Проводка

Доклад: Вентиляция и кондиционирование воздуха. Обеспечение комфортных условий жизнедеятельности Производственная вентиляция бжд

Доклад: Вентиляция и кондиционирование воздуха. Обеспечение комфортных условий жизнедеятельности Производственная вентиляция бжд

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНИ

КРАСНОДОНСКИЙ ГОРНИЙ ТЕХНИКУМ

Реферат по предмету «БЕЗОПАСНОСТЬ

ТЕХНОЛОГИЧЕСКИХ

ПРОЦЕССОВ И ПРОИЗВОДСТВ»

на тему: «ПРОИЗВОДСТВЕННАЯ ВЕНТИЛЯЦИЯ»

Студента группы 1ЕП-06

Урюпова Олега

Проверила: Дрокина Т.М

Краснодон 2010


Вентиляцией называется комплекс взаимосвязанных устройств и процессов для создания требуемого воздухообмена в производственных помещениях. Основное назначение вентиляции - удаление из рабочей зоны загрязненного или перегретого воздуха и подача чистого воздуха, в результате чего в рабочей зоне создаются необходимые благоприятные условия воздушной среды. Одна из главных задач, возникающих при устройстве вентиляции,- определение воздухообмена, т. е. количество вентиляционного воздуха, необходимого для обеспечения оптимального санитарно-гигиенического уровня воздушной среды помещений.

В зависимости от способа перемещения воздуха в производственных помещениях вентиляция делится на естественную и искусственную (механическую).

Применение вентиляции должно быть обосновано расчетами, при которых учитываются температура, влажность воздуха, выделение вредных веществ, избыточное тепловыделение. Если в помещении нет вредных выделений, то вентиляция должна обеспечивать воздухообмен не менее 30 м3 /ч на каждого работающего (для помещений с объемом до 20 м3 на одного работающего). При выделении вредных веществ в воздух рабочей зоны необходимый воздухообмен определяют исходя из условий их разбавления до ПДК, а при наличии тепловых избытков - из условий поддержания допустимой температуры в рабочей зоне.

Естественная вентиляция производственных помещений осуществляется за счет разности температур в помещении наружного воздуха (тепловой напор) или действия ветра (ветровой напор). Естественная вентиляция может быть организованной и неорганизованной.

При неорганизованной естественной вентиляции воздухообмен осуществляется за счет вытеснения внутреннего теплового воздуха наружным холодным воздухом через окна, форточки, фрамуги и двери. Организованная естественная вентиляция , или аэрация , обеспечивает воздухообмен в заранее рассчитанных объемах и регулируемый в соответствии с метеорологическими условиями. Бесканальная аэрация осуществляется при помощи проемов в стенах и потолке и рекомендуется в помещениях большого объема со значительными избытками теплоты. Для получения расчетного воздухообмена вентиляционные проемы в стенах, а также в кровле здания (аэрационные фонари) оборудуют фрамугами, которые открываются и закрываются с пола помещения. Манипулируя фрамугами, можно регулировать воздухообмен при изменении наружной температуры воздуха или скорости ветра (рис. 4.1). Площадь вентиляционных проемов и фонарей рассчитывают в зависимости от необходимого воздухообмена.

Рис. 4.1. Схема естественной вентиляции здания: а - при безветрии; б - при ветре; 1 - вытяжные и приточные отверстия; 2 - тепловыделяющий агрегат

В производственных помещениях небольшого объема, а также в помещениях, расположенных в многоэтажных производственных зданиях, применяют канальную аэрацию, при которой загрязненный воздух удаляется через вентиляционные каналы в стенах. Для усиления вытяжки на выходе из каналов на крыше здания устанавливают дефлекторы - устройства, создающие тягу при обдувании их ветром. При этом поток ветра, ударяясь о дефлектор и обтекая его, создает вокруг большей части его периметра разрежение, обеспечивающее подсос воздуха из канала. Наибольшее распространение получили дефлекторы типа ЦАГИ (рис. 4.2), которые представляют собой цилиндрическую обечайку, укрепленную над вытяжной трубой. Для улучшения подсасывания воздуха давлением ветра труба оканчивается плавным расширением - диффузором. Для предотвращения попадания дождя в дефлектор предусмотрен колпак.

Рис. 4.2. Схема дефлектора типа ЦАГИ: 1 - диффузор; 2 - конус; 3 - лапки, удерживающие колпак и обечайку; 4 - обечайка; 5 - колпак

Расчет дефлектора сводится к определению диаметра его патрубка. Ориентиро-вочно диаметр патрубка d дефлектора типа ЦАГИ можно вычислить по формуле:

где L - объем вентиляционного воздуха, м3 /ч; - скорость воздуха в патрубке, м/с.

Скорость воздуха (м/с) в патрубке при учете только давления, создаваемого действием ветра, находят по формуле

где - скорость ветра, м/с; - сумма коэффициентов местного сопротивле-ния вытяжного воздуховода при его отсутствии e = 0,5 (при входе в патрубок); l - дли-на патрубка или вытяжного воздуховода, м.

С учетом давления, создаваемого ветром, и теплового давления скорость воздуха в патрубке вычисляют по формуле

где - тепловое давление Па; здесь - высота дефлектора, м; - плотность, соответственно, наружного воздуха и воздуха внутри помещения, кг/м3 .

Скорость движения воздуха в патрубке составляет примерно 0,2...0,4 скорости ветра, т. е. . Если дефлектор установлен без вытяжной трубы непосредственно в перекрытии, то скорость воздуха несколько больше.

Аэрация применяется для вентиляции производственных помещений большого объема. Естественный воздухообмен осуществляется через окна, световые фонари с использованием теплового и ветрового напоров (рис. 4.3). Тепловое давление, в результате которого воздух поступает в помещение и выходит из него, образуется за счет разности температур наружного и внутреннего воздуха и регулируется различной степенью открытия фрамуг и фонарей. Разность этих давлений на одном и том же уровне называется внутренним избыточным давлением. Оно может быть как положительным, так и отрицательным.

Рис. 4.3. Схема аэрации здания


При отрицательном значении (превышении наружного давления над вну-тренним) воздух поступает внутрь помещения, а при положительном значении (превышении внутреннего давления над наружным) воздух выходит из помещения. При = 0 движения воздуха через отверстия в наружном ограждении не будет. Ней-тральная зона в помещении (где = 0) может быть только при действии одних те-плоизбытков; при ветре с теплоизбытками она резко смещается вверх и исчезает. Рас-стояния нейтральной зоны от середины вытяжного и приточного отверстий обратно пропорциональны квадратам площадей отверстий. При, где - площади, соответственно, входных и выпускных отверстий, м2; -высоты расположения уровня равных давлений, соответственно, от входного до вы-пускного отверстий, м.

Расход воздуха G , который протекает через отверстие, имеющее площадь F , вычисляют по формуле:

где G - массовый секундный расход воздуха, т/с; m - коэффициент расхода, зависящий от условий истечения; r - плотность воздуха в исходном состоянии, кг/м3; - разность давлений внутри и снаружи помещения в данном отверстии, Па.

Ориентировочное количество воздуха, выходящего из помещения через 1 м2 площади отверстия, с учетом только теплового давления и при условии равенства площадей отверстий в стенках и фонарях и коэффициенте расхода m = 0,6 можно определить по упрощенной формуле:


где L - количество воздуха, м3 /ч; Н - расстояние между центрами нижних и верхних отверстий, м; - разность температур: средней (по высоте) в помещении и наружной, ° С.

Аэрация с использованием ветрового давления основана на том, что на наве-тренных поверхностях здания возникает избыточное давление, а на заветренных сторо-нах разрежение. Ветровое давление на поверхности ограждения находят по формуле:

где k - аэродинамический коэффициент, показывающий, какая доля динамического давления ветра преобразуется в давление на данном участке ограждения или кровли. Этот коэффициент можно принять в среднем равным для наветренной стороны + 0,6, а для подветренной - -0,3.

Естественная вентиляция дешева и проста в эксплуатации. Основной ее недостаток заключается в том, что приточный воздух вводится в помещение без предварительной очистки и подогрева, а удаляемый воздух не очищается и загрязняет атмосферу. Естественная вентиляция применима там, где нет больших выделений вредных веществ в рабочую зону.

Искусственная (механическая) вентиляция устраняет недостатки естественной вентиляции. При механической вентиляции воздухообмен осуществляется за счет напора воздуха, создаваемого вентиляторами (осевыми и центробежными); воздух в зимнее время подогревается, в летнее-охлаждается и кроме того очищается от загрязнений (пыли и вредных паров и газов). Механическая вентиляция бывает приточной, вытяжной, приточно-вытяжной, а по месту действия - общеобменной и местной.

При приточной системе вентиляции (рис. 4.4, а ) производится забор воздуха извне с помощью вентилятора через калорифер, где воздух нагревается и при необходимости увлажняется, а затем подается в помещение. Количество подаваемого воздуха регулируется клапанами или заслонками, устанавливаемыми в ответвлениях. Загрязненный воздух выходит через двери, окна, фонари и щели неочищенным.

При вытяжной системе вентиляции (рис. 4.4, б ) загрязненный и перегретый воздух удаляется из помещения через сеть воздуховодов с помощью вентилятора. Загрязненный воздух перед выбросом в атмосферу очищается. Чистый воздух подсасывается через окна, двери, неплотности конструкций.

Приточно-вытяжная система вентиляции (рис. 4.4, в ) состоит из двух отдельных систем - приточной и вытяжной, которые одновременно подают в помещение чистый воздух и удаляют из него загрязненный. Приточные системы вентиляции также возмещают воздух, удаляемый местными отсосами и расходуемый на технологические нужды: огневые процессы, компрессорные установки, пневмотранспорт и др.

Для определения требуемого воздухообмена необходимо иметь следующие исходные данные: количество вредных выделений (тепла, влаги, газов и паров) за 1 ч, предельно допустимое количество (ПДК) вредных веществ в 1 м3 воздуха, подаваемого в помещение.

Рис. 4.4. Схема приточной, вытяжной и приточно-вытяжной механической вентиляции: а - приточная; 6 - вытяжная; в - приточно-вытяжная; 1 - воздухоприемник для забора чистого воздуха; 2 - воздуховоды; 3 - фильтр для очистки воздуха от пыли; 4 - калориферы; 5 - вентиляторы; 6 - воздухораспределительные устройства (насадки); 7 - вытяжные трубы для выброса удаляемого воздуха в атмосферу; 8 - устройства для очистки удаляемого воздуха; 9 - воздухозаборные отверстия для удаляемого воздуха; 10 - клапаны для регулирования количества свежего вторичного рециркуляционного и выбрасываемого воздуха; 11 - помещение, обслуживаемое приточно-вытяжной вентиляцией; 12 - воздуховод для системы рециркуляции

Для помещений с выделением вредных веществ искомый воздухообмен L, м3 /ч, определяется из условия баланса поступающих в него вредных веществ и разбавления их до допустимых концентраций. Условия баланса выражаются формулой:

где G - скорость выделения вредного вещества из технологической установки, мг/ч; G пр - скорость поступления вредных веществ с притоком воздуха в рабочую зону, мг/ч; Gуд - скорость удаления разбавленных до допустимых концентраций вредных веществ из рабочей зоны, мг/ч.

Заменив в выражении G пр и Gуд на произведение и, где и - соответственно концентрации (мг/м3) вредных веществ в приточном и удаленном воздухе, aи объем приточного и удаляемого воздуха в м3 за 1 час, получим

Для поддержания нормального давления в рабочей зоне должно выполняться равенство, тогда


Необходимый воздухообмен, исходя из содержания в воздухе водяных паров, определяют по формуле:

где - количество удаляемого или приточного воздуха в помещении, м3 /ч; G п - масса водяного пара, выделяющегося в помещении, г/ч; - влагосодержание удаляемого воздуха, г/кг, сухого воздуха; - влагосодержание приточного воздуха, г/кг, сухого воздуха; r - плотность приточного воздуха, кг/м3.

где - соответственно массы (г) водяного пара и сухого воздуха. Необходимо иметь в виду, что значения и принимаются по таблицам физической характеристики воздуха в зависимости от значения нормируемой относительной влажности вытяжного воздуха.

Для определения объема вентиляционного воздуха по избыточному теплу необходимо знать количество тепла, поступающего в помещение от различных источников (приход тепла), и количество тепла, расходуемого на возмещение потерь через ограждения здания и другие цели, разность и выражает количество тепла, которое идет на нагревание воздуха в помещении и которое должно учитываться при расчете воздухообмена.

Воздухообмен, необходимый для удаления избыточного тепла, вычисляют по формуле:

где - избыточное количество тепла, Дж/с, -температура удаляемого воздуха, ° К; -температура приточного воздуха, ° К; С - удельная теплоемкость воздуха, Дж/(кг×К); r - плотность воздуха при 293° К, кг/м3 .

Местная вентиляция бывает вытяжная и приточная? Вытяжную вентиляцию устраивают, когда загрязнения можно улавливать непосредственно у мест их возникновения. Для этого применяют вытяжные шкафы, зонты, завесы, бортовые отсосы у ванн, кожухи, отсосы у станков и т.д. К приточной вентиляции относятся воздушные души, завесы, оазисы.

Вытяжные шкафы работают с естественной или механической вытяжкой. Для удаления из шкафа избытков тепла или вредных примесей естественным путем необходимо наличие подъемной силы, которая возникает, когда температура воздуха в шкафу превышает температуру воздуха в помещении. Удаляемый воздух должен иметь достаточный запас энергии для преодоления аэродинамического сопротивления на пути от входа в шкаф до места выброса в атмосферу.

Объемный расход воздуха, удаляемого из вытяжного шкафа при естественной вытяжке (рис. 4.5), (м3 /ч)

где h - высота открытого проема шкафа, м; Q - количество тепла, выделяемого в шкафу, ккал/ч; F - площадь открытого (рабочего) проема шкафа, м2 .


Рис. 4.5. Схема вытяжного шкафа с естественной вытяжкой:1 - уровень нулевых давлений; 2 - эпюра распределения давлений в рабочем отверстии; Т1 - температура воздуха в помещении; T 2 - температура газов внутри шкафа

Необходимая высота вытяжной трубы (м)

где - сумма всех сопротивлений прямой трубы на пути движения воздуха; d - диаметр прямой трубы, м (предварительно задается).

При механической вытяжке

где v - средняя скорость всасывания в сечениях открытого проема, м/с.

Бортовые отсосы устраивают у производственных ванн для шкафа удаления вредных паров и газов, которые выделяются из растворов ванн. При ширине ванны до 0,7 м устанавливают однобортовые отсосы с одной из продольных ее сторон. При ширине ванны более 0,7 м (до 1 м) применяют двухбортовые отсосы (рис. 4.6).

Объемный расход воздуха, отсасываемого от горячих ванн одно- и двухбортовыми отсосами, находят по формуле:

где L - объемный расход воздуха, м3 /ч, k 3 - коэффициент запаса, равный 1,5...1,75, для ванн с особо вредными растворами 1,75...2; k Т - коэффициент для учета подсоса воздуха с торцов ванны, зависящий от отношения ширины ванны В к ее длине l ; для однобортового простого отсоса; для двухбортового - ; С - безразмерная характеристика, равная для однобортового отсоса 0,35, для двухбортового - 0,5; j -угол между границами всасывающего (рис. 4.7); (в расчетах имеет значение 3,14); Тв и Тп - абсолютные температуры, соответственно, в ванне и воздуха в помещении, °К; g=9,81 м/с2 .

Вытяжные зонты применяют, когда выделяющиеся вредные пары и газы легче окружающего воздуха при незначительной его подвижности в помещении. Зонты могут быть как с естественной, так и с механической вытяжкой.

Рис. 4.6. Двухбортовой отсос от ванны

При естественной вытяжке начальный объемный расход воздуха в тепловой струе, поднимающейся над источником, определяют по формуле:


где Q - количество конвективного тепла, Вт; F - площадь горизонтальной проекции поверхности источника тепловыделений, м2; Н - расстояние от источника тепловыделений до кромки зонта, м.

При механической вытяжке аэродинамическая характеристика зонта включает скорость по оси зонта, которая зависит от угла его раскрытия; с увеличением угла раскрытия увеличивается осевая скорость по сравнению со средней. При угле раскрытия 90° скорость по оси составляет l,65v (v - средняя скорость, м/с), при угле раскрытия 60° скорость по оси и по всему сечению равна v .

В общем случае расход воздуха, удаляемого зонтом,

где v - средняя скорость движения воздуха в приемном отверстии зонта, м/с; при удалении тепла и влаги скорость может быть принята 0,15...0,25 м/с; F - площадь расчетного сечения зонта, м2 .

Приемное отверстие зонта располагают над тепловым источником; оно должно соответствовать конфигурации зонта, а размеры принимают несколько большими, чем размеры теплового источника в плане. Зонты устанавливают на высоте 1,7...1,9 м над полом.

Для удаления пыли от различных станков применяют пылеприемные устройства в виде защитно-обеспыливающих кожухов, воронок и т.д.


Рис. 4.7. Угол между границами всасывающего факела при различном расположении ванны: а - у стены (); б - рядом с ванной без отсоса (); в - отдельно (); 1 - ванна с отсосом; 2 - ванна без отсоса.

В расчетах принять p = 3,14

Объемный расход воздуха L (м3 /ч), удаляемого от заточных, шлифовальных и обдирочных станков, рассчитывают в зависимости от диаметра круга d к p (мм), а именно:

при < 250 мм L = 2,

при 250...600 мм L = 1,8 ;

при > 600 мм L = 1,6.

Расход воздух (м3 /ч), удаляемого воронкой, определяют по формуле:

где VH -начальная скорость вытяжного факела (м/с), равная скорости транспортирова-ния пыли в воздуховоде, принимается для тяжелой наждачной пыли 14...16 м/с и для легкой минеральной 10...12 м/с; l - рабочая длина вытяжного факела, м; k - коэффи-циент, зависящий от формы и соотношения сторон воронки: для круглого отверстия k = 7,7 для прямоугольного с соотношением сторон от 1:1 до 1:3 k = 9,1; V k - необходимая конечная скорость вытяжного факела у круга, принимаемая равной 2 м/с.


ЛИТЕРАТУРА

1. Безопасность жизнедеятельности/Под ред. Русака О.Н.- С.-Пб.: ЛТА, 1996.

2. Белов С.В. Безопасность жизнедеятельности - наука о выживании в техносфере. Материалы НМС по дисциплине «Безопасность жизнедеятельности». - М.: МГТУ, 1996.

3. Всероссийский мониторинг социально-трудовой сферы 1995 г. Статистический сборник.- Минтруд РФ, М.: 1996.

4. Гигиена окружающей среды./Под ред. Сидоренко Г.И .- М.: Медицина, 1985.

5. Гигиена труда при воздействии электромагнитных полей./Под ред. Ковшило В.Е. - М.: Медицина, 1983.

6. Золотницкий Н.Д., Пчелиниев В.А.. Охрана труда в строительстве.- М.: Высшая школа, 1978.

7. Кукин П.П., Лапин В.Л., Попов В.М., Марчевский Л.Э., Сердюк Н.И. Основы радиационной безопасности в жизнедеятельности человека.- Курск, КГТУ, 1995.

8. Лапин В.Л., Попов В.М., Рыжков Ф.Н., Томаков В.И. Безопасное взаимодействие человека с техническими системами.- Курск, КГТУ, 1995.

9. Лапин В.Л., Сердюк Н.И. Охрана труда в литейном производстве. М.: Машиностроение, 1989.

10. Лапин В.Л., Сердюк Н.И. Управление охраной труда на предприятии.- М.: МИГЖ МАТИ, 1986.

11. Левочкин Н.Н. Инженерные расчеты по охране труда. Изд-во Красноярского ун-та, -1986.

12. Охрана труда в машиностроении./Под ред. Юдина Б.Я., Белова С.В. М.: Машиностроение, 1983.

13. Охрана труда. Информационно-аналитический бюллетень. Вып. 5.- М.: Минтруд РФ, 1996.

14. Путин В.А., Сидоров А.И., Хашковский А.В. Охрана труда, ч. 1.-Челябинск, ЧТУ, 1983.

15. Рахманов Б.Н., Чистов Е.Д. Безопасность при эксплуатации лазерных установок.- М.: Машиностроение, 1981.

16. Саборно Р.В., Селедцов В.Ф., Печковский В.И. Электробезопасность на производстве. Методические указания.- Киев: Вища Школа, 1978.

17. Справочная книга по охране труда/Под ред. Русака О.Н., Шайдорова А.А. - Кишинев, Изд-во «Картя Молдовеняскэ», 1978.

18. Белов С.В., Козьяков А.Ф., Партолин О.Ф. и др. Средства защиты в машиностроении. Расчет и проектирование. Справочник./Под ред. Белова С.В.-М.: Машиностроение, 1989.

19. Титова Г.Н. Токсичность химических веществ.- Л.: ЛТИ, 1983.

20. Толоконцев Н.А. Основы общей промышленной токсикологии.- М.: Медицина, 1978.

21. Юртов Е.В., Лейкин Ю.Л. Химическая токсикология.- М.: МХТИ, 1989.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4

Тема

«РАСЧЁТ ПОТРЕБНОГО ВОЗДУХООБМЕНА ПРИ ОБЩЕОБМЕННОЙ ВЕНТИЛЯЦИИ»

Цель: Ознакомиться на практике с методикой расчёта потребной кратности воздухообмена для проектирования общеобменной вентиляции в производственных помещениях.

    Общие сведения

В целях поддержания в цехах оптимальных условий микроклимата и предотвращения чрезвычайных ситуаций, (массовые отравления, взрывы), для удаления вредных газов, пыли и влаги устанавливается вентиляция. Вентиляцией называется организованный регулируемый воздухообмен, обеспечивающий удаление из помещения загрязнённого воздуха и подачу на его место свежего. В зависимости от способа движения воздуха вентиляция может быть естественная и механическая.

Естественная – вентиляция, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давлений снаружи и внутри здания.

Механическая – вентиляция, с помощью которой воздух подаётся в производственное помещение или удаляется из него по системе вентиляционных каналов за счёт работы вентилятора. Она позволяет поддерживать в рабочих помещениях постоянную температуру и влажность.

В зависимости от способа организации воздухообмена вентиляция подразделяется на местную, общеобменную, смешанную и аварийную.

Общеобменная вентиляция предназначена для удаления избыточной теплоты, влаги и вредных веществ во всём объёме рабочей зоны помещений. Она создаёт условия воздушной среды, одинаковые по всему объёму вентилируемого помещения, и применяется в том случае, если вредные выделения поступают непосредственно в воздух помещения, рабочие места не фиксированы, а располагаются по всему помещению.

В зависимости от требований производства и санитарно - гигиенических правил приточный воздух можно нагреть, охладить, увлажнить, а удаляемый из помещений воздух очистить от пыли и газа. Обычно объём воздуха L пр, подаваемого в помещение при общеобменной вентиляции, равен объёму воздуха L в, удаляемого из помещения.

Существенное влияние на параметры воздушной среды в рабочей зоне оказывают правильная организация и устройство приточных и вытяжных систем.

  1. Методика расчёта потребного воздухообмена при общеобменной вентиляции.

При общеобменной вентиляции потребный воздухообмен определяется из условий отвода избыточного тепла, удаления избыточной влаги, удаления ядовитых и вредных газов, а также пыли.

При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции принимают в зависимости от объёма помещения, приходящегося на одного работающего. Отсутствием вредных выделений считается такое их количеств в технологическом оборудовании, при одновременном выделении которых в воздухе помещения концентрация вредных веществ не превысит предельно допустимую. При этом предельно допустимые концентрации вредных и ядовитых веществ в воздухе рабочей зоны должны соответствовать ГОСТ 12.1.005 – 91.

Если в производственном помещении объём воздуха на каждого работающего составляет V пр i < 20м 3 , то расход воздуха L i должен быть не менее 30м 3 на каждого работающего. Если V пр i = 20 … 40м 3 , то L i ≥ 20м 3 / ч. В помещениях с V пр i > 40м 3 и при наличии естественной вентиляции воздухообмен не рассчитывают. При отсутствии естественной вентиляции расход воздуха на одного работающего должен быть не менее 60м 3 / ч.

Для качественной оценки эффективности воздухообмена принимают понятие кратности воздухообмена К – отношение объёма воздуха, поступающего в помещение в единицу времени L (м 3 /ч), к свободному объёму вентилируемого помещения V с (м 3). При правильной организации вентиляции кратность воздухообмена должна быть значительно больше единицы.

Необходимый воздухообмен для всего производственного помещения в целом:

L пп = n · L i ; (1)

Где n – число работающих в данном помещении.

В данной практической работе рассчитаем потребную кратность воздухообмена для случаев отвода избыточного тепла и удаления вредных газов.

а. Необходимый воздухообмен для отвода избыточного тепла .

Где L 1 – воздухообмен, необходимый для отвода избыточного тепла (м 2 / ч);

Q – избыточное количество тепла, (кДж / ч);

с – теплоёмкость воздуха, (Дж / (кг · 0 С), с = 1кДж/кг·К;

ρ – плотность воздуха, (кг / м 3);

(3)

Где t пр – температура приточного воздуха, (0 С); Она зависит от географического расположения завода. Для Москвы – принимается равной 22,3 0 С.

T ух – температура воздуха, уходящего из помещения, принимается равной температуре воздуха в рабочей зоне, (0 С), которая принимается на 3 – 5 0 С выше расчётной температуры наружного воздуха.

Избыточное количество тепла, подлежащего удалению из производственного помещения, определяется по тепловому балансу:

Q = Σ Q пр – Σ Q расх; (4)

Где Σ Q пр – тепло, поступающее в помещение от различных источников, (кДж / ч);

Σ Q расх – тепло, расходуемое стенами здания и уходящие с нагретыми материалами, (кДж / ч), рассчитывается согласно методики, изложенной в СниП 2.04.05 – 86.

Так как перепад температур воздуха внутри здания и снаружи в тёплый период года небольшой (3 – 5), то при расчёте воздухообмена по избытку тепловыделений, потери тепла через конструкции зданий можно не учитывать. А несколько увеличившийся воздухообмен благоприятно повлияет на микроклимат рабочего помещения в наиболее жаркие дни.

Основными источниками тепловыделения в производственных помещениях являются:

    Горячие поверхности (печи, сушильные камеры, системы отопления и т.д.);

    Остывшие массы (металл, масла, вода и т.д.);

    Оборудование с приводом от электродвигателей;

    Солнечная радиация;

    Персонал работающий в помещении.

Для упрощения расчётов в данной практической работе избыточное количество тепла определяется только с учётом тепловыделений электрооборудования и работающего персонала.

Таким образом: Q = ΣQ пр; (5)

ΣQ пр = Q э.о. + Q р; (6)

Где Q э.о. – тепло, выделяемое при работе оборудования с приводом от электродвигателей, (кДж / ч);

Q р – тепло, выделяемое работающим персоналом, (кДж / ч).

(7)

Где β – коэффициент, учитывающий загрузку оборудования, одновременность его работы, режим работы. Принимается равным 0,25 … 0,35;

N – общая установочная мощность электродвигателей, (кВт);

Q р – определяется по формуле: Q р = n · q р (8)

300 кДж / ч – при лёгкой работе;

400 кДж /ч – при работе ср. тяжести;

500 кДж / ч – при тяжёлой работе.

Где n – число работающего персонала, (чел);

q р – тепло, выделяемое одним

человеком, (кДж / ч);

б. Необходимый воздухообмен для поддержания концентрации вредных веществ в заданных пределах.

При работе вентиляции, когда существует равенство масс приточного и удаляемого воздуха можно принять, что вредные вещества не накапливаются в производственном помещении. Следовательно, концентрация вредных веществ в удаляемом из помещения воздухе q уд не должна превышать ПДК.

Расход приточного воздуха, м 3 ч, необходимый для поддержания концентрации вредных веществ в заданных пределах рассчитывается по формуле:
,(9)

где G – количество выделяемых вредных веществ, мг/ч, q уд – концентрация вредных веществ в удаляемом воздухе, которая не должна превышать предельно допустимую, мг/м 3 , т.е. q уд q пдк ; q пр – концентрация вредных веществ в приточном воздухе, мг/м 3 . Концентрация вредных веществ в приточном воздухе не должна превышать 30% ПДК, т.е. q пр  0,3q уд.

в. Определение потребной кратности воздухообмена.

Величина, показывающая во сколько раз потребный воздухообмен больше объёма воздуха, находящегося в производственном помещении (определяющая кратность смены воздуха), называется потребной кратностью воздухообмена. Она вычисляется по формуле:

К = L / V с; (10)

Где К – потребная кратность воздухообмена;

L – потребный воздухообмен, (м 3 /ч). Определяется сравнением величин L 1 и L 2 и выбором наибольшей из них;

V с – внутренний свободный объём помещения, (м 3). Он определяется, как разность между объёмом помещения и объёмом, занимаемым производственным оборудованием. Если свободный объём помещения определить невозможно, то его допускается принимать условно равным 80% геометрического объёма помещения.

Кратность воздухообмена производственных помещений обычно составляет от 1 до 10 (большие значения для помещений со значительными выделениями теплоты, вредных веществ или небольших по объему). Для цехов литейных, кузнечно-прессовых, термических, сварочных, химических производств кратность воздухообмена составляет 2-10, для цехов машиностроения и приборостроения – 1-3.

Оптимальным инструментом обеспечения нормативной чистоты и необходимых требуемых параметров микроклимата воздуха на рабочем месте считается промышленная вентиляционная сеть, т.е. искусственный и контролируемый, который имеет целью вывод из рабочего пространства отработанной воздушной массы, и приток свежей. Промышленная вентиляция и кондиционирование, БЖД — параметры которых соблюдены в соответствии со всеми стандартами, СНиП и нормами охраны труда и здоровья, создает условия для нормального труда людей, а также эксплуатации оборудования и инструментов.

В зависимости от способа перемещения и движения воздушных масс, можно сгруппировать вентиляционные сети на производстве в два основных класса:

  1. Естественный;
  2. Механический.

Организация естественного вентилирования

Естественное вентилирование

При условии, что движение воздушных потоков будет осуществляться через дверные и оконные проемы в силу перепада давления извне и изнутри эксплуатационного помещения, речь идет о естественной вентиляции. Такой перепад давления связан с разной плотностью воздуха, его температуры, а также напором ветра, который действует на здание. Естественная, или как говорят инженеры, неорганизованная вентиляция зачастую определяется случайными, неконтролируемыми факторами, как то:

  1. Направление и сила ветра;
  2. Наружная и внутренняя температура;
  3. Вид ограждения;
  4. Тип оконных и дверных конструкций.

При этом неорганизованная вентиляция, согласно нормам БЖД, должна достигать показателей в 1-1,5 объема помещения в час. Таких показателей достаточно трудно добиться, используя только естественные каналы воздухообмена. Согласно нормам охраны труда и БЖД, скорость воздушных потоков при таком виде вентиляции должна составлять 0,5-0,8 метров в секунду для верхнего этажа, и 1-1,5 метра в секунду для нижнего уровня и вытяжных шахт.

Движение воздушных потоков

Механическое вентилирование

Для перманентного (постоянного) обмена воздушного потока, который необходим в соответствии с требованиями и условными параметрами уровня чистоты атмосферы, необходимо обустройство сети механической вентиляции, обладающей рядом достоинств в сравнении с предыдущим типом, а именно:

  1. Большой спектр действия, который обеспечивается использованием вентиляторов;
  2. Возможность поддержания и контроля необходимой кратности обмена воздушных масс вне зависимости от температурного режима и давления снаружи;
  3. Возможность совмещения функции вентиляции с функциями систем осушения, повышения влажности, очистки, нагрева и охлаждения воздуха;
  4. Возможность устройства распределения потоков в соответствии со схемой расположения рабочих мест и пожеланиями заказчика;
  5. Возможность фильтрации отработанного воздуха и минимизация вредных атмосферных выбросов.

Принципиальная схема механической вентиляции

БЖД-параметры механической вентиляции

К любому оборудованию, инженерному устройству или системе коммуникаций, к которым также может быть отнесена система воздухообмена, предъявляются определенные требования в отношении безопасности жизнедеятельности, охраны труда и здоровья персонала, охраны окружающей среды. Соответственно, механическая вентиляция также имеет ряд требований и стандартов, соблюдение которых является критическим условием ее организации.

Избыточная теплота

В операционном помещении, где работает оборудование, естественным является образование избыточного тепла. С этой перспективы, при условии наличия рабочих мест, расположенных нефиксированно по всему помещению, объем подающегося воздуха должен быть равен объему выводимого. Максимально допустимое отклонение от данной нормы составляет 10-15 % общей массы.

Для достижения таких параметров скорость движения потоков должна быть достаточно высока. Этого можно добиться, увеличив диаметр воздуховода и разброс между впускным и выводящим отверстиями.

Разводка промышленной вентиляции

Концентрация вредных примесей

Важным показателем воздушной среды в рабочем или производственном пространстве также является наличие в атмосфере примесей, как твердых, так и газообразных. Это может быть как пыль, образующаяся при производстве, так и вредные испарения – углекислый газ или сероводород.

Необходимо помнить, что 60-70% веществ с плотностью выше атмосферной удаляется из нижних слоев атмосферы помещения (т.е. такие газы опускаются вниз) и только 30-40% — из верхней секции. И наоборот, влажный воздух скапливается в верхней части помещения, в то время как сухой опускается вниз.

Проектировщик должен учитывать специфику производства, и соответствующим образом располагать вентиляционное оборудование и воздуховоды.

Компоновка вентиляционного канала

Оптимальным средством на таких предприятиях или зданиях станут установки приточной сети, которые, как правило, комплектуются следующим образом:

  1. Устройство подачи очищенного воздуха;
  2. Воздуховоды;
  3. Фильтры;
  4. Калориферы;
  5. Побудители потока;
  6. Увлажнители или осушители;
  7. Приточные каналы и решетки;
  8. Насадки для разводки в помещении.

ПДК загрязняющих веществ

Для расчета необходимой мощности вентиляции при наличии факторов вредного воздействия должны быть определены гранично допустимые концентрации таких веществ, а также количество воздуха, необходимое для ихразбавления.

Эффективным средством борьбы с вредными испарениями считается установка местных отсосов, таких как кожухи, камеры, шкафы вытяжные, вытяжной зонт и прочие. Мощность таких приборов определяется путем умножения площади вытяжного отверстия на скорость движения (принимаемую согласно справочным таблицам, в зависимости от выводимого вещества).

Вытяжной зонт

Кратность воздухообмена

Для расчета кратности, необходимой для того или иного помещения, необходимо знать объем помещения, количество работающих в нем людей, норму воздухообмена на одного человека. Как правило, при организации промышленной вентиляции на производстве, кратность обмена воздуха на одного человека составляет 60 м3/час.

При наличии избыточного теплового излучения в помещении используется более сложная формула подсчета, в которой также учитываются избыток теплоты в кВт, теплоемкость в кг/0С, температура воздуха ввода/вывода. При этом температуры наружного и внутреннего воздуха, принимаемого для таких вычислений, приводится в СНиП.

Аварийная вентиляция

На некоторых предприятиях, особо опасных и опасных производственных объектах, должна быть также установлена аварийная вентиляция, устанавливаемая на случай резких выбросов и с целью их быстрого удаления. Такая система должна обеспечить не менее 8 полных смен воздуха за 1 час.

Вентилятор аварийной системы

Кондиционирование воздуха

Систему промышленного воздухообмена зачастую комбинируют с системой кондиционирования. Целью этого является создание оптимальных, требуемых согласно нормам и правилам БЖД, климатических условий на рабочем месте, в административном здании или производственном помещении. Система кондиционирования будет, безусловно, регулировать не только температуру, но также влажность воздуха, осуществлять его ионизацию, удаление запахов, насыщение озоном и т.д. Все зависит от потребностей и пожеланий клиента.

При организации промышленной вентиляции обычно используют местные или центральные кондиционеры, калориферы (для подогрева воздуха зимой), фильтры и другое оборудование, подбираемое в зависимости от требуемых функций сети.

Система промышленного кондиционирования

Климатический контроль и вентилирование воздуха являются важным компонентом не только в отношении безопасности жизнедеятельности, но также во многих производственных процессах, требующих стабильных показателей температурного режима, влажности или сухости, насыщения воздуха.

Основы работы приточно-вытяжной системы

3. ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ.

Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность.

Для поддержания параметров микроклимата на уровне, необходимом для обеспечения комфортности и жизнедеятельности, применяют вентиляцию помещений, где человек осуществляет свою деятельность. Оптимальные параметры микроклимата обеспечиваются системами кондиционирования воздуха, а допустимые параметры – обычными системами вентиляции и отопления.

Система вентиляции представляет собой комплекс устройств, обеспечивающих воздухообмен в помещении, т.е. удаление из помещения загрязненного, нагретого, влажного воздуха и подачу в помещение свежего, чистого воздуха. По зоне действия вентиляция бывает общеообменной, при которой воздухообмен охватывает все помещение, и местное, когда обмен воздуха осуществляется на ограниченном участке помещения. По способу перемещения воздуха различают системы естественной и механической вентиляции.

Система вентиляции, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давлений снаружи и внутри здания, называется естественной вентиляцией.

Для постоянного воздухообмена, требуемого по условиям поддержания чистоты воздуха в помещении, необходима организованная вентиляция, или аэрация. Аэрацией называется организованная естественная общеобменная вентиляция помещений в результате поступления и удаления воздуха через открывающиеся фрамуги окон и дверей. Воздухообмен в помещении регулируют различной степенью открывания фрамуг (в зависимости от температуры наружного воздуха, скорости и направления ветра).

Основным достоинством естественной вентиляции является возможность осуществлять большие воздухообмены без затрат механической энергии. Естественная вентиляция, как средство поддержания параметров микроклимата и оздоровления воздушной среды в помещении, применяется для непроизводственных помещений – бытовых (квартир) и помещений, в которых в результате работы человека не выделяется вредных веществ, избыточной влаги или тепла.

Вентиляция, с помощью которой воздух подается в помещения или удаляется из них по системам вентиляционных каналов, с использованием специальных механических побудителей, называется механической вентиляцией. Наиболее распространенная система вентиляции – приточно-вытяжная, при которой воздух подается в помещение приточной системой, а удаляется вытяжной; системы работают одновременно. Приточный и удаляемый вентиляционными системами воздух, как правило, подвергается обработке – нагреву или охлаждению, увлажнению или очистке от загрязнений. Если воздух слишком запылен или в помещении выделяются вредные вещества, то в приточную или вытяжную систему встраиваются очистные устройства.

Механическая вентиляция имеет ряд преимуществ по сравнению с естественной вентиляцией: большой радиус действия вследствие значительности давления, созданного вентилятором; возможность изменять или сохранять необходимый воздухообмен независимо от температуры наружного воздуха и скорости ветра; подвергать вводимый в помещение воздух предварительной очистке, осушке или увлажнению подогреву или охлаждению; организовывать оптимальные воздухораспределение с подачей воздуха непосредственно к рабочим местам; улавливать вредные выделения непосредственно в местах их образования и предотвращения их распределения по всему объему помещения, а также возможность очищать загрязненный воздух перед выбросом его в атмосферу. К недостаткам механической вентиляции следует отнести значительную стоимость ее сооружения и эксплуатации и необходимостью проведения мероприятий по борьбе с шумовым загрязнением.

Для создания оптимальных метеорологических условий в первую очередь в производственных помещениях применяют наиболее совершенный вид вентиляции – кондиционирование. Кондиционированием воздуха называется его автоматическая обработка с целью поддержания в производственных помещениях заранее заданных метеорологических условий, независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании автоматически регулируется температура воздуха, его относительная влажность и скорость подачи в помещения в зависимости от времени года, наружных метеорологических условий и характера технологического процесса в помещении. В ряде случаев могут проводить специальную обработку: ионизацию, дезодорацию, озонирование и т.д. Кондиционеры бывают местными – для обслуживания отдельных помещений, комнат, и центральными – для обслуживания групп помещений, цехов и производств в целом. Кондиционирование воздуха значительно дороже вентиляции, но обеспечивает наилучшие условия для жизни и деятельности человека.

4. Отопление.

Целью отопления помещений является поддержание в них в холодный период года заданной температуры воздуха. Системы отопления разделяются на водяные, паровые, воздушные и комбинированные. Системы водяного отопления нашли широкое распространение, они эффективны и удобны. В этих системах в качестве нагревательных приборах применяются радиаторы и трубы. Воздушная система охлаждения заключается в том, что подаваемый воздух предварительно нагревается в калориферах.

Наличие достаточного количества кислорода в воздухе – необходимое условие для обеспечения жизнедеятельности организма. Снижение содержания кислорода в воздухе может привести к кислородному голоданию – гипоксии, основные признаки которой – головная боль, головокружение, замедленная реакция, нарушение нормальной работы органов слуха и зрения, нарушение обмена веществ.

5. Освещение.

Необходимым условием обеспечения комфортности и жизнедеятельности человека является хорошее освещение.

Неудовлетворительное освещение является одной из причин повышенного утомления, особенно при напряженных зрительных работах. Продолжительная работа при недостаточном освещении приводит к снижению производительности и безопасности труда. Правильно спроецированное и рационально выполненное освещение производственных, учебных и жилых помещений оказывает положительное психофизиологическое воздействие на человека, снижает утомление и травматизм, способствует повышению эффективности труда и здоровья человека, прежде всего, зрения.

При организации производственного освещения необходимо обеспечить равномерное распределение яркости на рабочей поверхности и окружающих предметах. Перевод взгляда с ярко освещенной на слабо освещенную поверхность вынуждает глаз адаптироваться, что ведет к утомлению зрения.

Из-за неправильного освещения образуется глубокие и резкие тени и другие неблагоприятные факторы, зрение быстро утомляется, что приводит к дискомфорту к повышению опасности жизнедеятельности (в первую очередь, к повышению производственного травматизма). Наличие резких теней искажает размеры и формы объектов и тем самым повышает утомляемость, снижает производительность труда. Тени необходимо смягчать, применяя, например, светильники со светорассеивающими молочными стеклами, а при естественном освещении использовать солнцезащитные устройства (жалюзи, козырьки и т.д.).

При освещении помещений используют естественное освещение создаваемое прямыми солнечными лучами и рассеянным светом небосвода и меняющемся в зависимости от географической широты, времени года и суток, степени облачности и прозрачности атмосферы. Естественный свет лучше, чем искусственный, создаваемый любыми источниками света.

При недостатке освещенности от естественного освещения используют искусственное освещение, создаваемое электрическими источниками света, и совмещенное освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным. По своему конструктивному исполнению искусственное освещение может быть общим и комбинированным. При общем освещении все места в помещении получают освещение от общей осветительной установки. Комбинированное освещение, наряду с общим, включает местное освещение (местный светильник, например, настольная лампа), сосредотачивающее световой поток непосредственно на рабочем месте. Применение одного местного освещения недопустимо, так как возникает необходимость частой переадаптации зрения. Большая разница в освещенности на рабочем месте и на остальной площади помещения приводит к быстрому утомлению глаз и постепенному ухудшению зрения. Поэтому доля общего освещения в комбинированном должна быть не менее 10%.

Основной задачей производственного освещения является поддержание на рабочем месте освещенности, соответствующей характеру зрительной работы. Увеличение освещенности рабочей поверхности улучшает видимость объектов за счет повышения их яркости, увеличивает скорость различения деталей.

Для улучшения видимости объектов в поле зрения работающего должна отсутствовать прямая и отраженная блесткость. Там, где это возможно блестящие поверхности следует заменять матовыми.

Колебания освещенности на рабочем месте, вызванные например, резким изменением напряжения в сети, также обуславливают переадаптацию глаза, приводя к значительному утомлению. Постоянство освещенности во времени достигается стабилизацией плавающего напряжения, жестким креплением светильников, применением специальных схем включения газоразрядных ламп.

Негативным фактором, воздействующим на человека, также является шумовое загрязнение, в крупных городах связанное в первую очередь с транспортом. Около 40-50% их населения живет в условиях шумового загрязнения, которое оказывает отрицательное психофизиологическое воздействие на людей. Снижение шумового загрязнения окружающей среды – важная и сложная задача, которая требует срочного решения уже сегодня.

Заключение.

С одной стороны, повышение уровня комфортности жизнедеятельности людей способствует их защищенности. Но повышение комфортности является лишь одним из следствий развития экономики, которая порождает на пути своего развития ряд острых экологических проблем, которые в свою очередь приводят к усилению негативных воздействий на человека. Следовательно, для действительного повышения уровня защищенности людей необходимо обеспечение жизнедеятельности людей в соответствии с законами природы.


Заключение. Наука БЖД исследует мир опасностей, действующих в среде обитания человека, разрабатывает системы и методы защиты человека от опасностей. В современном понимании наука о БЖД изучает опасности производственной, бытовой и городской среды как в условиях повседневной жизни, так и при возникновении ЧС техногенного и природного происхождения...

Управляемой и управляю­щей систем, контроль за ходом организации управления, определение эффективности мероприятия, стимулирование работы. При выборе средств управления БЖД выделяют мировоззрен­ческий, физиологический, психологический, социальный, воспитательный, эргономический, экологический, медицинский, тех­нический, организационно-оперативный, правовой и экономи­ ...

Среды оказались далеки по уровню безопасности от допустимых требований. Следует отметить, что именно поэтому в последнее десятилетие стало активно развиваться учение о безопасности жизнедеятельности в техносфере, основной целью которого является защита человека в техносфере от негативных воздействий антропогенного и естественного происхождения, достижение комфортных условий жизнедеятельности. ...

5. Права и обязанности работника. 6. Виды ответственности за проступки и правонарушения в облас­ти охраны труда. 1. Система нормативно-правовых актов в области БЖД В основе нормативно-правовых актов в области БЖД лежит Конституция РФ, Трудовой кодекс РФ, Кодекс РФ "Об административных правонарушени­ях", Гражданский кодекс РФ, федеральный закон "Об основах охраны труда в РФ", Основы...

Безопасность жизнедеятельности Виктор Сергеевич Алексеев

25. Промышленная вентиляция и кондиционирование

Вентиляция – обмен воздуха в помещениях, осуществляемый при помощи различных систем и приспособлений.

По мере пребывания человека в помещении качество воздуха в нем ухудшается. Наряду с выдыхаемым углекислым газом в воздухе скапливаются и другие продукты обмена веществ, пыль, вредные производственные вещества. Кроме того, повышается температура и влажность воздуха. Поэтому возникает необходимость в вентиляции помещения, при которой обеспечиваетсявоздухообмен – удаление загрязненного воздуха и замена его чистым воздухом.

Воздухообмен может осуществляться естественным способом – через форточки и фрамуги.

Лучшим способом воздухообмена является искусственная вентиляция, при которой подача свежего и удаление загрязненного воздуха осуществляется механическим способом – при помощи вентиляторов и других приспособлений.

Наиболее совершенной формой искусственной вентиляции являетсякондиционирование воздуха- создание и поддержание в закрытых помещениях и транспорте с помощью технических средств наиболее благоприятных (комфортных) условий для людей, для обеспечения технологических процессов, действия оборудования и приборов, сохранности ценностей культуры и искусств.

Кондиционирование воздуха достигается путем создания оптимальных параметров воздушной среды, ее температуры, относительной влажности, газового состава, скорости движения и давления воздуха.

Установки для кондиционирования воздуха оснащаются приспособлениями для очистки воздуха от пыли, для нагревания, охлаждения, осушения и увлажнения его, а также для автоматического регулирования, контроля и управления. В отдельных случаях с помощью систем кондиционирования воздуха можно проводить также одорацию (насыщение воздуха ароматическими веществами), дезодорацию (нейтрализация неприятных запахов), регулирование ионного состава (ионизацию), удаление избыточной углекислоты, обогащение кислородом и бактериологическую очистку воздуха (в лечебных учреждениях, где находятся больные с воздушно-капельной инфекцией).

Различают центральные системы кондиционирования воздуха, обслуживающие, как правило, все строение, и местные, обслуживающие одно помещение.

Кондиционирование воздуха осуществляется с помощью кондиционеров различного типа, конструкция и устройство которых зависит от их назначения. Для кондиционирования воздуха используются различные ап параты: вентиляторы, увлажнители, ионизаторы воздуха. В помещениях оптимальной считается температура воздуха зимой от + 19 до +21 C, летом – от +22 до +25 C при относительной влажности воздуха от 60 до 40 % и скорости движения воздуха не более 30 см/с.

Из книги Анестезиология и реаниматология автора

55. Искусственная вентиляция легких Искусственная вентиляция легких (ИВЛ) обеспечивает газообмен между окружающим воздухом (или определенной смесью газов) и альвеолами легких, применяется как средство реанимации при внезапном прекращении дыхания, как компонент

Из книги Анестезиология и реаниматология: конспект лекций автора Марина Александровна Колесникова

Лекция № 15. Искусственная вентиляция легких Искусственная вентиляция легких (ИВЛ) обеспечивает газообмен между окружающим воздухом (или определенной смесью газов) и альвеолами легких, применяется как средство реанимации при внезапном прекращении дыхания, как

Из книги Методичка по первой помощи автора Николай Берг

ИСКУССТВЕННАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ Если в ходе первоначальной оценки пострадавшего установлено, что он находится без сознания и не дышит, необходимо приступить к искусственной вентиляции легких.Здоровый человек при спокойном дыхании вдыхает около 500 мл воздуха. Это, так

Из книги Энергетика дома. Создание гармоничной реальности автора Владимир Киврин

Из книги Нормальная физиология автора Николай Александрович Агаджанян

Вентиляция легких и легочные объемы Величина легочной вентиляции определяется глубиной дыхания и частотой дыхательных движений.Количественной характеристикой легочной вентиляции служит минутный объем дыхания (МОД) – объем воздуха, проходящий через легкие за 1 минуту.