Осветительные приборы

Основы селекции. Методы селекции

Основы селекции. Методы селекции

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый ииндивидуальный .

1. Массовый отбор применяют при селекцииперекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

2. Индивидуальный отбор эффективен длясамоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, являетсягомозиготным и называетсячистой линией . Чистая линия - потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

3. Естественный отбор в селекции играет определяющую роль. На любое растение в течение всей его жизни действует целый комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному и водному режиму.

4. Инбридинг используют прис амоопылении перекрестноопыляемых растений , например, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальныйэффект гетерозиса - жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии - на протяжении ряда лет, производят принудительное самоопыление - срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Затем скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.

Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии - тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).

А

Рис. 339. В центре гетерозисная кукуруза, слева и справа чистые линии родительских форм.

АbbCCddxaaBBccDD

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности. Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.

АА 2Аааа

5. Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

6. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

В

иды, у которых кратно умножен один и тот же геном, называются аутополиплоидами. Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становится тетраплоидными (рис. 340).

Рис. 340. Растения диплоидной (2n= 16) и тетраплоидной (2n= 32) гречихи.

7. Отдаленная гибридизация - скрещивание растений, относящихся к разным видам. Но отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.

В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n= 18 редечных хромосом) и капусту (2n= 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.

С

Рис. 341. Восстановление плодовитости капустно-редечного гибрида.

помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными. Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др. Виды, у которых произошло объединение разных геномов в одном организме, а

затем их кратное увеличение, называются аллополиплоидами.

8. Использование соматических мутаций применимо для селекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

9. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Многие методы селекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.

Результативность селекции в первую очередь зависит от применяемых методов. К настоящему времени наиболее распространенными являются методы отбора и гибридизации. Кроме того, в последние годы активные работы ведутся по разработке методов полиплоидии, мутагенеза, культуры изолированных клеток и тканей, клеточной и генной инженерии.

Отбор

В основе селекционной работы в любом направлении отбор является наиболее важным и решающим процессом все сорта сельскохозяйственных культур созданы и создаются отбором.

Улучшение древесных и кустарниковых пород путем выявления, отбора и размножения ценных популяций и форм является основным методом лесной селекции.

В лесной селекции выделяют три типа отбора: массовый, групповой и индивидуальный.

Массовый отбор, или отбор, лучших климатических экотипов (отбор по происхождению), является простейшим методом селекции, который положен в основу районирования переброски семян лесных древесных растений. При помощи географических культур установлено большое влияние происхождения семян на рост и качество лесных насаждений сосны, ели, дуба, лиственницы и других видов древесных растений как в пределах естественного ареала, так и при интродукции. На первом этапе искусственного отбора выгодно исходить из местной, или локальной, расы (популяции), которая под действием естественного отбора приобрела полезные приспособления к окружающим условиям.

Групповой отбор лучших местных популяций становится основой лесной селекции. Этот вид отбора высококачественных насаждений, популяций лесных древесных пород называют популяционным отбором.

Индивидуальный отбор – это отбор лучших биотопов, или клонов, а также ценных форм в популяциях и экотипах. Индивидуальный отбор плюсовых деревьев по фенотипу без проверки по потомству соответствует однократному массовому отбору в сельском хозяйстве. Отбор лучших особей в ряду поколений сельскохозяйственных растений получил название непрерывного массового отбора. Разновидностью непрерывного массового отбора является негативный отбор, при котором отбираются не лучшие растения, а удаляют из насаждения худшие особи. В лесоводстве процесс негативного отбора осуществляется рубками ухода и санитарными рубками, при которых вырубаются худшие по селектируемому признаку и больные растения.

Отбор по фенотипу дает хорошие и быстрые результаты в том случае, когда его задачи совпадают с направлением естественного отбора в данных условиях. Например, если в популяциях имеются рано распускающиеся формы и этот признак в данной местности определяет лучшее вызревание побегов и улучшает общий прирост древостоев, то отбор по началу и продолжительности вегетации может быть эффективным. Но в селекции на улучшения качества продукции возможности отбора по фенотипу часто очень ограничены. Таким образом, аналитическая селекция и создание новых форм при помощи других методов значительно облегчаются при совпадении направлений естественного и искусственного отборов. В популяциях лесных древесных растений наблюдаются три основных формы естественного отбора: направленный, стабилизирующий и дизруптивный.

Направленный отбор - из популяции в процессе развития древостоев отмирает один из генотипов с положительным или отрицательным отклонением значения признака от среднепопуляционного. Направленный отбор у лесных древесных пород с отпадом в онтогенезе отстающих по росту особей наиболее характерен для признака продуктивности по высоте.

Стабилизирующий отбор наблюдается при пониженной адаптивности ценности признака, когда в популяции отмирают особи, имеющие генотипы с крайними отклонениями признака (возрастает частота гетерозигот). Например, превалирования прироста гетерозиготных особей в раннем возрасте у ели, березы и других пород.

Дизруптивный отбор – определенные преимущества имеют оба генотипа с крайними отклонениями признака. В зависимости от типа скрещивания между ними возникает различное распределение генотипов.

Основными методами индивидуального отбора являются методы: клоновый отбор, отбор у перекрестноопыляющихся растений и метод педегри.

Индивидуальный отбор в селекции растений, размножаемых вегетативно, называется клоновым. Индивидуальный отбор у перекрестного опыляющихся растений, вследствие постоянного переопыления и расщепления признаков сортов у перекрестноопыляющихся растений нельзя вывести путем однократного индивидуального отбора. Поэтому в селекции таких растений применяется многократный или непрерывный (в каждом поколении) индивидуальный отбор. При этом имеют дело не с отдельным растением, а с семьями.

Индивидуально-семейный отбор заключается в том, что после отбора лучших растений в популяции исходного материала потомство каждого лучшего растения, называемого семьей, размещают изолированно от остальных потомств (Царев и др., 2001).

Гибридизация

Гибридизация – скрещивание между собой двух или большего числа видов, наследственно различающихся по какому-либо признаку или группе признаков.

Гибрид – потомство, полученное в результате скрещивания особей с разной наследственностью.

Скрещивание особей разных форм и сортов, принадлежащих к одному виду, называется внутривидовой гибридизацией.

Скрещивание особей, принадлежащих к разным видам одного рода, разным родам и разным семействам, называется межвидовой, межродовой и межсемейственной гибридизацией.

Гетерозис – увеличение мощности и жизнеспособности гибридов, по сравнению с родительскими формами.

Искусственная гибридизация – контролируемое скрещивание, которое проводится с целью получения семенного потомства, отличающегося хозяйственно-ценными признаками.

При гибридизации:

1) подбирают родительские пары для скрещивания (чтобы каждый из родителей обладал одним из признаков, которые необходимо получить в гибриде)

2) наблюдают за протеканием репродуктивной фазы у родительских особей

3) собирают пыльцу, определяют ее жизнеспособность

4) проводят искусственное опыление

5) наблюдают за развитием гибридных семян

6) собирают гибридные семена, высеивают и выращивают гибридное потомство

7) отбирают среди гибридов экземпляры по селектируемым признакам.

В зависимости от принципа подбора родительских пар различают типы скрещиваний:

Простые – однократные скрещивания между двумя родительскими формами

Парные – однократное скрещивание только между двумя родительскими формами

Диаллельные – каждая испытываемая форма или вид скрещивается со всеми другими формами или видами во всех возможных комбинациях

Реципрокные – каждый из двух форм или видов в одном случае является материнской формой, во втором отцовской

Сложные – если скрещивается более двух родительских форм или гибридное потомство повторно скрещивается с одним из родителей

Множественные (поликросы) – материнское растение опыляется смесью пыльцы нескольких видов

Возвратные (беккроссы) – гибрид повторно скрещивается с одной из родительских форм

Ступенчатые – полученный от простого скрещивания гибрид скрещивается не с родительской формой, а с третьим видом, затем с четвертым

Конвергентные – скрещивание гибридов от материнской и отцовской форм

Межгибридное – объединение наследственности нескольких родителей при скрещивании гибридов от параллельного скрещивания (Любавская, 1985).

Мутагенез

Мутации - это прерывистые, скачкообразные изменения наследственных структур, возникающие под влиянием факторов среды. Изменчивость, обусловленная возникновением мутаций, называется мутационной. Растения с мутировавшими клетками называются мутантами.

Мутации классифицируют по различным признакам. В зависимости от того, на каком уровне они возникают и какие генетические структуры затрагивают, различают мутации генные, хромосомные, геномные, пластидные и плазменные.

Генные мутации представляют собой наследственные изменения, связанные с появлением новых аллелей. Они возникают на уровне нуклеотидов в результате потери или удвоения, изменения порядка чередования или вставки одного или нескольких нуклеотидов в молекулах ДНК в ядре. Так как фиксированных границ между триплетами не существует, все перечисленные изменения в молекулах ДНК приводят к изменению порядка "считывания" наследственной информации, заключенной в этих молекулах.

Хромосомные мутации возникают вследствие разрывов хромосом. Оторванная часть хромосомы (фрагмент) может присоединиться к той же или любой другой хромосоме или элиминируется в процессе деления клетки. Потеря части хромосомы называется делекцией, удвоение одного и того же участка хромосомы - дупликацией, поворот в пределах одной хромосомы какого-то участка ее на 180° получил название инверсия, а присоединение фрагмента к другому месту той же или другой негомологичной хромосомы - транслокации. Перестройки, захватывающие всю хромосому, называются хромосомными, а хроматиду - хроматидными (Котов, 1997).

Геномные мутации связаны с изменением числа хромосом в клетке.

Плазменные мутации представлены изменениями наследственных структур в цитоплазме, а пластидные - в пластидах. Они изучены пока недостаточно полно.

Элементарной единицей мутации считается мутон, равный одному нуклеотиду.

Мутации возникают в природе и могут быть вызваны искусственно. Первые называются спонтанными (естественными), а вторые - индуцированными (искусственными). По своей природе мутации естественного происхождения и полученные искусственно не отличаются.

Мутации, возникающие в гаметах, называются гаметическими, а в клетках тела - соматическими. Если мутировавшая гамета участвует в оплодотворении и образовании зиготы, то все клетки организма, вырастающего из такой зиготы, будут мутировавшими. Соматическая мутация передастся только тем клеткам организма, для которых в качестве исходной материнской служила соматическая мутантная клетка. Таким образом возникает химерный организм, состоящий из клеток с неодинаковой генетической информацией.

По характеру фенотипического проявления различают мутации морфологические, если изменение затрагивает морфологические признаки, физиологические и биохимические. В последних двух случаях изменения касаются физиологических и биохимических процессов. Строго говоря, любые изменения морфологических признаков или функциональных особенностей происходят через изменения биохимических процессов (Котов, 1997).

В большинстве случаев мутации снижают жизнеспособность мутировавшей клетки и организма. Такие мутации называются вредными. Крайним выражением действия вредных мутаций является гибель мутанта. В таких случаях мутация называется летальной. Мутации, не вызывающие заметных сдвигов в жизнеспособности организмов, - нейтральные. Часть мутаций способствует усилению жизнеспособности организмов. Это - биологически полезные мутации. Их нельзя отождествлять с хозяйственно полезными мутациями, вызывающими усиление признаков, используемых человеком для удовлетворения своих нужд. Нередко улучшение "хозяйственного" признака сопровождается ослаблением конкурентной способности организма. Естественный отбор такие мутанты элиминирует, а человек отбирает и разводит в культуре. Любая мутация может наследоваться, так как она возникает в наследственных структурах клеток. Характер наследования зависит от природы мутаций, хотя в основе лежат общие закономерности, связанные с их наследованием.

Факторы, вызывающие изменения в молекулах ДНК или хромосомах, называются мутагенными. Мутагенными свойствами обладают такие физические факторы как ионизирующая радиация, ультрафиолетовые лучи, температурные шоки, лазерное излучение, а также многие химические соединения.

В настоящее время в мутационной селекции наибольшее применение находят ионизирующие излучения, которые по своей природе подразделяются на волновые и корпускулярные. К волновым излучениям относятся ультрафиолетовые лучи (длина волны 2000-4000 а), рентгеновы лучи (0,05 - 10 а) и гамма-лучи (менее 0,05А). К корпускулярным излучениям относятся а-частицы, протоны, нейтроны, дейтроны и др.

В основе оценки чувствительности к мутагену лежит общая закономерность, известная под названием закона Арндта-Шульце. Суть его заключается в том, что слабое воздействие мутагеном способствует стимуляции процессов жизнедеятельности растений. По мере усиления воздействия мутагеном стимулирующий эффект возрастает и достигает своего предела, затем постепенно падает и снижается до нуля, после чего переходит в свою противоположность, то есть начинает подавлять процессы жизнедеятельности и тем больше, чем сильнее действие мутагенов. Подавляющее воздействие мутагенов постепенно возрастает вплоть до полной гибели клеток, органа или всего растения. Схематически закон Арндта-Шульце представлен на примере отзывчивости желудей дуба черешчатого на рентгеново облучение.

Различают стимулирующие, критические, летальные и оптимальные дозы мутагенов. Дозы мутагена определяются мощностью источника излучения или концентрацией его (для химических мутагенов) и продолжительностью воздействия на растения, или экспозицией.

Единицей дозы облучения волновыми излучениями служит рентген, равный количеству излучения, при котором в 1 см 3 сухого воздуха при 00С и давлении 760 мм рт. ст. образуется 2,1*109 дар ионов. Доза нейтронов определяется их количеством, приходящимся на 1 см 2 облучаемой поверхности. 1000 рентген (р) равны 1 килорентгену (кр).

Сравнимость доз облучения достигается при их переводе в дозы поглощения. Единицей дозы поглощения является 1 рад., равный количеству излучений, эквивалентному поглощению 1 граммом вещества энергии в 100 эрг. 1 рад соответствует 1,07 рентгена.

Стимулирующими называются дозы, при которых наблюдается совершенствование процессов жизнедеятельности у обрабатываемых растений в сравнении с контролем, например, повышение всхожести семян, ускорение роста, увеличение урожая и т.д.

Дозы, при которых всхожесть семян составляет около 50% от контроля, а выживаемость - 20-30% от числа всходов, называются критическими.

Дозы, вызывающие гибель обрабатываемого материала, называются летальными, а дозы, при которых на единицу выживаемости растения получается наибольшее количество мутаций, - оптимальными.

При оценке чувствительности растения к мутагенам учитываются такие признаки, как энергия прорастания семян, их всхожесть, выживаемость растений, степень подавления роста, плодовитость и стерильность растения, число и типы хромосомных перестроек в первом митозе в клетках проростков.

Существенные изменения в реакции организма на облучение вносят технические условия обработки: вид излучения, мощность и величина дозы, содержание кислорода при облучении и после него.

Сходная картина наблюдается при обработке растений химическими мугагенами.

Постановка задач при селекции методом индуцированного мутагенеза исходит из направлений селекции и района работы. Растения подбирают, как правило, с минимальным числом отрицательно выраженных признаков, которые подлежат улучшению посредством мутагенеза. В качестве растительного материала для получения гаметических мутаций берут пыльцу, срезанные до споро- или гаметогенеза ветви с пестичными или тычиночными цветками, а также целые растения. Для получения соматических мутаций используют семена, черенки с вегетативными почками, целые растения. Растительный материал подбирают в таком физиологическом состоянии, чтобы при имеющихся в распоряжении селекционера технических возможностях было бы возможно выращивание растений из обработанного мутагенами материала.

Выбор мутагенов зависит от применяемых доз и практической их доступности. В районных центрах и поселках, где есть лечебные учреждения с терапевтической рентгеновской установкой, доступны ультрафиолетовые лучи для работы с пыльцой и каллусными тканями, а также рентгеновы лучи для работы с пыльцой, семенами, черенками. В областных центрах и крупных городах, где есть онкологические отделения, вполне реально использование гамма-лучей кобальтовых пушек. Не является проблемой приобретение в лесничества или лесхозы гупосов (гамма-установок предпосевной обработки семян), химических мутагенов и элементарного оборудования для работы с ними.

Обработка растений корпускулами пока возможна только в ядерных колонках нескольких научно-исследовательских центров. Функционируют международные центры по мутагенезу с гамма-полями. Для выбора рабочих доз обработки растительных объектов необходимо располагать информацией о чувствительности растений к мутагену. Если такой информации нет, то предварительно экспериментальным путем следует установить области стимулирующих, нейтральных, оптимальных, критических и летальных доз. В дальнейшем в целях получения большего количества точковых мутаций следует работать в области стимулирующих и нейтральных доз. Если нужно получить хромосомные и хроматидные мутации, рекомендуется работать в области оптимальных и критических доз.

В работе с химическими мутагенами пользуются 0,00001-0,01%-ми концентрациями растворов. Обязательны меры предосторожности в работе со всеми мутагенами.

Обработанный мутагенами материал используется далее или для скрещивания, или для посадки, прививки, посева. Организуются наблюдения за опытными и контрольными растениям. Ведется журнал селекции, где отмечаются все характеристики исходного материала (вид; внутривидовой таксой; адрес и условия произрастания; какой орган обработан; когда, где и как заготовлен и хранился исходный материал; когда, чем, как обработан; что сделано после обработки; результаты наблюдений).

Перспективные гаметические и соматические мутанты могут быть сразу отобраны. В таких случаях они поступают на сортоиспытание.

Если же наряду с полезными мутанты несут отрицательные изменения, то их скрещивают с ценными видами или формами или повторно обрабатывают мутагенами, а затем уже производят отбор и испытание представляющих интерес мутантов.

Как уже отмечалось, соматические мутации могут возникать не во всех клетках обрабатываемого растения, а только в некоторых из них. В этих случаях растения оказываются химерными. Как правило, измененные клетки делятся медленнее нормальных, что приводит к постепенному вытеснению мутантных тканей нормальными. Это явление получило название соматического отбора» Для выявления скрытых соматических мутаций применяются специальные приемы расхимеривания. У древесных видов расхимеривание можно провести путем одной или многократной посадки опытного растения на пень и последующего отбора мутантных порослевин, черенкования отдельных частей растения, прививки черенков и почек, микроклонального размножения (Котов, 1997).

Для получения мутанта лиственницы сибирской следует взять семена в количестве 50000 шт. и обработать рентгеновым излучением 4000 рентген. В результате облучение половина семян погибла, остальные 25000 семян высеивают и ухаживают за ними до самой смерти. Лучшие мутанты в количестве 5000 шт. отбирают и размножают.

Полиплоидия

Полиплоидией называется биологическое явление, характеризующееся нетипичным числом хромосом в клетках. Растения с нетипичным числом хромосом в клетках называются полиплоидами. Они подразделяются на эуплоиды и анэуплоиды. Эуплоиды - это растения с числом хромосом, кратным основному (гаплоидному) набору. Если, например, у березы основное число хромосом равно 14, то типичными являются гаметы с 14, а соматические клетки с 28 хромосомами. Гаметы с 28, 42, 56 хромосомами будут нетипичными, полиплоидными или нередуцированными. Соматические клетки с 14 хромосомами называются гаплоидными, с 42 - трипловидными, 56 - тетраплоидными и т.д. Если в клетках увеличивается число геномов одного вида, растения называются автополиплоидами. Например, у осины есть автотриплоиды с тремя наборами геномов в клетках (Зn). Число хромосом в них 57, так как в геноме 19 хромосом. Если растения представляют собой гибриды между двумя видами и в клетках содержится не по одному геному каждого вида, а по крайней мере по два генома хотя бы одного вида, они называются аллополиплоидами. Например, среди растений тополя сереющего встречаются триплоиды. В клетках таких растений содержится по три генома, один из которых представлен геномом осины, а два - геномом тополя белого или наоборот.

Растения, в клетках которых содержится число хромосом некратное основному (гаплоидному), называются анэуплоидами. Например, вяз мелколистный имеет 14 хромосом в основном наборе. В степях Северного Казахстана обнаружены растения с 29 хромосомами в соматических клетках. Они имели два набора хромосом (2п=28) и одну добавочную хромосому.

Полиплоиды возникают разными путями. Один из них - нарушение сократительной функции ахроматинового веретена при митозе или мейозе. Вследствие этого хромосомы или хроматиды теряют ориентацию при расхождении к полюсам и в дочерние клетки может отойти число хромосом от 0 до 2п независимо от способа деления (митоз или мейоз), от стадии формирования спор и гамет. Клетки с несбалансированным числом хромосом (не кратным основному) характеризуются слабой жизнеспособностью.

В природе встречаются такие деления, как кариокинез без цитокинеза и удвоение хромосом без последующего деления ядра (эндомитоз). В обоих случаях возникают полиплоидные клетки.

Полиплоиды могут быть и комбинативного происхождения, когда зигота образуется от слияния гамет с разным набором геномов. Слияние гаплоидной и диплоидной гамет дает триплоидную зиготу, двух диплоидных - тетраплоидную и т.п.

Анэуплоиды возникают, как правило, вследствие воздействия на растения мутагенов. Например, в процессе репарации разорванных хромосом возникают ацентрические и дицентрические хромосомы. Первые образуются при объединении фрагментов, не имеющих центромеры. При делении клетки такая хромосома теряется. Дицентрические хромосомы возникают при срастании двух фрагментов с центромерами, которые образуют в анафазе так называемые мосты и далее или снова разрываются, или превращаются в кольцевые хромосомы, которые в клетке не элиминируются (Котов, 1997).

Для получения полиплоида лиственницы сибирской рекомендуется взять 20000 семян, произвести намачивание семян в 0,1%-ном растворе колхицина. Продолжительность действия 18 часов. После этого промывают проточной водой. Затем высеивают, после появления всходов обследуют на появление полиплоидов. Полиплоиды оставляют на контроль, а остальные оставляют и сравнивают с контролем.

Генная инженерия

За последние 10-15 лет были созданы принципиально новые методы манипулирования с нуклеиновыми кислотами in vitro, на основе которых зародился и бурно развивается новый раздел молекулярной биологии и генетики - генная инженерия. Принципиальное отличие генной инженерии от использовавшихся ранее традиционных приемов изменения генотипа (например, создания полиплоидных форм растений) состоит в том, что она дает возможность конструировать функционально активные генетические структуры in vitro в форме рекомбинантных ДНК. Понятия «генная» и «генетическая» инженерия часто употребляют как синонимы, хотя последнее является более широким и включает манипулирование не только отдельными генами, но и с более крупными частями генома. Работа по переделке генотипа животных или растений с помощью скрещиваний ограничены пределами вида либо близких в видовом отношении форм. Напротив, генная инженерия, как будет показано ниже, стирает межвидовые барьеры, обеспечивая возможность создания организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств. Генная, инженерия представляет собой совокупность методов, позволяющих не только получать рекомбинантные ДНК из фрагментов геномов разных организмов, но и вводить такие рекомбинантные молекулы в клетку, создавая условия для экспрессии в ней введенных, часто совершенно чужеродных генов. Таким образом, в этом случае исследователь оперирует непосредственно с генами, причем их перенос может не зависеть от таксономического родства используемых организмов. Эта особенность генной инженерии представляет ее главное отличие от ранее использовавшихся приемов изменения генотипа.

Первенствующую роль в формировании генной инженерии сыграла генетика микроорганизмов, идеи и методы, разработанные молекулярной генетикой и химией нуклеиновых кислот.

Выполнение любой генно-инженерной программы включает необходимость получения фрагментов ДНК, несущих нужный ген, объединение их in vitro с век-торными молекулами, способными обеспечить доставку гена в организм реципиента, создание условий для стабильного наследования и эффективной экспрессии перенесенного гена. Осуществление такой работы определяется крупными достижениями в области генетики и химии нуклеиновых кислот. К важнейшим из них относятся:

1) открытие явления рестрикции-модификации ДНК, в результате которого были выделены необходимые ферменты - рестриктазы для получения специфичных фрагментов ДНК;

2) создание методов химического и химико-ферментативного синтеза генов;

3) выявление векторных молекул ДНК, способных перенести в клетку чужеродную ДНК и обеспечить там экспрессию, соответствующих генов;

4) разработка методов объединения фрагментов ДНК из разных источников;

5) разработка методов трансформации у различных организмов и отбора клонов, несущих рекомбинантные ДНК.

Совокупность этих достижений и составляет сущность методологии генной инженерии.

Не менее важное значение имеет генная инженерия в качестве мощного инструмента фундаментальных исследований. С ее помощью изучают строение различных геномов, отдельных генов и кодируемых ими продуктов. Генная инженерия помогла раскрыть экзонинтронную организацию эукариотических генов, позволяла понять суть явления непостоянства генома, связанного с присутствием мигрирующих генетических элементов у про- и эукариот, открыла принципиально новые возможности для изучения молекулярных основ онтогенеза, наследственных заболеваний, эволюционного происхождения различных организмов. В значительной мере этим успехам генной инженерии способствовало создание банков (или библиотек) генов отдельных организмов, резко облегчающих стратегию поиска индивидуальных генов, исследование их структуры и функции. Получение танков генов включает выделение тотальной ДНК, фрагментацию ее с помощью рестриктаз, присоединение полученных фрагментов к векторным молекулам (плазмидного или фагового происхождения) и введение рекомбинантных ДНК в реципиентные бактерии. Эта техника позволяет получить набор клонов бактерий или щтоков гибридных фагов, различающихся по включенным фрагментам ДНК. Необходимые исследователю гены отбирают из таких банков с помощью специально разработанных генетических, биохимических, радиоизотопных и иммунологических методов. Потенциальные возможности генной инженерии действительно очень велики, и их реализация в полной мере дело сегодняшнего дня и ближайшего будущего (Котов, 1997).

С помощью генной инженерии лиственнице сибирской можно пересадить ген лимонника китайского, тем самым создать стелющуюся форму лиственницы. Затем провести наблюдение в течение всей жизни.

Основа успеха любой селекционной работы - генетическое разнообразие материала и методы селекции. Использование таких исходных материалов позволяет получать новые гибриды и сорта, с самыми разнообразными характеристиками и свойствами. Основы селекции заложили известнейшие ученые мира:

Н. К. Кольцов (создал основы для молекулярной генетики).

Н. И. Вавилов (открыл закон гомологических рядов);

И. В. Мичурин (вывел множество плодовых гибридов).

Основные методы селекции растений и животных были разработаны на основе всех предыдущих открытий и совершенствуются до сих пор. Селекционеры в своей работе используют различные способы селекции: инбридинг, искусственный мутагенез, полиплоидию, отдаленную гибридизацию. Ниже приведены наиболее часто применяемые способы выведения новых растений и пород животных.

Основные методы селекции растений: гибридизация и отбор. Перекрестно-опыляемые растения селекционируют путем тех особей, которые имеют желательные свойства. Для получения наиболее чистых линий, то есть генетической однородности сорта, используют индивидуальный отбор, в ходе которого путем самоопыления достигается получение потомства от единственной особи, обладающей всеми самыми лучшими признаками. Недостатком такого метода является то, что при этом нередко наблюдаются неблагоприятные проявления Основной причиной этого является переход большого числа генов в состояние гомозиготы. Со временем накопление рецессивных мутантных генов, переходящих в гомозиготное состояние, может вызвать неблагоприятные наследственные изменения. В природных условиях у самоопыляемого растения рецессивные гены переходят в состояние гомозиготы, и такое растение быстро погибает.

При использовании метода самоопыления часто снижается урожайность. Для ее повышения проводят перекрестное опыление разных самоопыляющихся линий растений и получают высокоурожайные гибриды. Такие методы селекции называются межлинейной гибридизацией. Самой высокой урожайностью обладают гибриды первого поколения. При этом наблюдается известный эффект гетерозиса, согласно которому при скрещивании «чистых» линий получаются мощные гибриды. Они устойчивы к неблагоприятным воздействиям, поскольку в них устранено вредное влияние рецессивных генов, а объединение сильных родительских растений усиливает эффект.

Нередко в селекции различных растений используется экспериментальная полиплоидия. Полученные таким путем растения обладают крупными размерами, дают хороший урожай и быстро растут. Получаются искусственные полиплоиды под воздействием химических веществ, разрушающих веретено деления. В результате этого удвоившиеся хромосомы остаются в одном ядре.

Новые сорта выводят и при помощи искусственного мутагенеза. Организм, который в результате мутации получил новые свойства, имеет слабую жизнеспособность, поэтому при отсеивается. Для селекции и эволюции новых сортов и пород необходимы редкие особи, имеющие нейтральные или благоприятные мутации.

Методы селекции животных практически не отличаются от основных методов селекции растений. Особенности работы с ними - их половое размножение и небольшое потомство. Отбор родителей и тип скрещивания проводятся с определенными целями, поставленными селекционером. Все животные получают оценку не только по своим внешним признакам, а и по качеству потомства и происхождению. Поэтому так важно знать их родословную. В селекции чаще всего применяют 2 способа скрещивания:

Инбридинг (близкородственное) - скрещиваются родители, сестры, братья. Такое скрещивание нельзя проводить бесконечно. Его используют, как правило, для улучшения свойств породы;

Аутбридинг (неродственное) - скрещивание представителей одной или разных пород и строгий отбор потомков с лучшими свойствами.

Отдаленная гибридизация животных значительно менее эффективна, чем гибридизация растений. Такие межвидовые гибриды часто оказываются бесплодными.

Селекцией растений называется наука, изучающая способы создания новых и усовершенствования имеющихся сортов культурных растений с важными в практике признаками. Различают несколько основных методов селекции: отбор, гибридизация, мутагенез и полиплоидия .

Искусственный отбор – основа селекционного процесса. В комплексе с генетическими методиками отбор дает возможность создавать сорта растений с заранее предопределенными особенностями. Отбор может быть массовым и индивидуальным.

Массовый отбор представляет собой выделение ряда экземпляров по внешним признакам без проверки их генотипа. Хорошие результаты в данном случае отмечаются при высоком коэффициенте наследуемости нужных свойств. Данный вид отбора эффективен относительно качественных особенностей, контролируемых одним либо несколькими генами, и редко дает положительные результаты относительно полигенных качеств с низкими коэффициентом наследования. В этом случае востребован индивидуальный (методический) отбор.

При проведении индивидуального отбора (по генотипу) оценивают потомство каждого отдельно взятого растения в ряду нескольких поколений с учетом контроля особенностей, важных для селекционера. Впоследствии оставляют только те экземпляры растений, которые дали максимальное количество потомков с ценными качествами. Благодаря этому, становится возможным оценивать наследственные свойства отдельно взятых особей и способность передавать их следующим поколениям.

Более эффективной считается методика сочетания отбора с некоторыми видами скрещивания (гибридизации) . Все методы гибридизации можно подразделить на аутбридинг (неродственное, или межсортовое скрещивание) и инбридинг (близкородственное, или внутрисортовое скрещивание). Инбридинг аналогичен самоопылению у растений, что приводит к увеличению гомозиготности. Для так называемых чистых линий растений характерно не только наличие ценных признаков, но и сниженная жизнеспособность, что обусловлено переходом в гомозиготное состояние всех вредных рецессивных мутаций. Если чистые линии продолжать скрещивать между собой, то появляется эффект гетерозиса. Благодаря аутбридингу, внутри одного сорта поддерживаются ценные свойства и улучшаются в следующих поколениях гибридов за счет повышения уровня гетерозиготности потомков и гетерогенности популяции.

Селекционерами часто применяется метод полиплоидии и отдаленной гибридизации при создании новых сортов растений, в частности метод автополиплоидии. В ходе этого процесса происходит увеличение размеров клеток из-за увеличения количества хромосом. Также повышается стойкость растений к воздействию вредных микробов (вирусов, бактерий, грибков), неблагоприятных физических и химических факторов. Доказано, что полиплоидные организмы являются более жизнеспособными, чем диплоидные. 80% ныне существующих культурных растений полиплоидные. К ним относятся зерновые культуры, овощные и плодово-ягодные, лекарственные, технические и декоративные растения, дающие большие урожаи, по сравнению с диплоидными аналогами.

В основе аллополиплоидии лежит метод отдаленной гибридизации – скрещивания экземпляров растений, принадлежащих к разным видам, иногда родам. Так, были получены межвидовые гибриды-полиплоиды редьки и капусты, пшеницы и ржи, обладающих высокой урожайностью, неприхотливостью и устойчивостью ко многим вредным факторам и болезням.

В селекции растений часто применяют спонтанные мутации . Так, при естественной мутации экземпляра желтого люпина было получено несколько сортов сладкого люпина, пригодного в качестве корма скота, тогда как исходный вид, содержащий алкалоиды, скот не поедал. Огромное количество мутантов характерно для плодовых культур. Они описаны как новые сорта или существуют в гибридизации с другими формами.

В настоящее время во многих научных лабораториях ряда стран проводятся работы по получению индуцированных мутаций. Такие мутанты были выделены с помощью воздействия физических факторов (например, рентгеновского излучения) у некоторых злаковых культур. Они отличаются рядом ценных свойств: повышенной урожайностью, увеличением размера семян и др.

Это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И. Вавилов особо выделял значение изучения сортового, видового и родового разнообразия культур; изучения наследственной изменчивости; влияния среды на развитие интересующих селекционера признаков; знаний закономерностей наследования признаков при гибридизации; особенностей селекционного процесса для само- или перекрестноопылителей; стратегии искусственного отбора.

Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала. Во Всесоюзном институте растениеводства Н.И. Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара, которая в настоящее время пополняется и является основой для работ по селекции любой культуры.

Центры происхождения культурных растений, выявленные Н.И. Вавиловым

Центры происхождения Местоположение Культивируемые растения
1. Южноазиатский тропический Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений)
2. Восточноазиатский Центральный и Восточный Китай, Япония, Корея, Тайвань Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений)
3. Юго-Западноазиатский Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений)
4. Средиземноморский Страны по берегам Средиземного моря Капуста, сахарная свекла, маслины, клевер (11% культурных растений)
5. Абиссинский Абиссинское нагорье Африки Твердая пшеница, ячмень, бананы, кофейное дерево, сорго
6. Центральноамериканский Южная Мексика Кукуруза, какао, тыква, табак, хлопчатник
7. Южноамериканский Западное побережье Южной Америки Картофель, ананас, хинное дерево

Наиболее богатыми по количеству культур являются древние центры цивилизации. Именно там наиболее ранняя культура земледелия, более длительное время проводятся искусственный отбор и селекция растений.

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор

Массовый отбор применяют при селекции перекрестноопыляемых растений (рожь, кукуруза, подсолнечник). В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

Индивидуальный отбор

Индивидуальный отбор применяют при селекции самоопыляемых растений (пшеница, ячмень, горох). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. Так как постоянно происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

Естественный отбор

Этот вид отбора играет в селекции определяющую роль. На любое растение в течение его жизни действует комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному и водному режиму.

Инбридинг (инцухт)

В центре гете-розис-ная куку-руза, слева и справа роди-тель-ские особи.

Так называется близкородственное скрещивание. Инбридинг имеет место при самоопылении перекрестноопыляемых растений. Для инбридинга подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса. Такие подобранные растения в течение ряда лет подвергаются принудительному самоопылению. В результате инбридинга многие рецессивные неблагоприятные гены переходят в гомозиготное состояние, что приводит к снижению жизнеспособности растений, к их «депрессии». Затем полученные линии скрещивают между собой, образуются гибридные семена, дающие гетерозисное поколение.

Гетерозис («гибридная сила») — явление, при котором гибриды по ряду признаков и свойств превосходят родительские формы. Гетерозис характерен для гибридов первого поколения, первое гибридное поколение дает прибавку урожая до 30%. В последующих поколениях его эффект ослабляется и исчезает. Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии, тем больше эффект гетерозиса.

Р ♀AAbbCCdd × ♂aaBBccDD
F 1 AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования. Сверхдоминирование — вид взаимодействия аллельных генов, при котором гетерозиготы превосходят по своим характеристикам (по массе и продуктивности) соответствующие гомозиготы. Начиная со второго поколения гетерозис затухает, так как часть генов переходит в гомозиготное состояние.

Растения диплоид-ной (2n = 16) и тетра-плоидной (2n = 32) гре-чихи.

Аа × Аа
АА 2Аа аа

Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Например, при селекции пшеницы поступают следующим образом. У цветков растения одного сорта удаляются пыльники, рядом в сосуде с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

Метод получения полиплоидов. Полиплоидные растения обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Виды, у которых кратно умножен один и тот же геном, называются автополиплоидами . Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становятся тетраплоидными.

Отдаленная гибридизация

Восстановление плодови-тости капустно--редечного гибрида: 1 — капуста; 2 — редька; 3, 4 — капустно--редечный гибрид.

Отдаленная гибридизация — это скрещивание растений, относящихся к разным видам. Отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не могут конъюгировать) и, следовательно не образуются гаметы.

Методика преодоления бесплодия у отдаленных гибридов была разработана в 1924 году советским ученым Г.Д. Карпеченко. Он поступил следующим образом. Вначале скрестил редьку (2n = 18) и капусту (2n = 18). Диплоидный набор гибрида был равен 18 хромосомам, из которых 9 хромосом были «редечными» и 9 — «капустными». Полученный капустно-редечный гибрид был стерильным, поскольку во время мейоза «редечные» и «капустные» хромосомы не конъюгировали.

Далее с помощью колхицина Г.Д. Карпеченко удвоил хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе «редечные» (9 + 9) хромосомы конъюгировали с «редечными», «капустные» (9 + 9) с «капустными». Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), пшенично-пырейные гибриды и др. Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называются аллополиплоидами .

Использование соматических мутаций

Соматические мутации применяются для селекции вегетативно размножающихся растений. Это использовал в своей работе еще И.В. Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

Экспериментальный мутагенез

Основан на открытии воздействия различных излучений для получения мутаций и на использовании химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций. Сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Методы селекции растений, предложенные И.В. Мичуриным

С помощью метода ментора И.В. Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества, или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В. Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах повышается их морозостойкость.