Проводка

Датчик вибрации своими руками для рыбалки. Схема чувствительного датчика вибрации

Датчик вибрации своими руками для рыбалки. Схема чувствительного датчика вибрации

На основе простого керамического пьезоэлектрического детектора можно собрать интересный и полезный модуль датчика физического воздействия, который может применяться на дверях, витринах и окнах для обнаружения вибраций и ударов.


Сам датчик удара (керамический пьезоэлектрический детектор) имеет «униморфную» диафрагму, которая состоит из пьезоэлектрического керамического диска, спаренного с металлическим диском. Датчик подает напряжение, пропорциональное ускорению удара или вибрации. Например, при 40 мВ/G получим около 2 В, если удар будет с ускорением 60 G.



В данном случае представлен низковольтный, низкотоковый модуль датчика физического воздействия на основе стандартного керамического пьезоэлектрического детектора, который заставляет цепь одновибратора (IC1) активировать кремниевый npn-транзистор. Выход с открытым коллектором этого транзисторного ключа можно подключить к внешней цепи сигнализации для дальнейшей работы с полученным сигналом. Поскольку потребление тока здесь очень мало (от 5 до 6 мА), саму схему можно питать от батарейки 3 В. При обнаружении физического воздействия одновибратор включит транзистор на время, определяемое RC-цепочкой, состоящей из R3 и C2.


Микросхема M74HC123 (IC1) является высокоскоростным двойным перезапускаемым КМОП-одновибратором с входами, защищенными от статического разряда и переходных скачков напряжения. Здесь имеются два входа пусковых импульсов, отрицательный фронт и положительный фронт. В данном случае используется только часть с положительным фронтом запуска (вывод 2). После запуска, выход на период времени, определяемым внешним резистором R3 и конденсатором С2, поддерживает моностабильного состояние.

Перевод сайт




   Благодарим Вас за интерес к информационному проекту сайт.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.


Виброметр – это прибор для измерения параметров вибрации: виброускорения, виброскорости, виброперемещения и частоты колебаний. Он простой в использовании и не требует специальной подготовки.

Выделяют две группы виброметров:

  • для измерения вибрации вращающегося оборудования;
  • для измерения вибрации, воздействующей на человека для целей охраны труда.

Виброметры для измерения вибрации вращающегося оборудования

«ДПК-Вибро» в руке

Виброметр измеряет и оценивает вибрацию агрегатов с вращающимися частями. Это - двигатели, насосы, вентиляторы, генераторы. Вибрация таких агрегатов повторяется с каждым оборотом вала.

Виброметры измеряют интегральное значение вибрации (одно число). Самое популярное значение – , так как существуют стандарты для определения состояния агрегата по СКЗ виброскорости. Это число пропорционально мощности сил, вызывающих вибрацию агрегата.

Чаще всего вибрация в виброметрах измеряется . Этот диапазон указан в ГОСТ и позволяет измерять одинаковое значение вибрации на разных приборах.

Виброметр – это очень полезный прибор для оценки состояния оборудования. Максимальное значение вибрации, при котором состояние агрегата считается аварийным . Значение задаётся в паспорте на агрегат или в ГОСТ ИСО 10816-1-97. "Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях". Сравнение текущей вибрации с нормой позволяет оценить состояние агрегата.

Измерение вибрации виброметром очень быстрое и не требует подготовительных работ. Можно измерить 100 агрегатов за смену с выдачей отчётов о состоянии оборудования на предприятии.

Значения вибрации, измеренные через некоторое время (например, через 1 месяц) позволяют строить прогноз развития вибрации и планировать сроки следующих ремонтов. Это даёт значительную экономию денег, по сравнению с плановыми ремонтами. Такая система планирования ремонтов используется в нашей программе Аврора-2000 .

Значение вибрации, измеренное виброметром можно использовать и для диагностики дефектов агрегата. Например, по СКЗ виброскорости отлично диагностируется расцентровка и небаланс . Состояние крепления к фундаменту тоже проще оценить виброметром. Виброметром даже можно балансировать агрегат не используя отметчик фазы (метод трех пусков с пробными массами).

При этом виброметры значительно дешевле виброанализаторов и проще в работе. Однако, для изучения сложных случаев дефектов необходим виброанализатор и опыт вибродиагностики.

Виброручка ViPen СКЗ виброскорости на экране

Современные виброметры дополнительно имеют режимы измерения спектров и сигналов, память для сохранения замеров и передачи их в компьютер, режим измерения по маршруту, датчики температуры, оборотов и ударных импульсов от подшипников качения.

В виброанализаторах всегда есть режим виброметра. Он делается программно и не удорожает изготовление прибора.

Внутренний и внешний датчик

Виброметры имеют внутренний датчик вибрации, встроенный в корпус прибора или внешний датчик, подключённый к прибору проводом. Внутренний датчик – это компактность прибора, а внешний датчик позволяет измерить вибрацию в труднодоступных местах.

Мы выпускаем виброметры:

  • ViPen – виброметр-ручка с оценкой состояния подшипников и температурой
  • Виброметр-К1 – простой виброметр. Предназначен для проведения измерения вибрации в размерности СКЗ виброскорости (мм/с) в стандартном диапазоне частот от 10 до 1000 Гц
  • ДПК-Вибро – компактный виброметр. Кроме вибрации, умеет оценивать состояние подшипников качения, показывать сигналы и спектры и даже хранить их и передавать в компьютер (правда, всего несколько штук)
  • – малогабаритный виброметр для контроля уровня вибрации с возможностью анализа сигналов и спектров. Уже устаревший, но всё ещё популярный прибор. Имеет встроенный в внешний датчик
  • Виброметры для измерения вибрации, воздействующей на человека

    Измерение такой вибрации используется в сфере охраны труда. Приборы отличаются от приборов для измерения вибрации вращающегося оборудования. Они называются виброметры-шумомеры.

    Прибор измеряет мощность вибрации за какой-то период времени, например, за рабочую смену, показывает мощность вибрации в полосах частот. Вибрация разных частот оказывает разное влияние на человека, поэтому используются нормирующие коэфициенты для частных полос. В дополнение шумомеры умеют измерять акустический шум на рабочем месте.

    Предельные значения вибрации нормируется СанПиНами. Библиотеку этих нормативных документов можно найти на сайте НТМ-Защита:

    Не хватает информации?

    Я отвечу Вам и дополню статью полезной информацией.

    Поискал тут в темах про балансировки, многие просят помощи что-нибудь отбалансировать, поэтому, думаю, эта тема будет полезна, чтобы собрать очень простое устройство как раз для этих целей.

    У китайских братьев есть 3-х координатные датчики положения, которые очень неплохо реагируют на вибрацию, тем более, что именно они применяются в промышленных приборах. Для экспериментов заказал 5 штук Через 3 недели получил и решил сразу посмотреть как они работают. Собрал стенд из точила, которое использую для испытания зажиганий мопедных двигателей Д6,Д8. Между валом и магнитом есть небольшой зазор, который обычно выбирается витком изоленты, но тут как раз изоленту убрал, чтобы нарушить центровку магнита на валу. Магнит сместил специально по направлению метки, чтобы более тяжелый сектор уже изначально был помечен. Вибрация получилась, конечно, незначительная, но этого оказалось вполне достаточно, чтобы увидеть результат.

    Вот что из себя представляет стенд:

    Питание подал от 3-х АА батареек 1,5*3=4,5 вольта.

    Ниже сигнал с датчика на осциллографе. Снимать сигнал можно с 3-х координат, но я взял координату Z , т.к. датчик прилепил к точилу на двухсторонний скотч и вибрация происходит как раз по этой координате.

    Сигнал сначала смотрел однолучевым осциллографом, но потом подсоединил датчик холла и подал сигнал на двухлучевой, чтобы видеть как работает датчик в угловом положении. Как видим, вибрация видна очень хорошо в виде синусоиды. Также на синусоиде можно заметить помехи от коллекторного двигателя. Забегая вперед, в последствии, помехи мешать не будут, т.к. плата усилителя будет собрана прямо рядом с датчиком, а тут у меня даже не экранированный провод около 1,5 метров(чувствительность осциллографа на этом канале 0,2 вольта на деление и развертка 2 мс/дел) .

    Быстренько накидал схемку в Протеусе(На схему на Протеусе сильно внимание обращать не стоит - она не окончательная. Правильная и окончательная опубликована ниже) .

    Как работает схема: Сигнал с "датчика"(желтый) усиливается операционным усилителем U1(синий сигнал на его выходе) и дальше сравнивается компаратором U2. Уровень для сравнения подбирается переменным резистором, чтобы поймать самый верх синусоиды, тем самым сужается сектор подсветки светодиодом и, таким образом, будет найден самый "тяжелый сектор". Найдя "тяжелый сектор", для балансировки необходимо либо облегчать этот сектор, либо с противоположной стороны подвешивать груз.

    А это уже отлаженная схема устройства:

    Схема очень простая и работает по принципу стробоскопа, при этом кроме неё не надо ни каких приборов.

    Так выглядит стенд:

    Датчик вибрации пришлось перевернуть, иначе метка светилась с противоположной стороны. :)

    А это видео работы датчика вибрации на стенде:

    Как видно на видео, чувствительность получилась очень высокой, что даже легкое постукивание по стенду вызывает вспыхивание светодиода. Кроме этого, регулятором уровня можно очень четко "выловить" самый пик сигнала с датчика, причем любого уровня и можно настроить такой порог, что датчик начинает срабатывать даже на разговор или шаги около стенда. :)

    На видео есть момент, где мне немного трудно было поймать нужное положение регулятора уровня, т.к. оно оказалось близким к середине регулировки переменного резистора, а он, как назло, попался с фиксацией середины и норовил как раз установиться на ней.

    Итог: Идея работает и еще как, т.е. с помощью такого простого устройства можно балансировать хоть вентиляторы, хоть точило. На профессиональное применение устройство не претендует , но несомненно окажет помощь при любой балансировке, если нет других приборов.

    Данная статья описывает устройство сейсмического датчика-детектора представляющего собой чувствительный электронный узел, способного зафиксировать даже очень слабый уровень вибрации в земной коре.

    В конструкции сейсмического детектора применен пьезоэлектрический датчик вибрации , который очень чувствителен к вибрациям и сотрясениям. Данную схему можно использовать для обнаружения сотрясений всевозможных объектов, вибраций происходящих в земной коре, либо как составную часть охранной системы.

    Описание работы сейсмического детектора на пьезоэлементе

    Как уже было сказано выше, основным элементом, который чувствителен к вибрациям, является простой зуммер (пьезоэлемент). Он довольно часто применяется в устройствах, предназначенных для обнаружения вибраций и сотрясений, к примеру, в охранной сигнализации для велосипеда. Преимуществом схемы является не только низкая цена, но и проста в монтаже датчика, зачастую просто путем приклеивания на контролируемой поверхность.

    Микросхема DA1 — операционный усилитель типа LM741, предназначена для усиления слабых сигналов от пьезоэлемента. Усиленный сигнал с выхода операционного усилителя через резистор R6 поступает на базу транзистора VT1. В результате этого транзистор открывается и на входе 2 таймера NE555 появляется сигнал низкого уровня (менее 1/3 напряжения питания).

    На таймере NE555 построен классический ждущий мультивибратор, который запускается по низкому сигналу на выводе 2. В результате запуска мультивибратора, на его выходе (вывод 3) появляется сигнал включающий зуммер (с встроенным генератором) и зажигается светодиод.

    Продолжительность сигнала определяется элементами RC-цепи (R8 и С2). С указанными значениями на схеме, этот период составляет примерно 3 минуты. По истечении этого времени устройство переходит в исходное состояние.