Осветительные приборы

Твч установка своими руками. Индукционные нагреватели своими руками: пошаговая инструкция

Твч установка своими руками. Индукционные нагреватели своими руками: пошаговая инструкция

Индукционные нагреватели работают по принципу “получение тока из магнетизма”. В специальной катушке генерируется переменное магнитное поле высокой мощности, которое порождает вихревые электрические токи в замкнутом проводнике.

Замкнутым проводником в индукционных плитах является металлическая посуда, которая разогревается вихревыми электрическими токами. В общем, принцип работы таких приборов не сложен, и при наличии небольших познаний в физике и электрике, собрать индукционный нагреватель своими руками не составит большого труда.

Самостоятельно могут быть изготовлены следующие приборы:

  1. Приборы для нагрева в котле отопления.
  2. Мини-печи для плавки металлов.
  3. Плиты для приготовления пищи.

Индукционная плита своими руками, должна быть изготовлена с соблюдением всех норм и правил для эксплуатации данных приборов. Если за пределы корпуса в боковых направлениях будет выделяться опасное для человека электромагнитное излучение, то использовать такой прибор категорически запрещается.

Кроме этого большая сложность при конструировании плиты заключается в подборе материала для основания варочной поверхности, которое должно удовлетворять следующим требованиям:

  1. Идеально проводить электромагнитное излучение.
  2. Не являться токопроводящим материалом.
  3. Выдерживать высокую температурную нагрузку.

В бытовых варочных индукционных поверхностях используется дорогая керамика, при изготовлении в домашних условиях индукционной плиты, найти достойную альтернативу такому материалу – довольно сложно. Поэтому, для начала следует сконструировать что-нибудь попроще, например, индукционную печь для закалки металлов.

Инструкция по изготовлению

Чертежи


Рисунок 1. Электрическая схема индукционного нагревателя
Рисунок 2. Устройство. Рисунок 3. Схема простого индукционного нагревателя

Для изготовления печи понадобятся следующие материалы и инструменты:

  • припой;
  • текстолитовая плата.
  • мини-дрель.
  • радиоэлементы.
  • термопаста.
  • химические реагенты для травления платы.

Дополнительные материалы и их особенности:

  1. Для изготовления катушки , которая будет излучать необходимое для нагрева переменное магнитное поле, необходимо приготовить отрезок медной трубки диаметром 8 мм, и длиной 800 мм.
  2. Мощные силовые транзисторы являются самой дорогой частью самодельной индукционной установки. Для монтажа схемы частотного генератора необходимо приготовить 2 таких элемента. Для этих целей подойдут транзисторы марок: IRFP-150; IRFP-260; IRFP-460. При изготовлении схемы используются 2 одинаковых из перечисленных полевых транзисторов.
  3. Для изготовления колебательно контура понадобятся керамические конденсаторы ёмкостью 0,1 mF и рабочим напряжением 1600 В. Для того, чтобы в катушке образовался переменный ток высокой мощности, потребуется 7 таких конденсаторов.
  4. При работе такого индукционного прибора , полевые транзисторы будут сильно разогреваться и если к ним не будут присоединены радиаторы из алюминиевого сплава, то уже через несколько секунд работы на максимальной мощности, данные элементы выйдут из строя. Ставить транзисторы на теплоотводы следует через тонкий слой термопасты, иначе эффективность такого охлаждения будет минимальна.
  5. Диоды , которые используются в индукционном нагревателе, обязательно должны быть ультрабыстрого действия. Наиболее подходящими для данной схемы, диоды: MUR-460; UF-4007; HER – 307.
  6. Резисторы, которые используются в схеме 3: 10 кОм мощностью 0,25 Вт – 2 шт. и 440 Ом мощностью – 2 Вт. Стабилитроны: 2 шт. с рабочим напряжением 15 В. Мощность стабилитронов должна составлять не менее 2 Вт. Дроссель для подсоединения к силовым выводам катушки используется с индукцией.
  7. Для питания всего устройства понадобится блок питания мощностью до 500. Вт. и напряжением 12 – 40 В. Запитать данное устройство можно от автомобильного аккумулятора, но получить наивысшие показания мощности при таком напряжении не получится.


Сам процесс изготовления электронного генератора и катушки занимает немного времени и осуществляется в такой последовательности:

  1. Из медной трубы делается спираль диаметром 4 см. Для изготовления спирали следует медную трубку накрутить на стержень с ровной поверхностью диаметром 4 см. Спираль должна иметь 7 витков, которые не должны соприкасаться. На 2 конца трубки припаиваются крепёжные кольца для подключения к радиаторам транзистора.
  2. Печатная плата изготавливается по схеме. Если есть возможность поставить полипропиленовые конденсаторы, то благодаря тому, что такие элементы обладают минимальными потерями и устойчивой работой при больших амплитудах колебания напряжений, устройство будет работать намного стабильнее. Конденсаторы в схеме устанавливаются параллельно образуя с медной катушкой колебательный контур.
  3. Нагрев металла происходит внутри катушки, после того как схема будет подключена к блоку питания или аккумулятору. При нагреве металла необходимо следить за тем, чтобы не было короткого замыкания обмоток пружины. Если коснуться нагреваемым металлом 2 витка катушки одновременно, то транзисторы выходят из строя моментально.

Нюансы


  1. При проведении опытов по нагреву и закалке металлов , внутри индукционной спирали температура может быть значительна и составляет 100 градусов Цельсия. Этот теплонагревательный эффект можно использовать для нагрева воды для бытовых нужд или для отопления дома.
  2. Схема нагревателя рассмотренного выше (рисунок 3) , при максимальной нагрузке способна обеспечить излучение магнитной энергии внутри катушки равное 500 Вт. Такой мощности недостаточно для нагрева большого объёма воды, а сооружение индукционной катушки высокой мощности потребует изготовление схемы, в которой необходимо будет использовать очень дорогие радиоэлементы.
  3. Бюджетным решением организации индукционного нагрева жидкости , является использование нескольких устройств описанных выше, расположенных последовательно. При этом, спирали должны находиться на одной линии и не иметь общего металлического проводника.
  4. В качестве используется труба из нержавеющей стали диаметром 20 мм. На трубу «нанизываются» несколько индукционных спиралей, таким образом, чтобы теплообменник оказался в середине спирали и не соприкасался с её витками. При одновременном включении 4 таких устройств, мощность нагрева будет составлять порядка 2 Квт, что уже достаточно для проточного нагрева жидкости при небольшой циркуляции воды, до значений позволяющих использовать данную конструкцию в снабжении тёплой водой небольшого дома.
  5. Если соединить такой нагревательный элемент с хорошо изолированным баком , который будет расположен выше нагревателя, то в результате получится бойлерная система, в которой нагрев жидкости будет осуществляться внутри нержавеющей трубы, нагретая вода будет подниматься вверх, а её место будет занимать более холодная жидкость.
  6. Если площадь дома значительна , то количество индукционных спиралей может быть увеличено до 10 штук.
  7. Мощность такого котла можно легко регулировать путём отключения или включения спиралей. Чем больше одновременно включённых секций, тем больше будет мощность работающего таким образом отопительного устройства.
  8. Для питания такого модуля понадобится мощный блок питания. Если есть в наличии инверторный сварочный аппарат постоянного тока, то из него можно изготовить преобразователь напряжения необходимой мощности.
  9. Благодаря тому, что система работает на постоянном электрическом токе , который не превышает 40 В, эксплуатация такого устройства относительно безопасна, главное обеспечить в схеме питания генератора блок предохранителей, которые в случае короткого замыкания обесточат систему, там самым исключив возможность возникновения пожара.
  10. Можно таким образом организовать “бесплатное” отопление дома , при условии установки для питания индукционных устройств аккумуляторных батарей, зарядка которых будет осуществляться за счёт энергии солнца и ветра.
  11. Аккумуляторы следует объединить в секции по 2 шт., подключённые последовательно. В результате, напряжение питания при таком подключении будет не менее 24 В., что обеспечит работу котла на высокой мощности. Кроме этого, последовательное подключение позволит снизить силу тока в цепи и увеличить срок эксплуатации аккумуляторов.


  1. Эксплуатация самодельных устройств индукционного нагрева , не всегда позволяет исключить распространение вредного для человека электромагнитного излучения, поэтому индукционный котёл следует устанавливать в нежилом помещении и экранировать оцинкованной сталью.
  2. Обязательно при работе с электричеством следует соблюдать правила техники безопасност и, особенно это касается сетей переменного тока напряжением 220 В.
  3. В качестве эксперимента можно изготовить варочную поверхность для приготовления пищи по схеме указанной в статье, но эксплуатировать данный прибор постоянно не рекомендуется по причине несовершенства самостоятельного изготовления экранирования данного устройства, из-за этого возможно воздействие на организм человека вредного электромагнитного излучения, способного негативно сказаться на здоровье.

Электрическая энергия обходится сегодня достаточно дорого, однако работающее на этом ресурсе отопительное оборудование не теряет популярности.

Это объясняется тем, что электроотопление является наиболее удобным способом обогреть жилище.

Особый интерес пользователей вызывают приборы, работающие на принципе электромагнитной индукции.

Главным образом потому, что такое устройство легко можно собрать самостоятельно. В этой статье мы поговорим об особенностях этих агрегатов, изучим их сильные и слабые стороны, а также научимся делать индукционный нагреватель своими руками.

Работа всех электронагревателей, как обычных, так и индукционных, основана на одном и том же принципе: при пропускании электрического тока через некий проводник последний начнет нагреваться.

Количество выделяемого за единицу времени тепла зависит от силы тока и величины сопротивления данного проводника – чем больше эти показатели, тем сильнее будет греться материал.

Весь вопрос в том, каким образом вызвать протекание электротока? Можно подсоединить проводник непосредственно к источнику электрической энергии, что мы и делаем, втыкая в розетку шнур от электрочайника, масляного обогревателя или, к примеру, бойлера. Но можно применить и другой способ: как оказалось, протекание электротока можно спровоцировать воздействием на проводник переменного (именно переменного!) магнитного поля. Это явление, открытое в 1831-м году М. Фарадеем, получило название электромагнитной индукции.

Тут есть одна хитрость: магнитное поле может быть и постоянным, но тогда положение находящегося в нем проводника нужно постоянно менять. При этом будет меняться количество проходящих через проводник силовых линий и их направление относительно него. Проще всего проводник в поле вращать, что и делается в современных электрогенераторах.

Принцип электромагнитной индукции

Но можно менять и параметры самого поля. С постоянным магнитом такой фокус, конечно, не пройдет, а вот с электромагнитом – вполне. Работа электромагнита, кто забыл, основана на обратном эффекте: протекающий через проводник переменный ток генерирует вокруг него магнитное поле, параметры которого (полярность и напряженность) зависят от направления тока и его величины. Для более ощутимого эффекта провод можно уложить в виде катушки.

Таким образом, меняя параметры электротока в электромагните, мы будем менять все параметры наводимого им магнитного поля, вплоть до изменения местоположения полюсов на противоположное.

И тогда это магнитное поле, действительно являющееся переменным, будет наводить электроток в любом токопроводящем материале, расположенном в его пределах. И материал при этом, понятно, будет нагреваться. На этом и основан принцип работы современных индукционных нагревателей.

Хотите подобрать самый экономичный электрический бойлер? Тогда присмотритесь . О преимуществах и недостатках прибора читайте в статье.

Решили установить электрический котел в качестве резервного теплогенератора? О том, какую модель лучше выбрать, читайте .

Индукционная печь – многофункциональное устройство. Ее можно приобрести в магазине, но интереснее и дешевле изготовить ее своими руками. По этой ссылке вы найдете схему сборки прибора и узнаете об особенностях эксплуатации печи.

Индукционный генератор тепла в системе отопления

У применяемых в отопительных контурах индукционных водонагревателей имеются как общие для всех электронагревателей достоинства, так и присущие только им. Начнем с первой группы:

  1. По удобству использования электронагреватели опережают даже газовое оборудование, так как обходятся без розжига. К тому же они являются намного более безопасными: владельцу можно не опасаться утечки топлива или продуктов его сгорания.
  2. Электрооборудованию не нужны дымоход и обслуживание в виде удаления нагара и копоти.
  3. КПД электронагревателя не зависит от его мощности. Его можно установить на самый минимум, и при этом КПД агрегата останется на уровне 99%, в то время как КПД газового или твердотопливного котла в таких условиях окажется значительно ниже паспортного.
  4. При наличии электрического теплогенератора система отопления может работать в самом низкотемпературном режиме, что весьма актуально в периоды межсезонья. В случае применения газового или твердотопливного котла падение температуры «обратки» ниже 50 градусов не допускается, так как при этом на теплообменнике образуется конденсат (при использовании твердого топлива он содержит кислоту).
  5. Ну и последнее: при использовании электрообогрева можно обойтись без жидкостного теплоносителя, правда, к индукционным нагревателям это не относится.

Простой индукционный нагреватель

Перейдем к достоинствам непосредственно «индукционников»:

  1. Площадь контакта теплоносителя с горячей поверхностью в индукционных нагревателях в тысячи раз больше, чем в приборах с трубчатыми электронагревателями. Поэтому среда прогревается гораздо быстрее.
  2. Все элементы «индукционника» монтируются только снаружи, без каких-либо врезок. Соответственно, и протечки полностью исключаются.
  3. Поскольку нагрев осуществляется бесконтактным способом, нагреватель индукционного типа может работать с абсолютно любым теплоносителем, включая все виды антифризов (для ТЭНового электрокотла понадобился бы специальный). При этом вода может содержать сравнительно большое количество солей жесткости – переменное магнитное поле препятствует образованию накипи на стенках теплообменника.

На всякую бочку меда, как известно, найдется своя ложка дегтя. Здесь без этого тоже не обошлось: мало того, что сама по себе электроэнергия стоит достаточно дорого, так еще и индукционные нагреватели относятся к наиболее дорогому типу электроотопительного оборудования.

Индукционный нагреватель своими руками – схема конструкции

Простота конструкции – одно из достоинств индукционного нагревателя. Внутри круглого экранированного корпуса расположена катушка, на языке физиков именуема индуктором. Она подключается к источнику переменного тока. Внутри катушки расположен отрезок стальной трубы, заканчивающийся двумя патрубками. Последние позволяют присоединить нагреватель к системе отопления.

Таким образом, после подсоединения через трубу будет следовать теплоноситель, при этом она будет нагреваться под воздействием генерируемого катушкой переменного поля. От контакта с трубой, соответственно, будет греться и теплоноситель.

Схема индукционного нагревателя

В некоторых моделях индукционных нагревателей катушка подсоединяется непосредственно к электросети, вследствие чего создаваемое ею магнитное поле меняет полярность с частотой 50 Гц. Но существует и более производительная схема подключения. Она отличается от только что описанной наличием преобразователя, увеличивающего частоту колебания подаваемого на катушку тока с 50 Гц до нескольких десятков килогерц. Такой преобразователь называют инвертором. Он состоит из трех модулей:

  1. Выпрямитель, представляющий собой обычный диодный мост.
  2. Собственно, инвертор. Главные герои – пара т.н. ключевых транзисторов, которые могут очень быстро переключаться.
  3. Схема управления, которая «дирижирует» ключевыми транзисторами.

Несложно заметить, что происходящие внутри нагревателя процессы весьма сходны с работой понижающего трансформатора, только в данном случае вторичная обмотка является короткозамкнутой и располагается внутри первичной.

Другое отличие состоит в том, что в случае с трансформатором нагрев является побочным эффектом, который стараются предотвратить (например, набирают магнитопровод из отдельных изолированных пластин).

Как сделать индукционный нагреватель самому?

Простейший индукционный нагреватель своими руками делается так:

  1. На один конец отрезка толстостенной полипропиленовой трубы необходимо наварить муфту, предварительно закрепив на торце трубы капроновую мелкоячеистую сетку.
  2. Перевернув трубу сеткой вниз, необходимо заполнить ее рубленой нержавеющей проволокой диаметром 5 – 7 мм (длина обрезков – около 5 см).
  3. Свободный конец трубы также нужно закрыть с помощью муфты и сетки. Благодаря этому стальная засыпка, играющая роль сердечника, будет удерживаться внутри.
  4. С наружной стороны в каждую муфту вваривается переходник на нужный диаметр (соответствует диаметру отопительного контура.).
  5. На трубу следует намотать 90 витков медного провода.
  6. Получившуюся катушку нужно подключить к инвертору от самого дешевого сварочного аппарата, рассчитанный на ток сварки до 20А и оснащенный функцией его плавной настройки.
  7. Остается подсоединить нагреватель к системе отопления, заполнить ее теплоносителем и подать ток на катушку.

Для удобства обслуживания на входе и выходе из нагревателя можно установить шаровые краны – это даст возможность демонтировать устройство без дренирования отопительного контура.

Чтобы избежать разрыва системы из-за перегрева теплоносителя, с одной стороны к нагревателю через тройник следует подсоединить предохранительный клапан.

При наличии 3-фазной сети нагреватель можно усовершенствовать, установив вместо одной катушки три.

  1. Индукционные нагреватели допускается применять только в системах с принудительной циркуляцией. Тепло вырабатывается довольно интенсивно, поэтому при естественной циркуляции, тем более с учетом значительного гидравлического сопротивления сердечника из рубленой проволоки, возможен перегрев теплоносителя.
  2. Не следует пренебрегать предохранительным клапаном. Он должен быть смонтирован либо на нагревателе, как было рассказано выше, либо в другом месте системы. Очевидно, что при выходе циркуляционного насоса из строя перегрева теплоносителя избежать не удастся, а при отсутствии предохранительного клапана такое явление приведет к разрыву системы.
  3. Подключать нагреватель следует через УЗО. Желательно, также, дооборудовать систему отопления термостатом.

Часто умельцы помещают самодельный индукционный нагреватель в утепленный металлический корпус. В таком случае он должен быть заземлен.

Из-за отсутствия у самодельного «индукционника» полноценного экранирования его следует размещать не ближе 80-ти см от потолка или пола. Расстояние между прибором и стеной должно составлять не менее 30 см.

Помните, что переменное электромагнитное поле существует не только внутри катушки, но и снаружи, поэтому оно может нагревать любые находящиеся рядом металлические предметы. Например, застежки или пуговицы на одежде пользователя.

Технология индукционного нагрева нашла широкое применение в промышленности и стала проникать в бытовую сферу. привлекают своей экономичностью и простотой конструкции. Читайте об устройстве прибора и смотрите примеры самодельных конструкций.

О видах чугунных отопительных печей и вариантах их установки вы узнаете в материале.

Видео на тему

Вот проект индукционного нагревателя металлов простейшей конструкции, он собран по схеме мультивибратора и часто выступает как первый нагреватель, который делают радиолюбители.

Принцип действия ТВЧ установки

Катушка создает высокочастотное магнитное поле, и в металлическом предмете в середине катушки возникают вихревые токи, которые будут его разогревать. Даже маленькие катушки раскачивают ток около 100 A, поэтому параллельно с катушкой, подключена резонансная емкость, которая компенсирует ее индукционный характер. Схема катушка-конденсатор должна работать на их резонансной частоте.


ТВЧ катушка самодельная

Схема принципиальная электрическая


Схема индукционного нагревателя от 12В

Вот оригинальная схема генератора индукционного нагревателя, а ниже неё чуть изменённый вариант, по которому и была собрана конструкция мини ТВЧ установки. Ничего дефицитного тут нет — купить придётся только полевые транзисторы, использовать можно BUZ11, IRFP240, IRFP250 или IRFP460. Конденсаторы специальные высоковольтные, а питание будет от автомобильного аккумулятора 70 А/ч — он будет очень хорошо держать ток.

Проект на удивление оказался успешным — всё заработало, хоть и собрано было «на коленке» за час. Особенно порадовало что не требует сеть 220 В — авто аккумуляторы позволяют питать её хоть в полевых условиях (кстати, может из неё походную микроволновку сделать?). Можно поэкспериментировать в направлении чтобы снизить напряжение питания до 4-8 В как от литиевых АКБ (для миниатюризации) с сохранением хорошей эффективности нагрева. Массивные металлические предметы конечно плавить не получится, но для мелких работ пойдёт.

Ток потребления от источника питания 11 А, но после прогрева падает до примерно 7 A, потому что сопротивление металла при нагреве заметно увеличивается. И не забудьте сюда использовать толстые провода, способные выдержать более 10 А тока, иначе провода при работе станут горячие.


Нагрев отвертки до синего цвета ТВЧ
Нагрев ножа ТВЧ

Второй вариант схемы — с питанием от сети

Чтоб удобнее настраивать резонанс можно собрать более совершенную схему с драйвером IR2153. Рабочая частота настраивается регулятором 100к в резонанс. Частотами можно управлять в диапазоне примерно 20 — 200 кГц. Схема управления нуждается в вспомогательном напряжении 12-15 В от сетевого адаптера, а силовая часть через диодный мост может быть подключена напрямую к сети 220 В. Дроссель имеет около 20 витков 1,5 мм на ферритовом сердечнике 8×10 мм.


Схема индукционного нагревателя от сети 220В

Рабочая катушка ТВЧ должна быть из толстой проволоки или лучше медной трубки, и имеет около 10-30 витков на оправке 3-10 см. Конденсаторы 6 х 330n 250V. И то, и другое через некоторое время сильно нагревается. Резонансная частота около 30 кГц. Эта самодельная установка индукционного нагрева собрана в пластиковом корпусе и работает уже более года.

Содержание

Сегодня электроэнергия обходится потребителям совсем недешево, но работающие на таком ресурсе отопительные приборы пользуются у населения определенной популярностью. Большой интерес вызывают устройства, функционирующие на принципе электромагнитной индукции. В статье описано, как работает подобное устройство, где используется, и как сделать индукционный нагреватель своими руками. Но прежде - немного истории.

Вихревой индукционный нагреватель

В начале девятнадцатого века ученый из Англии Фарадей проводил эксперименты, преследуя цель преобразовать магнетизм в электроэнергию. У него вышло получить поток энергии в первичной обмотке, состоящей из провода, накрученного на сердечник, изготовленный из железа. Таким образом стала открыта электромагнитная индукция. Произошло это в 1831 г.

Первую плавильню, использующую мощный водонагреватель, работающий по принципу индукции, открыли в Англии, в тридцатых годах прошлого века. В восьмидесятых прошлого века принцип индукции применялся более активно. Специалисты разработали вихревые нагреватели. Ими обогревали заводские цеха и различные производственные помещения. Через некоторое время начали производить бытовые устройства.

Принцип работы индуктора

Вихревые нагреватели обычно используются для отопительных котлов. Они пользуются большим спросом у населения за счет своей мощности и простой конструкции. Функционирование их основывается на передаче теплоносителю энергии магнитного поля. Вода, подающаяся в аппарат, нагревается путем подачи энергии. Далее она подается в отопительную систему. Чтобы появилось давление, применяется насос. Вода циркулирует и защищает элементы от перегрева. Теплоноситель вибрирует, что предотвращает появление накипи на стенках оборудования.

Если изучить изнутри индукционный обогреватель, там можно обнаружить металлический корпус, изоляцию и сердечник. Основное отличие такого нагревателя от промышленных - обмотка медными проводниками. Последняя находится между 2-ух сваренных стальных труб.


Принцип электромагнитной индукции

Самодельный индукционный нагреватель мало весит, обладает хорошим КПД и компактными размерами. Как сердечник, тут используется труба с обмоткой. Вторая труба нужна для нагревания. Ток, генерируемый магнитным полем, греет воду. По такому принципу функционируют самодельные устройства и часть современных нагревателей.

Устройство нагревательного прибора

Прибор состоит из таких элементов :

  1. Пластиковая трубка.
  2. Сетка из нержавейки.
  3. Проволока из стали.
  4. Медная проволока.
  5. Сварочный инвертор.

Одно из главных достоинств данного устройства - это простая конструкция. Схема индукционного нагревателя примерно такова. В круглом корпусе находится катушка - индуктор. Внутри последнего находится отрезок стальной трубы с 2-мя патрубками на концах. Они нужны для присоединения прибора к отопительной системе. После подключения через трубу будет проходить вода. Труба будет нагреваться. От соприкосновения с ней разогревается теплоноситель.


Схема устройства индукционного нагревателя

У других видов прибора катушка крепится к электрической сети, однако имеется и другая схема подключения. Отличается она преобразователем, который повышает частоту колебаний тока, подаваемого на катушку. Этот преобразователь называется инвертором и состоит их 3-х модулей:

  1. Выпрямитель.
  2. Инвертор с 2-мя транзисторами.
  3. Схема управления транзисторами.

Процессы, происходящие в устройстве, похожи на работу трансформатора. Разница во вторичной обмотке, которая тут короткозамкнута и расположена внутри первичной. Еще одно отличие в том, что в случае с трансформатором нагрев - побочный эффект, его стараются избежать.

Интересный факт: обслуживание индукционника обойдется гораздо дешевле, чем, если использовать газовый котел или бойлер. Аппарат состоит из минимума деталей, практически не выходящих из строя. Ломаться в нагревателе нечему. Воду греет обыкновенная трубка, которая в отличие от того же ТЭНа не может перегореть либо испортиться.

Сфера применения

Сегодня применение индукционного нагрева используется очень часто. Основные области применения :

  • плавка металла, получение новых сплавов;
  • производство металлической проволоки;
  • ювелирное дело;
  • производство котлов отопления;
  • термическая обработка запчастей для транспортных средств;
  • медицинская отрасль (дезинфекция инструментов, врачебного оборудования);
  • машиностроение, обогрев автосервиса;
  • промышленные печи.

Недостатки и достоинства

Рассмотрим положительные характеристики и преимущества индукционного оборудования:

  1. Нагрев производится в любой среде.
  2. Возможность изготовления сверхчистых сплавов.
  3. Быстрый нагрев и плавка любого материала, который проводит ток.
  4. Элементы прибора монтируются снаружи, врезки отсутствуют. Это гарантирует исключение протечек.
  5. Индукционный водонагреватель не загрязняет окружающую среду.
  6. Удобен при необходимости нагрева определенного участка поверхности.
  7. Площадь контакта теплоносителя с поверхностью нагревателя во много раз больше, нежели в аппаратах с трубчатыми электронагревателями. За счет этого среда греется очень быстро.
  8. Компактные размеры прибора.
  9. Оборудование легко настраивается на нужный режим работы и без труда регулируется.
  10. Имеется возможность изготовления прибора любой формы (в том числе самостоятельно). Это предупреждает локальный нагрев и способствует равномерному распределению тепла.

Простой нагреватель индукционного типа

Проточный нагреватель такого типа практически не имеет минусов, если сравнивать с приборами, работающими по иным принципам. Единственная сложность эксплуатации в том, что необходимо сопоставить индуктор с заготовкой. Иначе нагрев будет недостаточным и маломощным.

Процесс изготовления своими руками

Для работы пригодятся следующие инструменты:

  • сварочный инвертор;
  • сварочный генерирующий ток силой от 15 ампер.

Еще понадобится проволока из меди, которая наматывается на корпус сердечника. Устройство будет выполнять роль индуктора. Контакты проволоки соединяются с клеммами инвертора так, чтобы не образовалось скруток. Отрезок материала, нужный для сборки сердечника, должен быть нужной длины. В среднем число витков равно 50, диаметр проволоки - 3-м миллиметрам.


Медная проволока разного диаметра для обмотки

Теперь перейдем к сердечнику. В его роли будет полимерная труба, сделанная из полиэтилена. Такой вид пластмассы выдерживает довольно высокую температуру. Диаметр сердечника - 50 миллиметров, толщина стенок - минимум 3 мм. Данная деталь используется как калибр, на который навивается проволока из меди, формируя индуктор. Собрать простейший индукционный нагреватель воды может практически любой человек.

На видео увидите способ - как самостоятельно организовать индукционный нагрев воды для отопления:

Первый вариант

На 50-миллиметровые отрезки рубится проволока, ей заполняется пластиковая трубка. Чтобы она не высыпалась из трубы, следует закупорить торцы проволочной сеткой. На концах ставятся переходники от трубы, в том месте, где подключается нагреватель.

На корпус последнего медной проволокой наматывается обмотка. Для этой цели нужно примерно 17 метров проволоки: нужно сделать 90 витков, диаметр трубы - 60 миллиметров. 3,14×60×90=17 м.

Важно знать! В ходе проверки функционирования устройства следует тщательно удостовериться, что в нем есть вода (теплоноситель). Иначе корпус устройства быстро расплавится.

Труба врезается в трубопровод. Нагреватель подключается к инвертору. Осталось заполнить устройство водой и включить. Все готово!

Второй вариант

Этот вариант гораздо попроще. Выбирается прямой участок метрового размера на вертикальной части трубы. Его следует тщательно очистить от краски, используя наждачку. Далее этот участок трубы покрывается тремя слоями электротехнической ткани. Медной проволокой наматывается индукционная катушка. Вся система подключения хорошенько изолируется. Теперь можно подключить сварочный инвертор, и процесс сборки полностью завершен.


Индукционная катушка, обмотанная медной проволокой

Перед тем как начинать изготовление водонагревателя своими руками, желательно ознакомиться с характеристиками заводских изделий и изучить их чертежи. Это поможет разобраться с исходными данными самодельного оборудования и избежать возможных ошибок.

Третий вариант

Чтобы сделать нагреватель этим более сложным способом, нужно использовать сварку. Для работы еще понадобится трехфазный трансформатор. Друг в друга нужно вварить две трубы, которые будут выполнять роль нагревателя и сердечника. На корпус индукционника накручивается обмотка. Таким образом повышается производительность прибора, который имеет компактные размеры, что очень удобно при его эксплуатации в домашних условиях.


Обмотка на корпусе индукционника

Для подвода и отвода воды, в корпус индукционника ввариваются 2 патрубка. Чтобы не терять тепло и предотвратить возможные утечки тока, нужно сделать изоляцию. Она избавит от проблем, описанных выше, и полностью исключит появление шума при работе котла.

Техника безопасности должна соблюдаться всегда. Особенно когда мастерят что-то самостоятельно. Здесь нагреватели применяются для систем, имеющих принудительную циркуляцию. Теплоэнергия вырабатывается очень быстро и может возникнуть перегрев теплоносителя.

Нельзя забывать про предохранительный клапан. Он крепится на нагревателе. В случае когда циркулярный насос перестанет работать, то стопроцентно случится перегрев теплоносителя. Если клапан не будет установлен заранее, то произойдет разрыв системы. Последняя должна из предосторожности оснащаться термостатом. Если нагреватель заключен в металлический корпус, то он обязательно заземляется.


Нагреватель в металлическом корпусе

Так как у самодельной конструкции нет нормального экранирования, то индукционник устанавливается как минимум в 80-и сантиметрах от горизонтальных поверхностей. Расстояние до стены - от 30 сантиметров.

Совет: мощность самодельных нагревателей может способствовать распространению электромагнитного излучения. Устройство желательно экранировать оцинкованной сталью и не устанавливать в жилом помещении! Электромагнитное переменное поле есть внутри и снаружи катушки. Оно будет нагревать все металлические поверхности, расположенные рядом.

Так, без глобальных финансовых трат, нетрудно собственноручно сделать этот нехитрый прибор. Схема сборки проста, и справиться с работой по сборке нагревателя собственноручно сможет практически каждый. Тут не требуется профильных технических знаний. Завершить работу можно буквально за несколько часов.

Самодельный индукционный нагреватель 4 кВт.


Представьте такой фокус. Человек берёт в руки железный гвоздь и засовывает его в медную петлю - индуктор. Гвоздь тут же раскаляется добела.
Секрет фокуса - индукционный нагрев. Старинная технология, впервые разработанная русским электротехником Вологдиным в 1880 году, и, к сожалению, до сих пор мало распространённая среди домаших мастеров.

По медной петле - индуктору - пропускается электрический ток большой силы (сотни ампер) и большой частоты (десятки - сотни кГц). В результате в металлической заготовке, стоящей внутри индуктора или рядом с ним, наводятся токи Фуко, тоже большой силы и частоты. Высокочастотный ток в заготовке под действием скин-эффекта вытесняется в тонкие поверхностные слои, в результате чего его плотность резко возрастает. Слой заготовки, по которому протекают большие токи, начинает быстро разогреваться. Температура может достичь нескольких тысяч градусов, что позволяет плавить металл в домашних условиях, придумывать и создавать свои собственные необычные сплавы; сваривать и паять металлические детали; закаливать отвёртки, свёрла, ножи и так далее, применять установку в кузнечных и ремонтных мастерских.

Индукционный нагрев позволяет разогревать электропроводящие материалы (любой металл, графит, электропроводную керамику) бесконтактно. Прямо через воздух, через слой воды, через стеклянную, деревянную или пластиковую стенку, в вакуумной камере или в камере с защитным газом. При этом заготовка остаётся идеально чистой, так как не окисляется в газовой струе, не касается грязной поверхности печки и т п.

_________________________________________________________________________

За основу был взят инвертор Сергея Владимировича Кухтецкого, разработанны й в Институте химии. Схема инвертора, её подробное описание и рекомендации по сборке опубликованы по адресу: www.icct.ru В схеме применены современные электронные компоненты, что позволяет собрать мощный и надёжный инвертор в домашних условиях за небольшую цену порядка нескольких тысяч рублей (цены на промышленные аналоги достигают десятков и сотен тысяч руб).

На форуме induction.listbb.ru совместными усилиями с форумчанами Derba, Феникс, Jab, Фулюган, Ostap, -CE- проведена до работка схемы, установлена дополнительная плата фазовой автоподстройки частоты ФАПЧ для автоматического удержания резонанса, установлена скоростная защита от превышения тока (как при превышении питания, так и в результате пробоя силовых мосфетов из-за их перегрева или сбоя модуля управления). Добавлены некоторые детали, уменьшающие вероятность перегрева мосфетов и сбоя модуля управления (приводящие к появлению сквозных токов в силовом мосте).

Потребляемая мощность инвертора в зависимости от применяемых индукторов: 1...4 кВт.
Частота тока в индукторе: 300 кГц.
Сила тока в индукторе: ~400А.
Максимальный потребляемый от сети ток при двухвитковом индукторе - 20А, потребляемое напряжение - 220V.

Индукционной нагреватель снабжён защитой, отключающей схему при превышении напряжения питания, при коротком замыкании индуктора, при заливании индуктора водой.

Схемы и обсуждение доработок смотрите на форуме: induction.listbb.ru и

Видео - плавление низкоуглеродистой стали (гайки) на воздухе:

Видео - плавление высокоуглеродистой стали (шарик от подшипника из стали ШХ-15):



Видео - плавление низкоуглеродистой стали в защитном газе (аргоне):



Видео - нагрев стального шарика через слой воды. Возможность нагрева железяк через слой воды интересна, вода электромагнитному полю не помеха

Мощное высокочастотное электромагнитное поле выталкивает железные заготовки из индуктора. С одной стороны это создаёт проблемы - сложно греть мелкие заготовки, их выносит из индуктора прочь и приходится их как-то закреплять (так называемый эффект электромагнитного дутья).
С другой стороны, можно плавить металл в подвешенном состоянии - (левитационная плавка, плавка в электромагнитном тигле):

Доработка инвертора для индукционного нагрева.

Метод бесконтактного нагрева жидкометаллических образцов токами высокой частоты в вакууме или защитном газе является оптимальным для экспериментов с мелкими образцами электропроводящих материалов.

Промышленные инверторы высокой частоты не обладают нужными для проведения эксперимента характеристиками (высокой мощностью при высокой частоте, необходимой для нагрева мелких образцов), в связи с чем был изготовлен самодельный инвертор. За основу был принят инвертор, разработанный Сергеем Кухтецким в Институте химии и химической технологии РАН, работающий следующим образом.
Индуктор для нагрева образцов, представляющий собой катушку колебательного контура совместно с компенсирующий батареей конденсаторов, накачивается от независимо работающего генератора высокой частоты.

Генератор выполнен по схеме полный мост, его частота автоматически подстраивается под собственную частоту колебательного контура вручную и не может изменяться во время работы. Предлагаемый инвертор не имеет схемы защиты силовых транзисторов от сквозных токов и схемы управления мощностью нагрева (Рис.1).

Рис.1. Блок-схема простого инвертора для индукционного нагрева.

Эксплуатация данного простого инвертора выявило следующие проблемы. В результате нагрева образца, а также в результате движения образца в индукторе происходит изменение индуктивности, входящей в состав колебательного контура, и изменению его собственной частоты. Поскольку частота работы инвертора задается генератором с неизменяемой во время работы частотой, рассогласование частот колебательного контура и генератора приводит к резкому падению мощности нагрева, вибрациям заготовки в индукторе, а также выходу силовых транзисторов на неоптимальный режим работы в емкостном режиме, что приводит к выходу их из строя.

Для решения указанных проблем инвертор был дооборудован схемой фазовой автоподстройки частоты ФАПЧ, схемой скоростной защиты силовых транзисторов от превышения тока и импульсным регулятором мощности с управлением от ПК. Схемы защиты и регулирования мощности выполнены в виде отдельных модулей и могут применяться для иных задач.

Схема ФАПЧ состоит из генератора с изменяемой частотой, датчика тока, датчика напряжения, регулируемой линии задержки, формирователя управляющих импульсов для силового моста. Датчики тока и напряжения измеряют соответствующие величины на колебательном контуре, после чего производится сравнение их фаз. Нулевой сдвиг фаз означает синхронную работу колебательного контура на собственной частоте и задающего генератора. В случае сдвига фаз задающий генератор автоматически корректирует частоту, подстраивая ее под собственную частоту колебательного контура (Рис.2). Электрическая схема доработанного инвертора приведена на Рис.5.

Настройка диапазона слежения ФАПЧ, порядок действий:

Необходимо определить собственную частоту колебательного контура, например, следующим образом.

1) Снять с шин колебательного контура согласующий трансформатор.

2) Подсоединить к шинам, соединяющим индуктор с батареей конденсаторов, осциллограф.

3) Настроить осциллограф в режим ожидания (в режим одиночного измерения Trigger).

4) Кратковременно коснуться шин колебательного контура батареей типа «крона». На экране появится "дребезг" – собственные колебания контура. При необходимости провести данную процедуру несколько раз о получения устойчивой картины на экране осциллографа.


Период собственных колебаний измеряется по сетке осциллографа, далее по формуле f = 1 / период , вычисляется собственная частота колебательного контура.

Настройка диапазона работы ФАПЧ проводится следующим образом.

1) К выходу микросхемы фапч-генератора CD4046 подсоединяется осциллограф.

2) Задать минимальную частоту работы генератора CD4046. Для этого плюс источника питания напряжением 1 вольт подсоединить к выводу 9 микросхемы CD4046, минус источника питания подсоединить к общей шине.

3) Выставить минимальную частоту вращением потенциометра на ножке 12 микросхемы сd4046 на 30 кГц ниже собственной частоты колебательного контура (подбирается опытным путём для надёжного подхватывания ФАПЧ).

4) Задать максимальную частоту работы генератора CD4046. Для этого плюс источника питания напряжением 4.5 вольта подсоединить к выводу 9 микросхемы CD4046, минус источника питания подсоединить к общей шине.

5) Вращением потенциометра на ножке 11 микросхемы CD4046 задать частоту на 30 кГц выше собственной.


В результате проделанных операций инвертор автоматически стартует с подхватыванием резонанса и удерживает его в процессе работы.

Рис.2. Блок-схема инвертора для индукционного нагрева с ФАПЧ.

Модуль защиты состоит из выполненного на шунте датчика тока, схемы фиксации превышения тока с настройкой порога срабатывания и схемы отключения питания. Питание подводится к инвертору через шунт. В момент превышения тока на шунте фиксируется превышение падения напряжения, что приводит к перебрасыванию триггера и подаче сигнала запирания на силовой транзистор (Рис.3). Электрическая схема модуля защиты приведена на Рис.6.

Рис.3. Блок-схема модуля скоростной защиты.

Видео - срабатывание модуля скоростной защиты:


Импульсный регулятор мощности выполнен по схеме понижающего ШИМ-преобразователя типа step-down. Регулирование мощности осуществляется посредством изменения скважности управляющего ШИМ-сигнала. Управляющий сигнал генерируется микроконтроллером STM32F767 (готовая отладочная плата со встроенным USB-программатором). Параметры регулирования мощности задаются с компьютера через интерфейс USB, входящий в состав любого ПК, данное решение позволяет синхронизировать сбор данных и управление экспериментальной установкой (блок-схема изображена на Рис.4).

Рис.4. Блок-схема импульсного регулятора мощности.

Программа микроконтроллера предусматривает как ручное (педаль, ручка энкодера), так и дистанционное управление регулятором мощности (с помощью ПК), осуществление плавного старта и стопа, стабилизации выходной мощности по току или по напряжению, индикации работы прибора. Электрическая схема импульсного регулятора мощности приведена на Рис.7.

Рис.5. Схема инвертора для индукционного нагрева образцов с фазовой автоподстройкой частоты.

Рис.6. Электрическая схема универсального скоростного прерывателя тока для защиты установки индукционного нагрева.

Рис.7. Электрическая схема универсального импульсного регулятора мощности.