбывает из пучка. Следовательно, число выбывших из пучка фотонов dN пропорционально пройденной толщине вещества dx и числу падающих фотонов N, т.е.

Для моноэнергетического излучения μ постоянно, и интегрирование полученного выражения дает

Если разделить обе части этого выражения на площадь мишени и время облучения, то получится выражение для плотности потока гамма-квантов

где φ γ0 и φ γ – плотность потока гамма-квантов перед поглотителем и после поглотителя толщиной d.

График зависимости lgφ=f(d) имеет вид, приведенный на рис. 4.1.

Экспериментально построенный график служит для определения значения линейного коэффициента ослабления μ, а затем по справочному графику μ=f(E) – для определения энергии гамма-излучения. Значение μ из графика определяют либо по толщине слоя половинного ослабления d 1/2

либо по тангенсу угла наклона α

При проведении работы измеряют не плотность потока φ γ непосредственно, а пропорционально ему скорость счета импульсов n.

1.2. Описание лабораторной установки

Блок-схема лабораторной установки показана на рис. 4.2. Источниками излучения служат препараты 60 Со или 137 Сs активностью около 10 мКu. Источник помещается в свинцовую защиту, из которой выходит направленный пучок гамма-квантов, проходящий на пути к детектору через поглотитель. Второй коллиматор служит для поглощения гамма-квантов, рассеянных в поглотителе, иначе значение коэффициента ослабления гамма-излучения окажется заниженным.

Измерения выполняются на лабораторной установке, разработанной на основе радиометра КРВП-3Б.

    Выполнение лабораторной работы

2.1. Подготовка к работе и производство измерений

Получить у лаборанта источник излучения и набор пластин поглотителя.

Собрать лабораторную установку в соответствии с приведенной на рис. 4.2. блок-схемой. Обратить особое внимание на соосность коллиматоров. Для этого перед установкой источника в коллиматор произвести «прицеливание» путем наблюдения через второй коллиматор. Источник излучения устанавливать после измерения фона в лаборатории.

Подготовить к работе радиометр КРВП-3Б. Обсчитать фон в течение пяти минут.

Установить источник излучения, измерить скорость счета без поглотителя. Затем установить поочередно одну, две, три и т.д. пластины поглотителя, каждый раз измеряя их толщину и скорость счета от проходящего сквозь них пучка гамма-излучения. Время измерения скорости счета выбирать, исходя из 5% точности измерения.

Измерения выполнять до уменьшения скорости счета в 8-10 раз. Результаты измерений и последующих расчетов занести в таблицу отчета.

По результатам измерений построить график lg n=f(d), по графику определить коэффициент ослабления гамма-излучения и по нему – энергию гамма-квантов.

2.2. Оформление отчета по лабораторной работе

До начала работы необходимо на специальном бланке отчета составить краткое описание работы и заготовить таблицу для записи результатов измерений. Подготовить оси координат для нанесения графика зависимости lg n=f(d).

Таблица 4.1 Результаты измерений

N ф = импульсов за t = минут

n ф = имп/мин. Материал поглотителя

По результатам измерений построить график зависимости lgn=f(d), по которому определить величину μ. По графикам (см. приложение, рис. 3, 4, 5, 6) определить энергию γ-квантов. Полученное значение энергии γ-квантов сравнить с табличными значениями (см. приложение 2, табл. 6) и определить погрешность измерения.

3. Техника безопасности

Перед началом работы каждому исполнителю необходимо получить у лаборанта дозиметр для измерения дозы облучения. Источники γ-излучения брать только пинцетом. После укладки источника в коллиматор закрыть обратную сторону коллиматора свинцовой защитой.

В процессе выполнения работы необходимо принимать меры для уменьшения дозы облучения, помня при этом, что доза облучения от точечного источника пропорциональна времени и обратно пропорциональна квадрату расстояния.

Дозы облучения после работы измеряет лаборант, докладывает преподавателю и заносит в журнал учета доз. Так как в электрической схеме установки имеется опасное напряжение (400 В), вскрывать электрическую схему ЗАПРЕЩАЕТСЯ.

Контрольные вопросы

    С каким видом излучения выполняется работа?

    Что такое гамма-излучение?

    Каков спектр гамма-излучения?

    Какие процессы определяют ослабление гамма-излучения в веществе?

    Что такое поток гамма-излучения?

    Что такое плотность потока гамма-излучения?

    Что такое массовый коэффициент ослабления гамма-излучения?

    Каков физический смысл линейного коэффициента ослабления гамма-излучения?

    Линейный коэффициент ослабления гамма-излучения в свинце равен 0,5 см -1 . Чему равна энергия гамма-квантов?

    Слой половинного ослабления гамма-излучения в свинце равен 1,4 см. Чему равна энергия гамма-квантов?

    Массовый коэффициент ослабления гамма-излучения в свинце равен 0,02 м 2 /кг. Чему равна энергия гамма-квантов?

    Какая математическая зависимость описывает ослабление гамма-излучения в веществе?

    Какие условия должны соблюдаться, чтобы ослабление гамма-излучения в веществе описывалось экспонентой?

    Какой вид имеет график зависимости lgφ γ =f(d)?

    Как по графику lgφ γ =f(d) определить энергию гамма-излучения?

    Для чего нужны коллиматоры в данной работе?

    Каковы пути уменьшения дозы облучения от точечного источника гамма-излучения?

    Как измениться доза облучения пальцев рук, если вместо пинцета (R=25см) источник брать руками (R=0,5см)?

    Чем обеспечивается необходимая точность измерений в данной работе?

    Какой радионуклид исследовался в данной работе?

    Какова энергия гамма-излучения у радионуклида в данной работе?

ЛАБОРАТОРНАЯ РАБОТА №5

Файл установки «Гамма-Поток. Гидравлический расчет» возможно получить по запросу.

В ПО встроено лицензионное соглашение.

В версии 1.1.0.1 программного комплекса «Гамма-Поток» внесены следующие изменения и дополнения:

1. Раздел « Расчет массы газа»:

1.1 Расширена номенклатура модулей:

  • Добавлен модуль объемом 160л. на давление 60 бар.
  • Добавлены модули объемом 80л. и 100л. на давление 150 бар с диаметром ЗПУ 40мм для Хладона 23.
  • Введена линейка модулей типа МПУ для СО2 с диаметром ЗПУ 12мм.

1.2. Для ГОТВ Хладон ФК-5-1-12 введены два значения нормативной концентрации:

  • нормативная концентрация Сн 4.2% в соответствии с действующей редакцией СП5.13130-2009 (изм. №1)
  • нормативная концентрация Сн 5.4% в соответствии с проектом новой редакции СП5.13130 в ред. 2015г.

1.3. Исправлено отображение остатка ГОТВ в трубной разводке

2. Раздел «Гидравлический расчет»:

2.1. Введены специальные насадки для ГОТВ Хладон ФК-5-1-12

2.2.Уточнены коэффициенты гидравлических сопротивлений элементов трубопровода (поворот, тройник)

2.3. Уточнены дополнительные потери на вертикальных участках трубопровода.

Программное обеспечение «Гамма-Поток» возможно использовать в течение 10 дней с момента установки в тестовом режиме без ограничения функционала. Далее следует пройти регистрацию для получения Регистрационного ключа.

Алгоритм регистрации:

  1. В окне «Регистрационная информация» нажать на кнопку «Получить регистрационный ключ».
  2. В открывшемся окне «Регистрация пользователя программы Гамма-Поток» заполнить поля данных.

Нажимая кнопку «ОК» Вы подтверждаете достоверность указанных данных и соглашаетесь на хранение и обработку данных компанией ООО «НПО Пожарная автоматика сервис».
Далее, Программа сформирует регистрационный файл и предложит его сохранить на Ваш компьютер.
Для получения регистрационного ключа необходимо переслать данный файл в наш адрес. В ответном письме мы вышлем ключ к программе.

Использование собранной информации.

Мы не распространяем полученную информацию ни для каких целей, в том числе не передаем ее третьей стороне. Полученная от Вас информация может быть раскрыта только в случаях, оговоренных законодательством РФ или по Вашей письменной просьбе.

Часто задаваемые вопросы

Проанализировав часто задаваемые вопросы проектировщиков, нашими специалистами были разработаны:

  • файл расчета максимального рабочего давления для труб с разной толщиной стенки (xls, ~21Кб) ;
  • файл расчета площади проема для сброса избыточного давления (xls, ~62Кб) .

1. Вопрос : почему в программе используются трубы и фитинги, которые невозможно купить на рынке.
Ответ :

  • Про трубы: в базу ПО «Гамма-Поток» введен сортамент труб согласно ГОСТ 8732 и ГОСТ 8734. В отчете к гидравлическому расчету выдаются РЕКОМЕНДУЕМЫЕ типы труб, выбранные программой. Однако, пользователь программы может самостоятельно создать свой пользовательский список с сортаментом труб, основываясь на возможности приобретения его в своем регионе. Также, при обращении к нам с задачей по выполнению гидравлического расчета, проектировщик может указать нужный для него перечень труб. Для проверки правильности выбора толщины стенки трубы, проектировщик может воспользоваться файлом «Расчета максимального рабочего давления для труб с разной толщиной стенки» выложенным на нашем сайте.
  • Про фитинги: В отчете к гидравлическому расчету выдаются РЕКОМЕНДУЕМЫЕ типы фитингов, выбранные программой. Стандартная номенклатура отводов по ГОСТ 17375 и тройников по ГОСТ 17376 является очень ограниченной и недостаточной для выполнения проектных расчетов. Поэтому, в базу ПО «Гамма-Поток» введен сортамент фитингов, который включает как стандартный сортамент отводов и тройников согласно указанным ГОСТ, так и размерный ряд фитингов (с шагом по внутреннему диаметру 1 мм), который может быть изготовлен индивидуально в соответствии с требованиями указанных ГОСТ специализированными предприятиями. Также, нормами не запрещено применение фитингов, которые могут быть изготовлены монтажными организациями самостоятельно из труб по ГОСТ 8732 и ГОСТ 8734 .

2. Вопрос : почему в ПО «Гамма Поток» не предусмотрен расчет площади проема для сброса избыточного давления в соответствии с СП 5.13130.2009
Ответ :

  • мы не включили указанный расчет в программу гидравлического расчета осознано, т.к. считаем, что он лишь косвенно связан с гидравлическим расчетом и требует отдельного осмысления, сбора исходных данных, связанных со строительными конструкциями.
  • в помощь проектировщику для выполнения этого расчета самостоятельно, нами разработана

Гамма излучение представляет собой довольно серьезную опасность для человеческого организма, да и для всего живого в общем.

Это электромагнитные волны с очень маленькой длиной и высокой скоростью распространения.

Чем же они так опасны, и каким образом можно защититься от их воздействия?

О гамме излучение

Все знают, что атомы всех веществ содержат в себе ядро и электроны, которые вращаются вокруг него. Как правило, ядро – это довольно стойкое образование, которому трудно нанести повреждения.

При этом существуют вещества, ядра которых неустойчивы, и при некотором воздействии на них происходит излучение их составляющих. Такой процесс называется радиоактивным, он имеет определенные составляющие, названные по первым буквам греческого алфавита:

  • гамма излучения.

Стоит отметить, что радиационный процесс подразделяется на два вида в зависимости от того, что именно в результате выделяется.

Виды:

  1. Поток лучей с выделением частиц – альфа, бета и нейтронное;
  2. Излучение энергии – рентгеновское и гамма.

Гамма излучение – это поток энергии в виде фотонов. Процесс разделения атомов под воздействием радиации сопровождается образованием новых веществ. При этом атомы вновь образовавшегося продукта имеют довольно нестабильное состояние. Постепенно при взаимодействии элементарных частиц возникает восстановление равновесия. В результате происходит выброс лишней энергии в виде гаммы.

Проникающая способность такого потока лучей очень высока. Оно способно проникать через кожные покровы, ткани, одежду. Более тяжелым будет проникновение через металл. Чтобы задержать такие лучи необходима довольно толстая стена из стали или бетона. Однако длина волныγ-излучения очень мала и составляет меньше 2·10 −10 м, а ее частота находится в диапазоне 3*1019 – 3*1021 Гц.

Гамма частицами являются фотоны с довольно высокой энергией. Исследователи утверждают, что энергия гаммы излучения может превышать показатель 10 5 эВ. При этом граница между рентгеновскими и γ-лучами далеко не резкая.

Источники:

  • Различные процессы в космическом пространстве,
  • Распад частиц в процессе опытов и исследований,
  • Переход ядра элемента из состояния с большой энергией в состояние покоя или с меньшей энергией,
  • Процесс торможения заряженных частиц в среде либо движение их в магнитном поле.

Открыл гамма излучение французский физик Поль Виллар в 1900 году, проводя исследование излучения радия.

Чем опасно гамма-излучение

Гамма излучение является наиболее опасным, нежели альфа и бета.

Механизм действия:

  • Гамма лучи способны проникать через кожные покровы внутрь живых клеток, в результате происходит их повреждение и дальнейшее разрушение.
  • Поврежденные молекулы провоцируют ионизацию новых таких же частиц.
  • В результате возникает изменение в структуре вещества. Пострадавшие частицы при этом начинают разлагаться и превращаться в токсические вещества.
  • В итоге происходит образование новых клеток, но они уже с определенным дефектом и поэтому не могут полноценно работать.

Гамма излучения опасно тем, что такое взаимодействие человека с лучами не ощущается им ни в коей мере. Дело в том, что каждый орган и система человеческого организма реагирует по-разному на γ-лучи. Прежде всего, страдают клетки, способные быстро делиться.

Системы:

  • Лимфатическая,
  • Сердечная,
  • Пищеварительная,
  • Кроветворная,
  • Половая.

Оказывается негативное влияние и на генетическом уровне. Кроме того, такое излучение имеет свойство накапливаться в человеческом организме. При этом в первое время оно практически не проявляется.

Где применяется гамма-излучение

Несмотря на негативное влияние, ученые нашли и положительные стороны. В настоящее время такие лучи применяются в различных сферах жизни.

Гамма излучение — применение:

  • В геологических исследованиях с их помощью определяют длину скважин.
  • Стерилизация различных медицинских инструментов.
  • Используется для контроля внутреннего состояния различных вещей.
  • Точное моделирование пути космических аппаратов.
  • В растениеводстве применяется для вывода новых сортов растений из тех, что мутируют под воздействием лучей.

Излучение гамма частиц нашло свое применение в медицине. Используется оно в терапии онкологических больных. Такой метод имеет название «лучевая терапия» и основывается на воздействии лучей на быстро делящиеся клетки. В результате при правильном использовании появляется возможность уменьшить развитие патологических клеток опухоли. Однако такой метод, как правило, применяется в том случае, когда другие уже бессильны.

Отдельно стоит сказать о влияние его на мозг человека

Современные исследования позволили установить, что мозг постоянно испускает электрические импульсы. Ученые считают, что гамма излучения возникает в те моменты, когда человеку приходится работать с разной информацией одновременно. При этом небольшое количество таких волн ведет к уменьшению запоминающей способности.

Как защититься от гамма-излучения

Какая же защита существует, и что сделать, чтобы уберечься от этих вредных лучей?

В современном мире человек окружен различными излучениями со всех сторон. Однако гамма частицы из космоса оказывают минимальное воздействие. А вот то, что находится вокруг представляет гораздо большую опасность. Особенно это относится к людям, работающим на различных атомных станциях. В таком случае защита от гамма излучения состоит в применении некоторых мер.

Меры:

  • Не находится длительное время в местах с таким излучением. Чем дольше времени человек находится под воздействием этих лучей, тем больше разрушений возникнет в организме.
  • Не стоит находиться там, где расположены источники излучения.
  • Необходимо использовать защитную одежду. В ее состав входит резина, пластик с наполнителями из свинца и его соединений.

Стоит отметить, что коэффициент ослабления гамма излучения зависит от того, из какого материала сделан защитный барьер. Так, например, лучшим металлом считается свинец в виду его свойства поглощать излучение в большом количестве. Однако он плавится при довольно низких температурах, поэтому в некоторых условиях используется более дорогой металл, например, вольфрам или тантал.

Еще один способ обезопасить себя – это измерить мощность гамма излучения в Вт. Кроме того, мощность измеряется также в зивертах и рентгенах.

Норма гамма излучения не должна превышать 0,5 микрозиверта в час. Однако лучше если этот показатель не будет выше 0,2 микрозиверта в час.

Чтобы измерить гамма излучение, применяется специальное устройство – дозиметр. Таких приборов существует довольно много. Часто используется такой аппарат, как «дозиметр гамма излучения дкг 07д дрозд». Он предназначен для оперативного и качественного измерения гамма и рентгеновского излучения.

У такого устройства есть два независимых канала, которые могут измерять МЭД и Эквивалент дозировки. МЭД гамма излучения это мощность эквивалентной дозировки, то есть количество энергии, которую поглощает вещество в единицу времени с учетом того, какое воздействие лучи оказывают на человеческий организм. Для этого показателя также существуют определенные нормы, которые обязательно должны быть учтены.

Излучение способно негативно влиять на организм человека, однако даже для него нашлось применение в некоторых сферах жизни.

Видео: Гамма-излучение

Проникающая радиация представляет собой поток гамма-лучей и нейтронов, излучаемых из зоны ядерного взрыва.

Источниками проникающей радиации являются ядерная реакция и радиоактивный распад продуктов ядерного взрыва.

Время действия проникающей радиации не превышает 10-15 сек с момента взрыва. За это время заканчивается распад коротко живущих осколков деление, образовавшихся в результате ядерной реакции. Кроме того, радиоактивное облако поднимается на большую высоту и радиоактивные излучения поглощаются толщей воздуха, не достигая поверхности земли.

Проникающая радиация характеризуется дозой излучения , т. е. количеством энергии радиоактивных излучений, поглощенной единицей объема облучаемой среды. Доза излучения количественно характеризует ионизацию, которую потоки гамма-лучей и нейтронов могут произвести в воздушном объеме.

Процесс ионизации состоит в «выбивании» электронов из электронной оболочки атомов. Вследствие этого нейтральные в электрическом отношении атомы превращаются в разноименно заряженные частицы - ионы.

Проникающая радиация представляет собой сумму доз гамма-излучения и нейтронов.

Гамма-излучение , составляющее основную часть про­никающей радиации, возникает как непосредственно в момент взрыва в процессе взрывной ядерной реакции, так и после взрыва в результате радиоактивного захвата нейтронов ядрами атомов различных элементов. Действие гамма-излучения продолжается 10-15 сек.

За единицу измерения дозы излучений гамма-лучей принят рентген-специальная международная физиче­ская единица дозы (количество энергии).

Рентген - это такое количество гамма-излучения, которое при температуре 0° и давлении 760 мм создает в 1 см 3 сухого воздуха 2 млрд. пар ионов (точнее, 2,08-10 9). Обозначается рентген буквой р. Тысячная часть рентгена носит название миллирентгена и обозначается мр.

Поток нейтронов , возникающий при ядерном взрыве, содержит быстрые и медленные нейтроны, которые по-разному действуют на живые организмы. Доля нейтронов в общей дозе проникающей радиации меньше доли гамма-лучей. Она несколько увеличивается с уменьшением мощности ядерного взрыва.

Основным источником нейтронов при ядерном взрыве является цепная ядерная реакция. Поток нейтронов излучается в течение долей секунды после взрыва и может вызвать искусственную наведенную радиацию в металлических предметах и грунте. Наведенная радиоактивность наблюдается только в зоне, непосредственно прилегающей к месту взрыва.

Доза излучения потоком нейтронов измеряется специальной единицей - биологическим эквивалентом рентгена.

Биологический эквивалент рентгена (БЭР) - это доза нейтронов, биологическое воздействие которой эквива­лентно воздействию 1 р гамма-излучения.


Поражающее действие проникающей радиации на людей вызывается облучением , которое оказывает вредное биологическое действие на живые клетки организма. Сущность поражающего действия проникающей радиации на живые организмы заключается в том, что гамма-лучи и нейтроны ионизируют молекулы живых клеток. Эта ионизация нарушает нормальную жизнедеятельность клеток и при больших дозах приводит к их гибели. Клетки теряют способность к делению, в результате чего человек заболевает так называемой лучевой болезнью .

Поражение людей проникающей радиацией зависит от величины дозы облучения а времени, в течение которого эта доза получена.

Однократная доза облучения в течение четырех суток до 50 р, как и доза систематического облучения-до 100 р за десять дней, не вызывает внешних признаков заболевания и считается безопасной. Дозы облучения свыше 100 р вызывают заболевание лучевой болезнью.

В зависимости от дозы облучения различают три степени лучевой болезни: первую (легкую), вторую (среднюю) и третью (тяжелую).

Лучевая бcлeзнь первой степени возникает при общей дозе облучения 100 - 200р Скрытый период продолжается две-три недели, после чего появляется недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание белых кровяных шариков. Лучевая болезнь первой степени излечима.

Лучевая болезнь второй степени возникает при общей дозе обличения 200 - 300 р. Скрытый период длится около недели, после чего появляются такие же признаки заболевания, что и при лучевой болезни первой степени, по в более ярко выраженной форме. При активном лечении наступает выздоровление через1,5-2 месяца.

Лучевая болезнь третьей степени возникает при общей дозе облучения 300-500 р. Скрытый период сокращается до нескольких часов. Болезнь протекает более интенсивно. При активном лечении выздоровление наступает через несколько месяцев.

Доза облучения свыше 500 р для человека обычно считается смертельной.

Дозы проникающей радиации зависят от вида, мощности взрыва и расстояния от центра взрыва. Значения радиусов, на которых возможны различные дозы проникающей радиации при взрывах различной мощности, приводятся в табл 8.