Осветительные приборы

Звукосниматель для гитары своими руками. Приступаем к изготовлению

 Звукосниматель для гитары своими руками. Приступаем к изготовлению

Сейчас намного легче приобрести хорошую гитару, чем скажем лет 40 назад. Но все же, возможно из-за финансовой стороны вопроса, я думаю, есть еще энтузиасты-самодельщики делающие гитары своими руками. Вот им то, начинающим, и адресована моя заметка самодеятельного музыканта. Первые наши попытки электрифицировать обычную акустическую гитару были предприняты с товарищем, Сергеем Омельченко, еще в 1966 году.

Самым простым решением оказалось прикрепить головку с пьезоэлектрическим преобразователем, от проигрывателя грампластинок, к корпусу гитары. В дальнейшем вынули сам пьезоэлемент и сделали для него специальный держатель, совмещенный с розеткой для присоединения экранированного кабеля подключения к усилителю. Эта деревянная конструкция приклеивалась к деке гитары вблизи струнодержателя. Для увеличения уровня сигнала на конец пластины пьезодатчика помещали пластилиновый шарик увеличивающий момент инерции преобразователя. Сигнал был достаточен для подключения к любому радиоприемнику имеющему высокоомный вход для проигрывателя грампластинок. Этот первый «звукосниматель» и изображен на Рис.0. Его недостатком была высокая чувствительность к акустическим шумам, шорохам, свисту пальцев по струнам и механическая непрочность самой пьезоэлектрической пластины. Зато стоимость головки звукоснимателя в сборе была всего 1р.60 коп., а сделать держатель можно за пол часа простым инструментом.

Следующей самоделкой стал «настоящий» электромагнитный звукосниматель из наушников летных шлемофонов. Использовались наушники (телефонные капсули) сопротивлением 2200 Ом, нынче практически не встречающиеся. Аккуратно расколов корпус, извлекали магнитную систему телефонов в сборе с двумя катушками на полюсных наконечниках магнитов. Эти полюсные наконечники удивительным образом соответствовали расстоянию между струнами гитары. Расколов три наушника (к сожалению иногда приходилось и больше) на латунной пластинке приклеивали магнитопроводы и соединяли все катушки последовательно.. Получался звукосниматель с сопротивлением 6600 Ом, дающий достаточно мощный электрический сигнал (Рис.1). Вместо клея, все же лучше бы использовать для закрепления магнитопроводов припайку полюсных наконечников к латунной пластине, а сверху накрыть экранирующим и одновременно защитным экраном. Но наша осмысленная борьба с электрическими и магнитными помехами началась несколько позже… Таких звукоснимателей было изготовлено множество, (только представьте сколько шлемофонов было испорчено и оснащались ими уже не акустические а самодельные досчато-фанерные «электрогитары». Но звучание у этих звукоснимателей было «кукольное». Из-за неравномерности магнитного поля вблизи полюсных наконечников колебания струн преобразовывались в электрический сигнал нелинейно, «обогащая» звук гармониками и вызывая ощущение «мусорности» сигнала.

В следующем звукоснимателе (на Рис.2) этот недостаток был уже устранен. На отдельных, для каждой струны, магнитах размещались катушки, содержащие каждая по 4000 витков провода ПЭЛ 0,08 мм диаметром, соединенные последовательно. Получилось объединение в одной конструкции 6-7 струнных звукоснимателей, помещенных в одну общую пластмассовую коробку. Покраска ко робки изнутри серебрянкой, для экранировки звукоснимателя, показала полную несостоятельность такого решения. Звук был чистым, пропорциональным колебаниям струн, но недостаточно сильным. Полагаю, что звукоснимателю не хватало магнитомягкой стальной пластины вместо пластмассового основания, к тому же множество небольших магнитов создавало несильное локальное поле для струн. Ну и чисто умозрительно, представь те, как трудно «продирался» сигнал отдельных струн через индуктивность остальных 5-6 катушек!

Значительно лучшим получился звукосниматель (Рис.3) содержащий всего один, но мощный маг нит, и одну большую катушку. Его магнитопровод-основание концентрировал мощное и равномерное магнитное поле вблизи струн, также хорошо защищая катушку от повреждений. Накрытый сверху латунным экраном звукосниматель был нечувствительным к электро статическим наводкам и давал сильный, чистый звук. Единственным значительным его недостатком, впрочем свойственным большинству электромагнитных звукоснимателей, была его чувствительность к внешнему переменному магнитному полю, создаваемому различными трансформаторами и сетевыми проводами.

Ну и наилучшими характеристика ми обладает звукосниматель на Рис.4, отличающийся от предшествующей конструкции лишь наличием одинаковых сдвоенных катушек. Абсолютно одинаковые, намотанные одновременно и надетые на общий магнитопровод, они генерируют одинаковый сигнал под воздействием внешнего магнитного поля. Но будучи включенными встречно, этот же мешающий сигнал они взаимно уничтожают, обеспечивая звукоснимателю нечувствительность к внешним магнитным помехам. Это оказалось особенно важно при применении различных бустеров, усилителей-ограничителей и fuzz-устройств.

Дополнив гитару переключателем полярности одной из катушек (Рис.6), можно получить значительно различающееся звучание при синфазном и противофазном их включении. Подавление же магнитных помех происходит только лишь при противофазном включении катушек. Вообще же такое встречное включение катушек на общей магнитной системе образует интересную пространственно-частотную фильтрацию сигнала колеблющихся струн!

И, наконец, общие рекомендации для самодельщиков звукоснимателей:
- все металлические детали звукоснимателей должны быть соединены между со бой и заземлены, желательно пайкой;
- абсолютно все детали звукоснимателей должны быть жестко фиксированы, и не допускать «дребезга» для исключений щелчков, призвуков и микрофонного эффекта;
- для сильного сигнала желательно катушки делать с максимально-возможным числом витков, заполняя обмоткой все доступное пространство и используя про вод диаметром 0,06-0,08 мм или еще тоньше;
- обязательно используйте электростатический экран катушек и соединительных проводов, однако для борьбы с вихревыми токами и связанными с ними потерями этот экран должен иметь проницаемые окна напротив струн (Рис.5);

Звукосниматель, имея значительную индуктивность и межвитковую емкость, вместе с емкостью соединительных экранированных шнуров и сопротивлением регуляторов и нагрузки, обладает сложной частотной зависимостью. Максималь ное сокращение емкостей шнуров, за счет их длинны, и увеличение сопротивления нагрузки положительно сказывается на качестве сигнала гитары. Подробнее

Звукосниматель нужен для того, чтобы усилить воспроизводимые гитарой звуки. Часто его используют для акустики. Также этот элемент преобразует звук, делает его звонче. Иногда установка звукоснимателя становится очень важной, например, когда нужно подготовить гитару для выступления на сцене.

Если в акустическую гитару встроить звукосниматель, то она станет электроакустической. Они делятся на несколько видов, но задача каждого из них передать как можно реалистичнее звук любой струны.

Какими бывают звукоусилители

Звукосниматели делятся на магнитноэлектрические и пьезоэлектрические. Первый тип является съемным и устанавливается в деку гитары, при этом не проводится никаких грубых изменений корпуса. Но такой звукосниматель извлекает звуки немного на других частотах и может исказить правильный акустический звук. За счет того, что элемент съемный, в любой момент можно убрать его.

Магнитный звукосниматель ставится на гитары только с металлическими струнами, так как звуки нейлоновых он не улавливает.

Но более подходящим является второй вариант звукоснимателя. Он улавливает и усиливает любые звуки, издаваемые гитарой: звуки струн, рук гитариста и вибрации корпуса. Преобразование акустики в электросигналы происходит при помощи пьзокристалла. Он может быть съемным и стационарным. Такой звукосниматель придает глубокое и интересное звучание гитаре.

Как сделать звукосниматель для гитары

В домашних условиях можно сделать звукосниматели обоих типов. Интереснее в плане экспериментов является преобразование акустики в электрогитару. Для этого необходимо делать магнитный звукосниматель.

Первым делом вырезаются две пластинки, которые крепятся к основанию с шестью отверстиями. Они крепятся сверху и снизу, для образования челнока под намотку катушки индуктивности. Материал изготовления листы фольгированного стеклотекстолита.

Каркас может быть вырезан из твердых пород дерева или пластика. Он помещается между тонкими пластинами стеклотекстолита.

Чтобы процесс сверления был удобным и безопасным, основание заматывается в тонкий картон и зажимается в тисках. Отверстия сверлятся острым сверлом на высоких оборотах. Домашней дрелью сделать подобные ровные отверстия сложно, поэтому в качестве основания можно взять более твердый и прочный материал без магнитных свойств. В данном случае берется оргстекло.

Далее понадобятся мощные магниты маленькой высоты. Для намотки берется тонкая медная проволока. Для создания катушки индуктивности необходимо намотать проволоку в 3000 витков. Также для намотки можно взять тонкий провод с диаметром 0,1 мм.

Далее конец провода очищается от эмали, берется изолированный проводник, который припаивается к проволоке. Место спайки закрывается изолентой. После провод укладывается в катушку и закрепляется несколькими витками намотки.

Отличный способ увеличения громкости звучания гитары это специальный датчик звукосниматель к гитаре, преобразующий звуки в электрический сигнал усиливаемый электроакустической системой и вновь превращаемый в звук, но во много раз более мощный.

Это устройство создает вокруг струн музыкального инструмента магнитное поле, реагирующее на колебания. В то же время эта конструкция малочувствителена к вибрациям деки и посторонним шумам.


1 - постоянный магнит, 2 - обмотка, 3 - струна гитары, 4 - силовые линии магнитного поля.

Постоянный магнит создает вокруг себя магнитное поле. Пока струна спокойна и находится напротив магнита, вся система в состоянии «равновесия», и сигнал на выходе звукоснимателя отсутствует.

В момент удара по струне, происходит колебательное движение. Колебания струны деформируют магнитное поле. Вслед за движением струны, синхронно с ней будут формироваться и силовые линии поля. При этом магнитный поток, проходящий через обмотку, постоянно меняется.

Поэтому на вход усилителя следует электрический сигнал с частотой колебаний струны. С их затухания снижается и амплитуда выходного сигнала. Необходимо упамянуть об одной особенностиконструкции. Так как он не воспринимает колебаний резонирующего корпуса музыкального инструмента, «чистое» звучание струн, отправленное в усилитель без участия акустики, накладывает своеобразный «электронный» оттенок.

Это все осуществляется для одной струны. А теперь установим такие катушки с магнитами под каждую из струн, соединим выводы катушек последовательно, а свободные концы подсоединим к мощному усилителю.


Схема состоит из шести последовательно соединенных датчиков L1-L6, представляющих собой обычные катушки индуктивности с постоянными магнитами в роле сердечников. Со входом усилителя устройство соединяется с помощью экранированного провода.


Датчик состоит из цилиндрического каркаса с внутренним Ø 2 мм и высотой 15 мм, диаметр щечек 10 мм, на котором намотана обмотка проводом ПЭВ 0,075-0,1 до заполнения каркаса. Внутри последнего закреплен постоянный магнит Ø 2 мм, длиной около 18 мм.

Расстояние между осевыми линиями датчиков раняется промежутку между струнами. По краям основания сверлятся четыре отверстия Ø 2,5 мм.

Если зазор между струнами в месте установки менее 10 мм, то датчики можно расположить на основании в шахматном порядке.

Корпус конструкции, составлен из основания и крышки, изготавливается из листа дюралюминия толщиной около 1 мм. Его размеры определяются габаритами конструкции.

Собирая своими руками электрогитару, помните, что, она будет звучать громче, если ближе к струнам расположить звукосниматель. После сборки, конструкцию можно подсоединить к . Если у вас его нет, то вы можете собрать его самостоятельно.

Пролог

История начинается с моей гитары INVASION ST300, а точнее когда я сравнил ее звучание с более серьезным инструментом. Говорят к хорошему быстро привыкаешь, наверное поэтому мне стало невыносимо играть на прежнем инструменте. После недели тоскливого уныния я затеял переворот, а точнее "перенамот" :D

Изготовление самодельного звукоснимателя

Сняв и разобрав звукосниматели я увидел следующую конструкцию: катушка на пластмассовом корпусе залитая парафином, 6 металлических сердечников и ферритовый магнит.

Меня несколько удивило, что металлические сердечники оказались раздельными (до этого я думал, что это цельная часть). Разбирать старую катушку дальше я не стал, чтобы на случай неудачи сделать "backup" =) Поэтому корпус пришлось делать самому. Для этого я выпилил 8 пластин из пластмассы (толщиной ~2мм), 6 из которых образовали сердечник катушки, а остальные 2 ограничительные крышки. Все эти пластины были доведены но необходимых размеров и склеены вместе. Трудность тут возникает с отверстиями под сердечники, их нужно просверлить в нужном месте и точно по оси. Чтобы не загубить заготовку я рассверливал отверстия меньшего диаметра, а дальше доводил круглым надфилем, и проверял диаметр вставляя сердечник.

В центральной части есть отверстие для установки на ось для намотки, не руками же мотать =) Ну вот тут самая ответственная часть работы. Для того чтобы облегчить себе жизнь я мотал сразу в 6 ниток (что в конечном итоге повлияло на результат, однако об этом позже). Уместилось по 450 витков, и того 2700 витков (диаметр проволоки 0,08мм). Сопротивление датчика получилось около 1,5кОм, что в несколько раз меньше обычного (но об этом тоже потом). При прямых руках и хорошем обращении с проволокой эта процедура занимает всего пару часов. После намотки нужно соединить все обмотки последовательно в одну (здесь самое важное, соединить их в правильными направлении). Места спайки нужно изолировать друг от друга.

Так как количество витков невелико, а следовательно и сигнал с катушки будет не таким сильным, не будет лишним заэкранировать катушку от наводок. По размеру катушки я вырезал медную полосу, которая одевается поверх изолированной обмотки. Концы полосы заклеены скотчем, чтобы избежать замыкания экранного витка, иначе это приведет к потере мощности на этом витке и плохому сигналу на выходе. Также все металлические сердечники соединяются тонкой проволокой и подсоединяются к экрану

Экранировка обматывается изоляционной лентой или лейкопластырем. Сердечники вставляются в катушку, магнит приклеивается на место.

Датчик можно устанавливать на место и подключать. Касаясь темы экранировки гитары отмечу, что везде рекомендуется соединять землю звездой, на сигнальные проводники одевать экранную защиту, а отрицательные выводы с датчиков подсоединять к земле в самой далекой (по цепи) точке, например на выходном гнезде, или если приобрести микрофонный двухпроводной шнур и стерео-разъем с гнездом (как это сделано у меня), то на другом конце шнура. В такой схеме компенсируются шумы наведенные на шнуре. Так же к плюсом этой схемы является возможность использовать и обыкновенный однопроводной шнур, тогда сигнальная земля замыкается на выходе гитары через джек.

Здесь цветом отмечено: красным - сигнальные провода и элементы, синим - сигнальная земля, черным - земля и экраны.

Устанавливаем датчик на место и пробуем звук!

Поиграв на датчике я отметил появления "голоса" у гитары. Звук стал более отчетливым и певучим. На перегрузе стало отчетливо слышно удары медиатора о струны и, что самое важное, появились флажолетные призвуки между нотами. Искусственные флажолеты извлекаются легко и непринужденно. Куча новых ощущений =) Однако из-за невысокого выходного напряжения соотношение сигнал/шум стало хуже.

Измерение частотных характеристик звукоснимателя

За основу методики измерения была взята схема из статьи GUITAR STUDIO: Секреты звукоснимателей . В ней предлагается использовать внешнюю катушку с малым сопротивлением, емкостью и индуктивностью. Частотная характеристика которой будет заведомо шире, а значит равномерной в области измерения АЧХ измеряемого датчика. Однако я посчитал, что лучше использовать большую силовую катушку с большим сопротивлением для создания внешнего магнитного поля, чтобы увеличить точность измерения и уменьшить необходимые для измерения токи. Однако, в таком случае необходимо учитывать АЧХ силовой катушки.

Теоретическая часть

Итак, электрическая схема для измерения АЧХ звукоснимателя:

Генератор переменного напряжения G подает напряжение на силовую катушку, которая наводит ЭДС в измеряемом звукоснимателе. Измеряя отношение напряжения на измеряемой катушке к напряжению на силовой катушке мы получаем передаточный коэффициент схемы, который равен произведению передаточных коэффициентов двух катушек. Изменяя частоту генератора и записывая показания напряжения можно построить АЧХ схемы:

U out (f) / U in (f) = А o (f) = A coil (f) * A x (f)

А для измерения передаточной характеристики силовой катушки нужно как раз использовать эталонную низкоомную катушку с низкой индуктивностью и емкостью, характеристика которой не изменяется в измеряемой области частот. В этом случае силовая катушка остается на месте, а вместо измеряемого звукоснимателя ставится эталонная катушка. Измерив АЧХ силовой катушки A coil (f) можно вычислить АЧХ измеряемого звукоснимателя A x (f) с точностью до множителя. (В случае идентичных по размерам датчиков и одинаковом расположении силовой катушки этот коэффициент будет совпадать, и можно сравнивать эти датчики по уровню выходного сигнала).

Обычно АЧХ измеряют в децибелах, а не в "разах", поэтому переведем полученные передаточных характеристики по формуле:

АЧХ o (f) = 20 * log [ U out (f) / U in (f) ] = АЧХ coil (f) + АЧХ x (f)

И для того, чтобы получить чистую характеристику измеряемого датчика АЧХ x (f), останется всего-навсего вычесть из измеренной АЧХ o (f) характеристику силовой катушки АЧХ coil (f).

Практическая часть

Генератор, который я использовал делал еще мой отец:) Он генерирует синусоидальный сигнал заданной частоты (выбирается переключателем) с амплитудой до 10В и имеет ограничение по току максимум в 10мА. В качестве измерительного вольтметра я использовал мультиметр из серии M-890, у него есть замечательная возможность измерения переменного напряжения начиная с 10мВ. Для соединения всех приборов и катушек я вырезал из текстолита пластину с тремя контактами (см. на фото). Архиважная вещь, без нее вся конструкция будет хлипкой и будет разваливаться, а силовая катушка так и норовит сместиться или упасть, что недопустимо в процессе измерения!


В качестве эталонной низкоомной катушки для изменения АЧХ силовой катушки я намотал около 1000 витков эмалированного провода диаметром 0.08мм на ферритовую заготовку, которую достал когда-то из сломанного импортного телевизора.

Можно провести измерение не снимая струн и звукоснимателя!


Результаты

Сначала измерим АЧХ силовой катушки с помощью эталонной и АЧХ полной схемы "силовая катушка + датчик":


Разница в АЧХ даст нам чистую АЧХ измеряемого датчика (#3) с точностью до аддитивной постоянной:


Результирующая кривая достаточно точно повторяет теоретическую кривую, что подтверждает правильность измерения и методики. Слабое отклонение линии слева от резонанса говорит о хорошей точности полученных данных.

Таким образом я снял характеристики всех трех сингловых датчиков:


#1 - нековый (у грифа), #2 - средний, #3 - бриджевый (у машинки). Как видно резонансная частота всех датчиков находится в районе 6-8кГц. Попытка китайского брата сделать широкополосные датчики?

А теперь измерим АЧХ самодельного датчика в сравнении с АЧХ бриджевого звукоснимателя (#3), именно по его размерам я делал свой.


Резонансная частота находится на 3кГц, что как раз находится зоне максимального слухового восприятия и придает звонкость "голосу" датчика. Добротность резонанса примерно 2,5. Однако выходное напряжение в 2,5 раза меньше.

Обсуждение результатов

Теперь я бы хотел немного обсудить то, что у меня получилось, и что не получилось. Я намеренно задумывал сделать сопротивление датчика низким. При уменьшении количества витков индуктивность и емкость уменьшаются, и это обычно приводит к смещению резонансной частоты вправо. Однако в моем случае я наматывал проволоку в 6 обмоток, и в результате к межвитковой емкости добавилась емкость между обмотками, что привело к сдвигу резонансной частоты влево. Я долго обдумывал параметры намотки, а в процессе суммарное количество витков пришлось уменьшить с 3000 до 2700 из-за того, что больше просто не влезло:) но тем не менее все сложилось достаточно удачно.

Низкое сопротивление датчика позволило сделать достаточную высоту резонанса, однако низкое выходное напряжение не дает хорошего выходного напряжения и отношения сигнал/шум, даже с экранировкой датчика. Поэтому в будущем я планирую "активизировать" датчик и усилить напряжение выхода до приемлемого уровня. Ну и само-собою готовый датчик нужно будет залить парафином. И еще я планирую записать образцы звука.

История начинается с моей гитары INVASION ST300, а точнее когда я сравнил ее звучание с более серьезным инструментом. Говорят к хорошему быстро привыкаешь, наверное поэтому мне стало невыносимо играть на прежнем инструменте. После недели тоскливого уныния я затеял переворот, а точнее "перенамот"!

Изготовление самодельного звукоснимателя

Сняв и разобрав звукосниматели я увидел следующую конструкцию: катушка на пластмассовом корпусе залитая парафином, 6 металлических сердечников и ферритовый магнит.

Меня несколько удивило, что металлические сердечники оказались раздельными (до этого я думал, что это цельная часть). Разбирать старую катушку дальше я не стал, чтобы на случай неудачи сделать "backup". Поэтому корпус пришлось делать самому. Для этого я выпилил 8 пластин из пластмассы (толщиной ~2мм), 6 из которых образовали сердечник катушки, а остальные 2 ограничительные крышки. Все эти пластины были доведены но необходимых размеров и склеены вместе. Трудность тут возникает с отверстиями под сердечники, их нужно просверлить в нужном месте и точно по оси. Чтобы не загубить заготовку я рассверливал отверстия меньшего диаметра, а дальше доводил круглым надфилем, и проверял диаметр вставляя сердечник.

В центральной части есть отверстие для установки на ось для намотки, не руками же мотать! Ну вот тут самая ответственная часть работы. Для того чтобы облегчить себе жизнь я мотал сразу в 6 ниток (что в конечном итоге повлияло на результат, однако об этом позже). Уместилось по 450 витков, и того 2700 витков (диаметр проволоки 0,08мм). Сопротивление датчика получилось около 1,5кОм, что в несколько раз меньше обычного (но об этом тоже потом). При прямых руках и хорошем обращении с проволокой эта процедура занимает всего пару часов. После намотки нужно соединить все обмотки последовательно в одну (здесь самое важное, соединить их в правильными направлении). Места спайки нужно изолировать друг от друга.

Так как количество витков невелико, а следовательно и сигнал с катушки будет не таким сильным, не будет лишним экранировать катушку от наводок. По размеру катушки я вырезал медную полосу, которая одевается поверх изолированной обмотки. Концы полосы заклеены скотчем, чтобы избежать замыкания экранного витка, иначе это приведет к потере мощности на этом витке и плохому сигналу на выходе. Также все металлические сердечники соединяются тонкой проволокой и подсоединяются к экрану

Экранировка обматывается изоляционной лентой или лейкопластырем. Сердечники вставляются в катушку, магнит приклеивается на место.

Датчик можно устанавливать на место и подключать. Касаясь темы экранировки гитары отмечу, что везде рекомендуется соединять землю звездой, на сигнальные проводники одевать экранную защиту, а отрицательные выводы с датчиков подсоединять к земле в самой далекой (по цепи) точке, например на выходном гнезде, или если приобрести микрофонный двухпроводной шнур и стерео-разъем с гнездом (как это сделано у меня), то на другом конце шнура. В такой схеме компенсируются шумы наведенные на шнуре. Так же к плюсом этой схемы является возможность использовать и обыкновенный однопроводной шнур, тогда сигнальная земля замыкается на выходе гитары через джек.

Здесь цветом отмечено: красным - сигнальные провода и элементы, синим - сигнальная земля, черным - земля и экраны.

Устанавливаем датчик на место и пробуем звук!

Поиграв на датчике я отметил появления «голоса» у гитары. Звук стал более отчетливым и певучим. На перегрузе стало отчетливо слышно удары медиатора о струны и, что самое важное, появились флажолетные призвуки между нотами. Искусственные флажолеты извлекаются легко и непринужденно. Куча новых ощущений! Однако из-за невысокого выходного напряжения соотношение сигнал/шум стало хуже.

Измерение частотных характеристик звукоснимателя

За основу методики измерения была взята схема из статьи GUITAR STUDIO: Секреты звукоснимателей . В ней предлагается использовать внешнюю катушку с малым сопротивлением, емкостью и индуктивностью. Частотная характеристика которой будет заведомо шире, а значит равномерной в области измерения АЧХ измеряемого датчика. Однако я посчитал, что лучше использовать большую силовую катушку с большим сопротивлением для создания внешнего магнитного поля, чтобы увеличить точность измерения и уменьшить необходимые для измерения токи. Однако, в таком случае необходимо учитывать АЧХ силовой катушки.

Теоретическая часть

Итак, электрическая схема для измерения АЧХ звукоснимателя:

Генератор переменного напряжения G подает напряжение на силовую катушку, которая наводит ЭДС в измеряемом звукоснимателе. Измеряя отношение напряжения на измеряемой катушке к напряжению на силовой катушке мы получаем передаточный коэффициент схемы, который равен произведению передаточных коэффициентов двух катушек. Изменяя частоту генератора и записывая показания напряжения можно построить АЧХ схемы:
U out (f) / U in (f) = А o (f) = A coil (f) * A x (f)

А для измерения передаточной характеристики силовой катушки нужно как раз использовать эталонную низкоомную катушку с низкой индуктивностью и емкостью, характеристика которой не изменяется в измеряемой области частот. В этом случае силовая катушка остается на месте, а вместо измеряемого звукоснимателя ставится эталонная катушка. Измерив АЧХ силовой катушки A coil (f) можно вычислить АЧХ измеряемого звукоснимателя A x (f) с точностью до множителя. (В случае идентичных по размерам датчиков и одинаковом расположении силовой катушки этот коэффициент будет совпадать, и можно сравнивать эти датчики по уровню выходного сигнала).

Обычно АЧХ измеряют в децибелах, а не в «разах», поэтому переведем полученные передаточных характеристики по формуле:
АЧХ o (f) = 20 * log [ U out (f) / U in (f) ] = АЧХ coil (f) + АЧХ x (f)

И для того, чтобы получить чистую характеристику измеряемого датчика АЧХ x (f), останется всего-навсего вычесть из измеренной АЧХ o (f) характеристику силовой катушки АЧХ coil (f).

Практическая часть

Генератор, который я использовал, делал еще мой отец! Он генерирует синусоидальный сигнал заданной частоты (выбирается переключателем) с амплитудой до 10В и имеет ограничение по току максимум в 10мА. В качестве измерительного вольтметра я использовал мультиметр из серии M-890, у него есть замечательная возможность измерения переменного напряжения начиная с 10мВ. Для соединения всех приборов и катушек я вырезал из текстолита пластину с тремя контактами (см. на фото). Архиважная вещь, без нее вся конструкция будет хлипкой и будет разваливаться, а силовая катушка так и норовит сместиться или упасть, что недопустимо в процессе измерения!




В качестве эталонной низкоомной катушки для изменения АЧХ силовой катушки я намотал около 1000 витков эмалированного провода диаметром 0.08мм на ферритовую заготовку, которую достал когда-то из сломанного импортного телевизора.

Можно провести измерение не снимая струн и звукоснимателя!

Результаты

Сначала измерим АЧХ силовой катушки с помощью эталонной и АЧХ полной схемы «силовая катушка + датчик»:

Разница в АЧХ даст нам чистую АЧХ измеряемого датчика (#3) с точностью до аддитивной постоянной:


Результирующая кривая достаточно точно повторяет теоретическую кривую, что подтверждает правильность измерения и методики. Слабое отклонение линии слева от резонанса говорит о хорошей точности полученных данных.

Таким образом я снял характеристики всех трех сингловых датчиков:


#1 - нековый (у грифа), #2 - средний, #3 - бриджевый (у машинки). Как видно резонансная частота всех датчиков находится в районе 6-8кГц.

А теперь измерим АЧХ самодельного датчика в сравнении с АЧХ бриджевого звукоснимателя (#3), именно по его размерам я делал свой.


Резонансная частота находится на 3кГц, что как раз находится зоне максимального слухового восприятия и придает звонкость «голосу» датчика. Добротность резонанса примерно 2,5. Однако выходное напряжение в 2,5 раза меньше.

Обсуждение результатов

Теперь я бы хотел немного обсудить то, что у меня получилось, и что не получилось. Я намеренно задумывал сделать сопротивление датчика низким. При уменьшении количества витков индуктивность и емкость уменьшаются, и это обычно приводит к смещению резонансной частоты вправо. Однако в моем случае я наматывал проволоку в 6 обмоток, и в результате к межвитковой емкости добавилась емкость между обмотками, что привело к сдвигу резонансной частоты влево. Я долго обдумывал параметры намотки, а в процессе суммарное количество витков пришлось уменьшить с 3000 до 2700 из-за того, что больше просто не влезло. Но тем не менее все сложилось достаточно удачно.

Низкое сопротивление датчика позволило сделать достаточную высоту резонанса, однако низкое выходное напряжение не дает хорошего выходного напряжения и отношения сигнал/шум, даже с экранировкой датчика. Поэтому в будущем я планирую «активизировать» датчик и усилить напряжение выхода до приемлемого уровня. Ну и само-собою готовый датчик нужно будет залить парафином.