Осветительные приборы

Конструкционные материалы кратко. Виды конструкционных материалов

Конструкционные материалы кратко. Виды конструкционных материалов

Основные понятия о технологических процессах в машиностроительных производствах

Целью современного машиностроительного производства является реализация про­цесса превращения сырья, материалов, полуфабрикатов и других предметов труда в готовую машину, удовлетворяющую потреб­ностям общества (рис.1.1).

Рис.1.1. Схема процесса производства

Машина является технической системой, которая создается для выполнения определенных функций, т.е. имеет определенное служебное назначение.

Служебное назначение машины – это совокупность ее потребительских свойств и технических требований.

Технические требования – это система качественных показателей машины с установленными на них количественными значениями.

По назначению и характеру рабочего процесса машины делятся на энергетические, технологические, транспортные.

Энергетические машины предназначены для преобразования того или иного вида энергии в механическую работу.

Технологические машины - это машины, использующие механическую работу, получаемую от энергетических машин для изменения свойств, формы и состояния обрабатываемых объектов.

Транспортные машины, предназначенные для изменения положения и направления перемещения предметов и материалов в пространстве.

Каждая машина обладает определенной структурой и состоит из ряда функциональных компонентов. Функциональными компонентами машины называют сборочные единицы (узлы) различных уровней сложности, детали и части деталей (рис. 1.2).

· Деталью машины называется изделие, изготовленное из однородного по наименованию и марке материала без применения сборочных операций. Деталь, как правило, имеет определенную геометрическую форму и выполняет хотя бы одну функцию по обеспечению работы машины. Деталь это простейший элемент машины (например: вал, втулка, зубчатое колесо и т.п.).

Детали машин классифицируют по четырем основным признакам:

По виду поверхности (геометрической форме);

По размеру;

По точности;

По материалу, из которого они изготовлены.

Геометрическая форма детали предопределяется ее функцией и вместе с габаритными размерами, показателями точности, материалом и его свойствами предопределяет процесс ее изготовления для конкретного производства.

· Сборочной единицей называется изделие, составные части которого подлежат соединению на предприятии-изготовителе посредством сборочных операций (свинчиванием, сочленением, клепкой, сваркой, пайкой, склеиванием и т.д.). В зависимости от степени сложности и других технологических параметров, в машиностроении принято делить сборочные единицы на порядки (самые сложные - это сборочные единицы первого порядка).

Рис.1.2. Структура машины

Производство машин осуществляется в результате выполнения производственного процесса, под которым понимают совокупность всех этапов, которые проходят исходные продукты на пути их превращения в готовую машину.

По отношению к изделию различные этапы производственного процесса проявляют себя по-разному (рис. 1.3).

Одни из них изменяют качественное состояние изделия:

Размеры;

Структуру и химический состав материала;

Такие процессы называются основными производственными процессами. Совокупность основных производственных процессов образует основное производство предприятий.

Производственные процессы, обеспечивающие бесперебойное протекание основных процессов называются вспомогательными. Их результатом явля­ется продукция, используемая на самом предприятии.

Другие процессы, как, например, транспортирование, контроль, хранение на складах, не оказывают никаких воздействий, хотя без них производственный процесс не смог бы быть осуществлен. Такие процессы называются обслуживающими.

Рис. 1.3. Виды производственных процессов по отношению к изделию

В каждый производственный процесс входят основные и вспомогательные технологические процессы.

· В машиностроении под технологическим процессом обычно понимают часть производственного процесса, содержащую целенаправленные действия по изменению качественного состояния объекта с целью получения деталей или изделий заданной формы, размеров и физико-химических свойств.

Технологические процессы, обеспечивающие превращение сырья и материалов в готовую продукцию, называются основными.

Вспомогательные технологические процессы обеспечивают изготовление продукции, используемой для обслуживания основного производства.

По применяемым методам и способам производства, организационному построению и другим признакам технологические процессы делятся на три фазы (рис. 1.4).

Рис. 1.4. Фазная структура технологических процессов

Фаза - это комплекс работ, выполнение которых характеризует завершение определенной части технологического процесса и связано с переходом предмета труда из одного качественного состояния в другое.

На рисунке 1.5 в качестве примера показаны некоторые технологические процессы заготовительной фазы.

Рис. 1.5. Технологические процессы заготовительной фазы

На рисунке 1.6 показаны некоторые технологические процессы обрабатывающей фазы.

Рис. 1.6. Технологические процессы обрабатывающей фазы.

С целью организации и нормирования труда технологические процессы расчленяют на операции, которые выполняются в определенной последовательности.

Степень пооперационной расчлененности технологического процесса зависит от:

Объема работы по изготовлению данного изделия;

Количества рабочих, занятых изготовлением изделия;

Размеров производственного помещения (рабочей площади);

Характера оборудования рабочих мест и других условий производства.

· Под операцией следует понимать часть технологического процесса, выполняемую над определенным предметом труда на одном рабочем месте одним или группой рабочих.

Одна и та же работа может быть представлена различным числом операций. Если, например, необходимо обточить пруток, просверлить продольное отверстие (рис. 1.7), и все это выполняется одним рабочим на одном станке, то это будет одна операция. Если обточка, сверление и нарезка резьбы производятся на разных станках, то это будут три операции. По технологическим признакам операции расчленяются на переходы, установки, и проходы.

· Установка – это часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или сборочной единицы. Одна установка может содержать в себе один или несколько переходов.

· Технологический переход - это законченная технологически однородная часть операции, выполняемая при одном режиме работы оборудования и неизменном инструменте (рис.1.7. позиции 2 и 3).

Рис. 1.7. Операция изготовления втулки на одном станке, одним рабочим за одну установку

· Вспомогательный переход – это законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением предмета труда, но необходимы для выполнения технологического перехода (например, установка заготовки, смена инструмента и т.д.).

Каждый технологический процесс разрабатывают применительно к определенному типу производства. Тип производства - это классификационная категория, определяемая следующими принципами:

· объемом годового выпуска продукции (числом изделий, подлежащих изготовлению в установленную календарную единицу времени);

· широтой номенклатуры производства изделий;

· производственной мощностью (максимально возможному выпуску продукции установленной номенклатуры и количества при полном использовании возможностей предприятия).

Технологический процесс, прогрессивный для одного типа производства, может быть совершенно неприемлемым для другого типа производства. Различают три основных типа производства (рис. 1.8):

Рис. 1.8. Типы производства

· Единичное производство характеризуется малым объемом выпуска одинаковых деталей, повторное изготовление которых не предусматривается. К основным особенностям единичного производства относятся:

Широкая и разнообразная номенклатура изделий;

Отсутствие повторяемости операций на рабочих местах;

Универсальность оборудования, приспособлений и инструмента;

Высокая квалификация рабочих.

Перечисленные особенности единичного производства определяют более высокую себестоимость выпускаемых изделий.

Единичное производство существует в тяжелом машиностроении, судостроении, опытном производстве любых машин и т. п. (Например: на станкостроительном заводе изготавливается сложный специальный станок для обработки длинномерных валов по специальному заказу судостроительного предприятия).

· Серийное производство характеризуется тем, что изделия изготавливают сериями или партиями. В серийном производстве станки периодически переналаживают с одной операции на другую.

К особенностям серийного производства относятся следующие признаки:

Периодическая смена операций на рабочих местах,

Высокая специализация оборудования, приспособлений, инструментов.

С экономической точки зрения серийное производство более выгодно, чем единичное. Серийное производство - наиболее характерный вид производства для среднего машиностроения. К этому виду производства относят многие разновидности сельскохозяйственного машиностроения, станкостроение, производство насосов, компрессоров, текстильных машин и т.п.

· Массовым производством называется такое производство, при котором изделия изготовляют путем выполнения на рабочих местах одних и тех же постоянно повторяющихся операций. Массовому производству свойственны следующие признаки:

Установившийся объем и характер работы на рабочих местах;

Расположение рабочих мест в порядке выполнения операций.

Применение специальных высокопроизводительных станков, приспособлений и инструментов;

К продукции массового производства относятся автомобили, сельскохозяйственные машины, велосипеды, бытовая техника машины и др.

Современное машиностроительное предприятие является сложной системой, состоящей из организационных и производственных единиц - управленческих, маркетинговых, технологических, производственных, обслуживающих. Различают следующие производственные единицы предприятия.

· Цех – это основное производственное подразделение
предприятия, выполняющее возложенную на него определенную
часть производственного процесса.

· Участок - это самостоятельное структурное подразделение цеха, где выполняются конкретные работы из тех, что закреплены за цехом. Участок является первичным производственным подразделением предприятия. Первичным звеном каждого производственного участка является рабочее место.

· Рабочее место – это часть производственной площади участка (цеха), закрепленная за одним или бригадой рабочих и оснащенная оборудованием, инструментом и вспомогательными устройствами, соответствующими характеру выполняемых работ.

В основу организации цехов и участков положены принципы концентрации и специализации. Специализация цехов и производ­ственных участков может быть осуществлена по видам работ (технологическая специализация) или по видам изготовленной продукции (предметная специализация).

Пример технологической специализации: литейный, термический или гальванический цехи, токарный и шлифовальный участок в механическом цехе.

Пример предметной специализации: цех корпус­ных деталей, участок валов, цех по изготовлению редукторов и др.

Контрольные вопросы к лекции 1:

1. Дайте определение понятию «деталь». Самостоятельно определите детали в конкретной модели машины.

2. Дайте определение понятию «сборочная единица». Самостоятельно определите сборочные единицы в конкретной модели машины.

3. Определите цели и задачи основных производственных процессов. Что включают в себя основные производственные процессы.

4. Дайте определение понятию «технологический процесс».

5. Дайте определение понятию «операция технологического процесса».

6. Опишите структуру машиностроительного предприятия.

7. Дайте характеристику основных цехов предприятия.

8. Охарактеризуйте особенности серийного производства. Приведите самостоятельные примеры.

9. Охарактеризуйте особенности массового производства. Приведите самостоятельные примеры.

Лекция 2. Основные понятия о проектировании технологических процессов

Процесс создания любой новой машины включает в себя ряд последовательных этапов (рис. 2.1).

Рис. 2.1. Этапы создания машины

Этап 1 . Поисковое проектирование.

На этом этапе производится анализ потребности рынка в данном изделии, исследуются конкурирующие аналоги, оцениваются временные и финансовые затраты для начала производства изделия, планируется серийность (годовой объем выпуска) изделия и устанавливаются его основные технические характеристики, оценивается возможная прибыль предприятия.

Этап 2 . Конструирование.

На данном этапе осуществляется детальная разработка конструкции изделия. Структура, состав и геометрические параметры изделия должны соответствовать техническому заданию и обеспечивать требуемые эксплуатационные характеристики изделия.

Важно спроектировать изделие так, чтобы его можно было изготовить наиболее простым образом и с минимальными затратами. Если это требование выполнено, то говорят о технологичности изготовления изделия.

Результаты конструирования оформляются в виде комплекта конструкторской документации. Он включает в себя деталировочные и сборочные чертежи, спецификации и другие документы. В настоящее время в конструкторскую документацию могут включаться компьютерные модели деталей и сборочных единиц изделия.

Этап 3. Проектирование технологических процессов.

Данный этап состоит в обеспечении технологической готовности предприятия к выпуску данного изделия, при соблюдении требований к качеству, срокам и объемам выпуска, а также с учетом запланированных затрат.

Рис. 2.2. Элементы содержания работ по проектированию технологических процессов

· Выбора вида заготовок (процессов их получения). Например, для детали «втулка» в качестве заготовки выбираем пруток из стали определенной марки диаметром 20 мм. Такой пруток является стандартной продукцией металлургического производства и широко представлен на рынке черных металлов (рис. 2.3).

Рис 2.3. Выбор заготовки

· Разработки межцеховых маршрутов (определение пути, который пройдет заготовка, прежде чем превратится в деталь и станет частью сборочной единицы или изделия). Например: склад материалов → заготовительный участок механического цеха → токарный участок механического цеха → сборочный цех → склад готовой продукции.

· Опреде­ления последовательности и содержания технологических операций. Например:

Операция 1 слесарная: разрезка прутка на мерные заготовки;

Операция 2 транспортировка на токарный участок;

Операция 3 токарная, состоящая из нескольких установок и переходов;

Операция 4 транспортировка на сборочный участок;

· Определения, выбора и заказа средств технологи­ческого оснащения. Например, для токарной операции потребуется: станок токарно-винторезный 16К20 → патрон трехкулачковый → задний центр → резцы проходной, подрезной, отрезной и.т.д. → сверло Ø 6,9 мм → метчик М 8 и т.п.

· Установления порядка, методов и средств технического контроля качества. Например: ручной контроль с использованием штангенциркуля

· Назначения и расчета режимов резания. Например: с учетом обрабатываемого и инструментального материалов и припусков на обработку устанавливают скорость резания (частоту вращения шпинделя станка), величины подач инструмента, глубину резания и т.п. Например, V = 150 м/мин, S = 0,07 мм/об, t = 0, 2 мм.

· Технического нормирования операций производственного процесса. Производят расчет времени, затраченного на данную операцию.

· Определения профессий и квалификации исполнителей. Например: токарь 1 разряда.

· Организации производственных участков (поточных линий). Предлагается рациональная расстановка оборудования в помещении цеха, с целью сокращения времени на транспортировку.

· Формирования рабочей документации на технологические процессы в соответствии с ЕСТД (Единая система технологической документации).

Технологическая документация - основной источник информации для организации, управления и регулирования производственного процесса на каждом предприятии. Она сопровождает изделие в течение всего жизненного цикла и заканчивает свое существование при списании изделия.

В машиностроении технологическая документация решает две основные задачи (рис. 2.4).

Рис. 2.4. Задачи технологической документации

Решая информационную задачу, технологическая документация:

· обеспечивает изготовление деталей и сборочных единиц;

· служит средством организации труда рабочих;

· несет информацию для служб управления производством для определения себестоимости изделия и его сборочных единиц, производительности труда, производственной мощности и загрузки оборудования участков, цехов и предприятий в целом;

· является носителем информации о нормах расхода материалов;

· обеспечивает планирование и подготовку производства и т.д.

При решении организационной задачи технологическая документация:

· связывает определенным образом участников производства;

· устанавливает определенные отношения между различными участками производства;

· выполняет функцию организационной документации.

Рис. 2.5. Фрагменты технологической документации: маршрутной карты (а ), операционной карты (б )

Стадии разработки и виды документов, применяемых для технологических процессов изготовления (сборки) изделий машиностроения устанавливаются ГОСТом. Состав применяемых видов документов определяется разработчиком документов в зависимости от стадий разработки, типа и характера производства. Из всего перечня документов, регламентируемого стандартом, применяют:

- маршрутные карты (МК),

- операционные карты (ОК),

- карты технологического процесса (КТП),

· Маршрутная карта (рис. 2.5, а ) – это документ, указывающий последовательность прохождения заготовок, деталей или сбо­рочных единиц по цехам и производственным участкам пред­приятия.

· Операционная карта (рис. 2.5, б ) – это документ, указывающий последовательность прохождения заготовки, детали или сбо­рочной единицы по переходам в рамках одной операции на рабочем месте в цехе участкам пред­приятия.

Этап 4. Создание опытного образца. Этот этап имеет своей целью проверку качества принятых конструкторских и технологических решений путем испытаний опытного образца изделия.

По результатам испытаний могут быть внесены изменения как в конструкторскую документацию (то есть в конструкцию изделия), так и в разработанные технологические процессы.

Этап 5 . Освоение производства. На данном этапе предприятие должно выйти на намеченные объемы выпуска изделия, стабилизировать качество продукции и добиться заданной трудоемкости на всех стадиях производства. Здесь может понадобиться освоение дополнительных производственных мощностей, совершенствование технологических процессов, повышение численности и квалификации персонала.

Этапы создания нового изделия являются элементами Жизненного Цикла Изделия (ЖЦИ), который охватывает все стадии жизни изделия - от изучения рынка перед проектированием до утилизации изделия после использования.

Контрольные вопросы к лекции 2:

1. Перечислите этапы создания машины.

2. Что представляет собой этап поискового проектирования. Цель этапа.

3. Что представляет собой этап конструирования. Цель этапа.

4. Перечислите содержание основных работ по проектированию технологических процессов.

5. Роль и задачи технологической документации в процессе технологической подготовки производства.

6. Что отражают в маршрутной карте.

7. Что отражают в операционной карте.

8. Что представляет собой этап создания опытного образца. Цель этапа.

9. Что представляет собой этап освоения производства. Цель этапа.

10. Как вы понимаете термин «жизненный цикл изделия»

Лекция 3. Современные конструкционные материалы в машиностроительном производстве

Любая машина и составляющие ее детали изготавливаются из конструкционных материалов, которые обеспечивают выполнение ею служебного назначения. В современном машиностроении к конструкционным материалам предъявляют следующие основные требования:

Эксплуатационные,

Технологические,

Экономические,

Экологические и др.

На примере редуктора машины показано многообразие материалов, из которых выполнены его детали (рис. 3.1). Корпус редуктора (1 ) изготовлен из серого чугуна; зубчатое колесо (2 ) из ковкого чугуна; вал (3 ) из легированной стали; подшипник (4 ) из подшипниковой стали (композита, сплава цветного металла); крышка подшипника (5 ) из полимерного материала; уплотнительные кольца (6 ) из материала на основе резины.

Рис. 3.1. Редуктор машины и его детали, выполненные из различных конструкционных материалов: 1 - корпус редуктора, 2 - зубчатое колесо, 3 - вал, 4 - подшипник, 5 - крышка подшипника, 6 - уплотнительные кольца

По принципиальной классификации все конструкционные материалы принято делить на следующие виды (рис. 3.2).

Рис. 3.2. Принципиальная классификация конструкционных материалов

· Металлические материалы наиболее распространены в машиностроении, к этой группе материалов относятся все металлы и их сплавы.

Среди них можно выделить несколько групп, отличающихся друг от друга по свойствам:

1. Черные металлы. Это железо и сплавы на его основе – стали и чугуны.

2. Цветные металлы. В эту группу входят металлы и их сплавы, такие как медь, алюминий, титан, никель и др.

3. Благородные металлы. К ним относятся золото, серебро, платина

4. Редкоземельные металлы. Это лантан, неодим, празеодим.

Под чистыми металлами понимают твёрдые вещества, состоящие только из одного компонента. Чистые металлы редко используют в машиностроении. Наиболее распространено использование металлических конструкционных материалов в виде сплавов.

Под сплавами понимают твёрдые вещества, образованные сплавлением двух или более металлических компонентов. Сплавы на основе железа называются черными, а на основе других металлов – цветными.

Легкими цветными сплавами называют сплавы на основе алюминия, магния, титана и бериллия, имеющие малую плотность. Тяжелыми цветными сплавами называют сплавы на основе меди, олова.

Легкоплавкими цветными сплавами называют сплавы на основе цинка, кадмия, олова, свинца, висмута. Тугоплавкими цветными сплавами называют сплавы на основе молибдена, ниобия, циркония, вольфрама, ванадия и др.

· Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные материалы. Среди них также можно выделить несколько групп (рис. 3.3):

Рис. 3.3. Группы неметаллических материалов

1. Пластмассы – это материалы на основе высокомолекулярных соединений (полимеров), как правило, с наполнителями. Наполнителями пластмасс называют порошкообразные, кристаллические, волокнистые листовые, газообразные материалы, которые определяют свойства пластмасс. Различают пластмассы с твердым наполнителем (полиэтилены, полистиролы, поликарбонаты и т.п.), а также с газофазовым наполнителем (пенопласты, поропласты и т.п.)

2. Керамика – это материал на основе порошков тугоплавких соединений типа карбидов, боридов, нитридов и оксидов. Например: TiC, SiC, Si 3 N 4 , Al 2 O 3 , SiO 2 , ZrO 2 и др.

3. Стекло – это материал на основе оксидов различных элементов, в первую очередь оксида кремния SiO 2 .

4. Резина – это материалы на основе каучука - углеродноводородного полимера с добавлением серы и других элементов.

5. Дерево – это сложная органическая ткань древесных растений.

· Композиционные материалы получают путем введения в основной материал определенного количества другого материала в целях получения специальных свойств. Композиционный материал может состоять из двух, трех и более компонентов. Различают элементы композиционного материала:

Основной конструкционный компонент, который называется матрицей.

Усиливающие элементы в виде нитей, волокон или хлопьев более прочного материала, который называется армирующий элементом.

На рисунке 3.4. показаны виды и структуры армирующего элемента в матрице композиционного материала.

Рис. 3.4. Виды и структуры армирующего элемента в матрице: непрерывные волокна (а ), дисперсные частицы (б ), прерывистые волокна (в ); тканевая структура (г ), пространственная структура (д, е )

Конструктор подбирает конструкционный материал с учетом его механических, физических, химических и тех­нологических и эксплуатационных свойств.

К основным механическим свойствам конструкционных материалов относятся следующие свойства:

· Прочность - способность материала сопротивляться пластической де­формации и разрушению под действием внешних нагрузок.

· Пластичность - способность материала необратимо изме­нять форму и размеры без разрушения под действием нагрузки.

· Вязкость - способность материала, пластически деформиру­ясь, необратимо поглощать энергию внешних сил.

· Упругость - способность материала восстанавливать фор­му и размеры после снятия нагрузки, вызвавшей деформацию.

· Твердость - способность материала сопротивляться внедрению в него другого более твердого тела.

· Хрупкость - способность материала разрушаться под воз­действием внешних сил без видимой пластической деформации.

Физические свойства - это свойства материала, зависящие от внутреннего строения вещества, его атомно-электронной структуры. К физическим свойствам относятся следующие свойства (рис.3.5).

Химические свойства зависят от химического состава вещества и его атомно-электронного строения. Химические свойства материала про­являются в его способности к химическому взаимодействию с окружаю­щей средой, в возможности образования химических соединений и хими­ческих превращений.

Рис. 3.5. Основные физические свойства конструкционных материалов

Технологические свойства - это свойства материала поддаваться различным способам горячей и холодной обработки и дающие возможность получать заготовки, а из заготовок - детали машин. К технологическим свойствам относят следующие свойства:

· Ковкость – это способность металла подвергаться деформированию в горячем или холодном состоянии и принимать требуемую форму, под внешним воздействием не разрушаясь.

· Свариваемость – это способность металлов и сплавов образовывать неразъемное соединение (сварочный шов) с другими сплавами и материалами, обладающее требуемым уровнем прочностных и эксплуатационных свойств.

· Обрабатываемость резанием – это способность металлов и сплавов в отделении поверхностных слоев материала в виде стружки под воздействием режущего инструмента.

· Склонность к термической обработке – способность металлов изменять свою структуру под влиянием различных воздействий (тепло, давление, излучения и поля различной природы) с приобретением требуемого комплекса свойств.

· Литейные свойства – определяются способностью материала обладать в расплавленном состоянии технологической жидкотекучестью, обладать минимальной объемной и линейной усадкой при затвердевании.

Эксплуатационные свойства . К эксплуатационным (служебным) свойствам относятся:

· Жаростойкость и жаропрочность - эти свойства характеризует способность материала сохранять механические свойства при высокой температуре,

· Износостойкость – это способность материала сопротивляться разрушению его поверхностных слоев при трении.

· Коррозионная стойкость – это свойство характеризует способность металлов сопротивляться коррозии в различных средах.

Контрольные вопросы к лекции 3:

1. Классифицируйте металлические конструкционные материалы.

2. Классифицируйте неметаллические конструкционные материалы.

3. Классифицируйте композиционные конструкционные материалы.

4. Перечислите механические свойства материалов.

5. Перечислите технологические свойства материалов.

6. В чем заключается способность материалов к обработке резанием.

7. В чем заключаются литейные свойства материалов.

8. Охарактеризуйте эксплуатационные свойства материалов

Лекция 4. Основные понятия о металлургических процессах. Производства чугуна.

По масштабам металлургического производства России занимает одно из ведущих мест в мире. Отечественный металлургический комплекс объединяет все стадии технологических процессов: от добычи и обогащения сырья до получения готовой продукции в виде черных и цветных металлов и их сплавов (рис.4.1).

Рис. 4.1. Структура металлургической отрасли

Для производства металлургической продукции используют следующие исходные материалы (рис.4.2).

Рис.4.2. Исходные материалы металлургического производства

· Руда – это горная порода, из которой целесообразно извлекать металлы и их соединения. Руду называют по одному или нескольким металлам, входящим в ее состав, например: железная руда, медно-никелевая руда и т.п. В зависимости от содержания добываемого элемента различают руды богатые и бедные.

Важнейшим этапом в технологической цепи металлургического производства является процесс подготовки руд к плавке.

Подготовка руд к доменной плавке осуществляется для повышения производительности оборудования, снижения расхода топлива и улучшения качества продукции. Различают следующие процессы подготовки руды:

1. Дробление и сортировка руд по крупности служат для получения кусков оптимальной величины, осуществляются с помощью дробилок и классификаторов.

2. Обогащение руды основано на различии физических свойств минералов, входящих в ее состав. Обогащение включает следующие процессы:

Промывка – это процесс отделение плотных составляющих от пустой рыхлой породы.

Гравитация – это процесс отделение руды от пустой породы при пропускании струи воды через дно вибрирующего сита: пустая порода вытесняется в верхний слой и уносится водой, а рудные минералы остаются.

Магнитная сепарация – это процесс, когда измельчённую руду подвергают действию магнита, притягивающего железосодержащие минералы и отделяющего их от пустой породы.

3. Окусковывание производят для переработки руды в кусковые материалы необходимых размеров. Применяют два способа окусковывания: - агломерация,

Окатывание.

· Флюсы – это материалы, загружаемые в плавильную печь для образования легкоплавкого соединения с пустой породой руды и золой топлива. Такое соединение называется шлаком. Обычно шлак имеет меньшую плотность, чем металл, поэтому он располагается над металлом и может быть удален в процессе плавки. Шлак защищает металл от печных газов и воздуха. Для флюсов в металлургии используют следующие материалы, которые подвергают окускованию и вводят в виде агломерата и окатышей (рис. 4.3).

Рис. 4.3. Материалы для флюсов

· Топливо – это природные или неприродные горючие вещества, выделяющие при сгорании высокую температуру. В металлургии используются следующие виды топлива:

Природный газ,

Доменный газ.

Кокс получают из каменного угля коксующихся сортов. Он служит не только горючим для нагрева, но и химическим реагентом для восстановления железа из руды.

· Огнеупоры – это материалы для изготовления внутреннего облицовочного слоя металлургических печей и другого оборудования. Они способны выдержать тепловые нагрузки, противостоять химическому воздействию шлака и печных газов.

Всю продукцию металлургического производства по принципиальной квалификации принято делить на продукцию черной и цветной металлургии.

Черная металлургия представляет собой комплекс предприятий для производства чугуна, стали и проката. Основная продукция чёрной металлургии показана на рисунке 4.4.

Рис. 4.4. Основная продукция чёрной металлургии

· Чугун передельный используется для передела на сталь.

· Чугун литейный используется для производства фасонных чугунных отливок на машиностроительных заводах.

· Ферросплавы – это сплавы железа с повышенным содержанием марганца, кремния, ванадия, титана используются для производства легированных сталей.

· Стальные слитки используются для производства сортового проката (рельсов, балок, прутков, полос, проволоки, листа, труб и т, д) на прокатных производствах

Цветная металлургия представляет собой комплекс предприятий для добычи, обогащения, производства цветных металлов и сплавов.

Рис. 4.5. Основная продукция цветной металлургии

Цветная металлургия акцентирует свое внимание на следующих видах промышленности: медной, никелевой и алюминиевой. Основная продукция цветной металлургии показана на рисунке 4.5.

· Лигатурами называются сплавы цветных металлов с легирующими элементами для производства сложных легированных сплавов.

Рассмотрим более подробно технологические процессы производства основного продукта черной металлургии – чугуна.

Чугуном называют сплав железа с углеродом, где углерод содержится в количестве от 2 до 6,7%. Кроме железа и углерода, в чугуне имеются примеси кремния, марганца, фосфора, серы и других элементов. Эти примеси переходят в чугун из исходных материалов.

Основным производством для получения чугунов является доменное производство. Оборудованием для выплавки чугуна служат доменные печи (рис. 4.6). Доменная печь представляет собой высокую шахту круглого сечения, опирающуюся на железобетонный фундамент обычно многогранной формы. Нижняя часть фундамента находится на глубине 6 – 7 м. Надземная часть фундамента выложена из огнеупорного бетона.

Рис. 4.6. Доменное производство для выплавки чугуна: вид снаружи (а ), вид внутри (б ).

Сущность процесса получения чугуна в доменных печах заключается в восстановлении оксидов железа, входящих в состав руды различными восстановителями.

Восстановление твердым углеродом С называется прямым восстановлением и происходит в нижней части печи при высоких температурах по реакции:

Восстановление газами СО и Н 2 называется косвенным восстановлением, протекает в верхней части печи при сравнительно низких температурах, по реакциям:

Процесс доменной плавки является непрерывным. Сверху в печь при помощи загрузочных устройств загружают исходные материалы (руда, флюсы, кокс), а в нижнюю часть подают нагретый воздух и газообразное, жидкое или пылевидное топливо (рис. 4.7).

Внутри печи образуется шихта - смесь исходных материалов и топлива. Газы, полученные от сжигания топлива, проходят через столб шихты и отдают ей свою тепловую энергию. Для отвода газа в куполе печи предусмотрены четыре боковых восходящих газоотвода.

Доменный газ после очистки используется как топливо для нагрева воздуха, вдуваемого в печь.

Шихта нагревается, восстанавливается, а затем плавится. При работе печи шихтовые материалы, проплавляясь, опускаются вниз печи, а через загрузочное устройство подают новые порции шихты, чтобы весь полезный объем был заполнен.В нижней части доменной печи образуется шлак в результате сплавления окислов пустой породы руды, флюсов и золы топлива.

Рис. 4.7. Доменная печь и ее процессы

Шлак скапливается на поверхности жидкого чугуна, благодаря меньшей плотности. Это дает возможность разделить чугун от шлака. Сливают чугун и шлак в чугуновозные ковши, и шлаковозные чаши.

Доменная печь является мощным и высокопроизводительным агрегатом, в котором расходуется огромное количество материалов. Современная доменная печь расходует около 20000 тонн шихты в сутки и выдает ежесуточно около 12000 тонн чугуна.

Доменная печь снаружи заключена в металлический кожух, сваренный из стальных листов толщиной 25 – 40 мм. С внутренней стороны кожуха находится огнеупорная охлаждаемая футеровка.

Внутреннее очертание вертикального разреза доменной печи называют профилем печи. Полезная высота доменной печи (Н ) достигает 35 м, а полезный объем – 2000-5000 м 3 .

Эффективность работы печи оценивается следующими показателями:

· Коэффициент использования полезного объёма доменной печи (КИПО):

КИПО = V / P

где V - полезный объем печи (м 3), а Р - количество чугуна, выплавляемого в сутки (тонны). Чем ниже КИПО, тем выше производительность печи. Для большинства современных доменных печей КИПО = 0,45.

· Удельный расход кокса:

К = А / Р

где А - расход кокса за сутки (тонны), а Р - количество чугуна, выплавляемого в сутки (тонны). Удельный расход кокса в современных доменных печах составляет 0,35-0,4. Это важный показатель, так как стоимость кокса составляет более 50% стоимости чугуна. Улучшение технико-экономических показателей работы доменных печей является важнейшей задачей доменного производства.

Контрольные вопросы к лекции 4:

1. Перечислите предприятия металлургического комплекса. Как эти предприятия взаимосвязаны между собой

2. Перечислите основную продукцию выпускаемую предприятиями черной металлургии

3. Перечислите основную продукцию выпускаемую предприятиями цветной металлургии

4. Перечислите исходные материалы для металлургического производства

5. Что такое флюсы. Классификация и назначение флюсов.

6. Перечислите основные способы подготовки руды перед плавкой

7. Что является основной и побочной продукцией доменного производства.

8. Что является сырьем для доменного производства.

9. Какие химические реакции происходят при доменной плавке чугуна. В какой последовательности.

10. Какими показателями оценивается эффективность работы доменной печи.

Конструкционные материалы в химическом аппаратостроении

Специфические условия эксплуатации химического оборудования, характеризуемые широким диапазоном давлений и температур при агрессивном воздействии среды, определяют следующие основные требования к конструкционным материалам:

Высокая химическая и коррозионная стойкость материалов в агрессивных средах при рабочих параметрах;

Высокая механическая прочность при заданных рабочих давлениях, температуре и дополнительных нагрузках, возникающих при гидравлических испытаниях и в период эксплуатации аппаратов;

Хорошая свариваемость материалов с обеспечением высоких механических свойств сварных соединений;

Низкая стоимость и не дефицитность материалов.

Виды конструкционных материалов

Конструкционные материалы, используемые в химическом машиностроении, условно делятся на четыре класса:

Цветные металлы и сплавы;

Неметаллические материалы.

Стали. Сталь представляет собой сплав железа с углеродом, содержание которого не превышает 2,14%. Кроме того, в состав стали входят примеси кремния, марганца, а также серы и фосфора.

Стали по химическому составу делятся на несколько групп:

Углеродистые обыкновенного качества;

Углеродистые конструкционные;

Легированные конструкционные и др.

Сталь углеродистую обыкновенного качества изготавливают в зависимости от хи-мического состава по ГОСТ 380-88 и ГОСТ 16523-88. Сталь углеродистая обыкновенная делится на несколько категорий - 1, 2, 3, 4, 5, 6 - чем больше номер, тем выше механическая прочность стали и ниже ее пластичность. По степени раскисления стали всех категорий изготавливают кипящими (кп), полуспокойными (пс) и спокойными (сп).

В табл. .1 приведены примеры использования углеродистой стали

обыкновенного качества в химическом машиностроении.

Таблица 1. Углеродистая сталь обыкновенная

Свойства углеродистой стали обыкновенного качества значительно повышаются после термической обработки, которая для проката может выражаться в его закалке либо непосредственно после проката, либо после специального нагрева.

Термическая обработка низкоуглеродистых сталей не только улучшает механичес-

кие свойства сталей, но и приносит значительный экономический эффект.

Стали углеродистые конструкционные выпускаются по ГОСТ 1050-74 следующих марок: 08, 10, 15,20, 25, 30,40, 45, 55, 58 и 60. В зависимости от степени раскисления по ГОСТ 1050-88 выпускаются следующие марки стали: 05кп, 08кп, 08пс, 10кп, 10пс, 11кп, 15кп, 18кп, 20кп и 20пс.

В табл. 2 приведены примеры использования углеродистой конструкционной стали в химическом машиностроении.

Таблица 2. Углеродистая сталь конструкционная

Для улучшения физико-механических характеристик сталей и придания им особых свойств (жаропрочность, кислотостойкость, жаростойкость и др.) в их состав вво-

дят определенные легирующие добавки. Наиболее распространенные легируюшие добавки:

Хром (X) - повышает твердость, прочность, химическую и коррозионную стойкость, термостойкость;

Никель (Н) - повышает прочность, пластичность и вязкость;

Вольфрам (В) - повышает твердость стали, обеспечивает ее самозакаливание;

Молибден (М) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость;

Марганец (Г) - повышает твердость, увеличивает коррозионную стойкость, понижает теплопроводность;

Кремний (С) - повышает твердость, прочность, пределы текучести и упругости, кислотостойкость;

Ванадий (Ф) - повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость стали и увеличивает стойкость к водородной коррозии;

Титан (Т) - увеличивает прочность и повышает коррозионную стойкость стали при высоких (> 800 °С) температурах.

Обычно в состав легированных сталей входят несколько добавок. По общему содержанию легирующих добавок легированные стали делят на три группы:

Низколегированные - с содержанием добавок до 3%;

Среднелегированные - с содержанием добавок от 3 до 10%;

Высоколегированные - с содержанием добавок > 10%.

В табл. 3 приведены примеры использования легированных сталей в химическом машиностроении.

Существенное значение для улучшения качества стали имеет химико-термическая обработка, т.е. процесс насыщения поверхности стали различными элементами с целью упрочнения ее поверхностного слоя, увеличения поверхностной твердости, жаростойкости и химической стойкости.

Таблица 3. Легированные конструкционные стали

Сталь Назначение
Коррозионностойкие стали для применения в слабоагрессивных средах
08X13, 12X13 Азотная и хромовая кислоты различной концентрации при темпера- туре не более 25 °С. Уксусная кислота концентрации <5% при температуре до 25 0 С. Щелочи (аммиак, едкий натр, едкое кали). Соли органические и неорганические при температуре не более 50 °С и концентрации менее 50%
30X13,40X13 Обладают повышенной твердостью, хорошей коррозионной стой- костью во влажном воздухе, водопроводной воде, в некоторых ор- ганических кислотах, растворах солей и щелочей, азотной кислоте и хлористом натре при 20 0 С
12X17 Окалиностойкая до 850 °С
10Х14АГ15, 10Х14Г14Н4Т, 12Х17Г9АН4 Заменители сталей 12Х18Н9Т, 17Х18Н9, 12Х18Н10Т для оборудования, работающего в слабоагрессивных средах, а также изделий, ра ботающих при повышенных температурах до +400 0 С и пониженной температуре до - 196 °С
Коррозионностойкие стали для сред средней агрессивности
08X17Т, 08Х18Т1, 15Х25Т Заменители стали марки 12Х18Н10Т и 12Х18Н9Т для сварных кон- струкций, не подвергающихся воздействию ударных нагрузок при температуре эксплуатации не ниже - 20 °С. Для труб теплообменной аппаратуры. Эксплуатировать в интервале температур 400 - 700 °С не рекомендуется. Стойкие к действию азотной, фосфорной, лимон- ной, уксусной, щавелевой кислот разных концентраций при температурах не более 100 °С
08Х22Н6Т, 08Х18Г8Н2Т Заменитель сталей 12Х18Н10Т и 08Х18Н10Т. Обладает более высо- кой прочностью, чем эти стали, и используется для изготовления сварной аппаратуры, работающей при температуре не выше 300 °С.
12X21Н5Т Заменитель стали 12Х18Н9Т для сварных и паянных конструкций
12Х18Н9Т, 12Х18Н10Т, 12Х18Н12Т Высокая коррозионная стойкость по отношению к азотной, холодной фосфорной и органическим кислотам (за исключением уксусной, муравьиной, молочной и щавелевой), к растворам многих солей и щелочей, морской воде, влажному воздуху. Неустойчивы в соляной, серной, плавиковой, горячей фосфорной, кипящих органических кислотах. Обладают удовлетворительной сопротивляемостью к межкристаллитной коррозии
08Х18Н12Б Обладает более высокой стойкостью, чем сталь 12Х18Н10Т. Напри мер, сталь устойчива к действию 65% азотной кислоты при температуре не более 50 °С, к действию концентрированной азотной кис- лоты при температуре не более 20 °С, к большинству растворов солей органических и неорганических кислот при разных температурах и концентрациях
Х18Н14М2Б, 1Х18М9Т Используются в производстве формальдегидных смол
Х18Н9Т, Х20Н12МЗТ Используются в качестве конструкционного материала в производстве пластмасс
07X21Г7АН5, 12Х18Н9, 08Х18Н10 Для сварных изделий, работающих при криогенных температурах до - 253 °С
Коррозионностойкие стали для сред повышенной и высокой агрессивности
04X18Н10, 03Х18Н11 Для оборудования и трубопроводов в производстве азотной кислоты и аммиачной селитры
08Х18Н10Т, 08Х18Н12Т Для изготовления сварных изделий, работающих в средах высокой агрессивности. Применяется как жаростойкая сталь при температуре до 600 °С
10Х17Н13М2Т, 10Х17Н13МЗТ, 08Х17Н15МЗТ, 08Х17Н14МЗ, 03Х21Н21М4ГБ Для изготовления сварных конструкций, работающих в условиях действия кипящей фосфорной, серной, 10%-й уксусной кислоты и в сернокислых средах. Сварные корпуса, днища, фланцы и другие де- тали при температуре от - 196 до 600 °С под давлением
06ХН38МДТ. 03ХН28МДТ Для сварных конструкций, работающих при температурах до 80 °С в условиях производства серной кислоты различных концентраций
06ХН28МДТ, 10Х17Н13М2Т Молочная, муравьиная кислоты при температуре до 20 °С. Едкое кали концентрации до 68% при температуре 120 °С. Азотная кислота концентрации 100% при температуре 70 °С. Соляная кислота, сухой йод концентрации до 10% при температуре до 20 ° С

К основным видам химико-термической обработки, изделий из стали относятся:

Цементация - процесс насыщения поверхностного слоя углеродом, что улучшает его прочность и твердость;

Азотирование - процесс насыщения поверхностного слоя азотом, что повышает стойкость изделий к истиранию и атмосферной коррозии;

Алитирование - процесс диффузионного насыщения поверхностного слоя алюми-

нием, что повышает стойкость к окислению при температурах 800 -1000 °С;

Хромирование - поверхностное насыщение изделий хромом, что значительно повышает твердость, износостойкость и коррозионную стойкость в воде, азотной кислоте, атмосфере и газовых средах при высоких температурах.

Чугуны. Серые чугуньг представляют собой сплав железа, углерода и других металлургических добавок: кремния, марганца, фосфора и серы. Содержание углерода в чугунах колеблется от 2,8 до 3,7%, при этом большая его часть находится в свободном состоянии (графит) и только около 0,8÷0,9% находится в связанном состоянии в виде цементита (карбида железа – Fе 3 С). Свободный углерод выделяется в чугуне в виде пластинок, чешуек или зерен. По микроструктуре раз-

чугун серый - в структуре которого углерод выделяется в виде пластинчатого или шаровидного графита;

чугун белый - в структуре которого углерод выделяется в связанном состоянии;

чугун отбеленный - в отливках которого внешний слой имеет структуру белого чугуна, а сердцевина - структуру серого чугуна;

чугун половинчатый - в структуре которого углерод выделяется частично в связан

ном, а частично в свободном виде.

Детали из чугуна изготавливают методом литья в земляных и металлических формах. Из чугуна получают детали сложной конфигурации, которые невозможно получить другими методами, например, ковкой или резанием.

Серый чугун является ценным конструкционным материалом, так как, имея сравнительно низкую стоимость, он обладает неплохими механическими свойствами.

Существенным недостатком серых чугунов является их низкая пластичность. Поэтому ковка и штамповка серого чугуна даже в нагретом состоянии невозможна.

Марки серых чугунов (СЧ) обычно содержат два числа: первое характеризует пре

дел прочности на растяжение, второе - предел прочности на изгиб, например,

СЧ 12-28; СЧ 18-36 и др.

Серые чугуны обладают низкой химической стойкостью, и детали из них не могут работать в агрессивных средах.

Для повышения качества чугуна его модифицируют различными модификаторами, которые воздействуют на процесс кристаллизации жидкого чугуна, изменяя его механические свойства.

Различают ковкий чугун и высокопрочный чугун. Ковкий чугун (КЧ) отличается от серого чугуна пониженным содержанием углерода и кремния, что делает его более пластичным, способным выдерживать значительные деформации (относительное удлинение КЧ составляет 3 - 10%). Высокопрочный чугун (ВЧ) является разновидностью ковкого чугуна, высокие прочностные характеристики которого достигаются модифицированием присадками магния и его сплавов. Ковкий и высокопрочный чугуны идут на изготовление коленчатых валов, цилиндров малых компрессоров и других фасонных тонкостенных деталей.

Широкое применение в химическом машиностроении имеют легированные чугу-

ны, в состав которых входят легирующие элементы, никель, хром, молибден, ванадий, титан, бор и др.

По суммарному содержанию легирующих добавок чугуны делят на три группы:

Низколегированные - легирующих добавок до 3%;

Среднелегированные - легирующих добавок от 3 до 10%;

Высоколегированные - легирующих добавок более 10%.

Легирование позволяет существенно улучшить качество чугуна и придать ему осо-

бые свойства. Например:

Введение никеля, хрома, молибдена, кремния повышает химическую стойкость и жаропрочность чугуна;

Никелевые чугуны с добавкой меди (5 - 6%) надежно работают со шелочами;

Высокохромные (до 30% Сr) устойчивы к действию азотной, фосфорной и уксусной кислот, а также хлористых соединений;

Чугун с добавкой молибдена до 4% (антихлор) хорошо противостоит действию соляной кислоты.

Цветные металлы и их сплавы . Цветные металлы и их сплавы применяют для изготовления машин и аппаратов, работающих со средами средней и повышенной агрессивности и при низких температурах. В химической промышленности в качестве конструкционных материалов используются алюминий, медь, никель, свинец, титан, тантал и их сплавы.

Алюминий. Обладает высокой стойкостью к действию органических кислот, концентрированной азотной кислоты, разбавленной серной кислоты, сравнительно устойчив к действию сухого хлора и соляной кислоты. Высокая коррозионная стойкость металла обусловлена образованием на его поверхности защитной оксидной пленки, предохраняющей его от дальнейшего окисления. Механические свойства алюминия в значительной степени зависят от температуры. Например, при увеличении температуры от 30 °С до 200 °С значения допускаемого напряжения на растяжение снижаются в 3 - 3,5 раза, а на сжатие - в 5 раз. Верхняя предельная температура применения алюминия 200 °С. Алюминий не стоек к действию щелочей.

Медь. Взаимодействие меди с кислородом начинается при комнатной температуре и резко возрастает при нагревании с образованием пленки закиси меди (красного цвета). Медь сохраняет прочность и ударную вязкость при низких температурах и поэтому нашла широкое применение в технике глубокого холода. Медь не обладает стойкостью к действию азотной кислоты и горячей серной кислоты, относительно устойчива к действию органических кислот. Широкое распространение получили сплавы меди с другими компонентами: оловом, цинком, свинцом, никелем, алюминием, марганцем, золотом и др. Наиболее распространенными являются сплавы меди с цинком (латуни), с оловом (бронзы), с никелем (ЛАН), с железом и марганцем (ЛЖМ), цинком (до 10% цинка - томпак; до 20% - полутомпак; более 20% - константаны, манганины и др.).

Свинец - обладает сравнительно высокой кислотостойкостью, особенно, к серной кислоте, вследствие образования на его поверхности защитной пленки из сернокислого свинца. Исключительно высокая мягкость, легкоплавкость и большой удельный вес резко ограничивают применение свинца в качестве конструкцион-

ного материала. Однако широкое применение в машиностроении нашли сплавы с использованием свинца в качестве легирующего компонента: свинцовая бронза, свинцовая латунь, свинцовый баббит (свинец, олово, медь, сурьма).

Никель - обладает высокой коррозионной стойкостью в воде, в растворах солей и щелочей при разных концентрациях и температурах. Медленно растворяется в соляной и серной кислотах, не стоек к действию азотной кислоты. Широко приме-

няется в различных отраслях техники, главным образом для получения жаропроч-

ных сплавов и сплавов с особыми физико-химическими свойствами. Никель-медные сплавы обладают улучшенными механическими свойствами и повы-

шенной коррозионной стойкостью.

Никельхромсодержащие жаропрочные сплавы. Никелевые сплавы, легированные хромом и вольфрамом, являются стойкими в окислительных средах. Никелевые сплавы с добавкой меди, молибдена и железа стойкие в неокислительных средах. Никель-медные сплавы с добавлением кремния стойкие в горячих растворах серной кислоты, а сплавы никеля с молибденом обладают повышенной стойкостью к действию соляной кислоты.

Титан и тантал. Титан химически стоек к действию кипящей азотной кислоты и царской водки всех концентраций, нитритов, нитратов, сульфидов, органических кислот, фосфорной и хромовой кислот. Однако изделия из титана в 8 - 10 раз дороже изделий из хромоникелевых сталей, поэтому применение титана в качестве конструкционного материала ограничено. Тантал химически стоек к действию кипящей соляной кислоты, царской водки, азотной, серной, фосфорной кислот. Однако не обладает стойкостью к действию щелочей.

Титан и тантал по механическим свойствам не уступают высоколегированным сталям, а по химической стойкости намного превосходят их. Эти ценные металлы находят широкое применение в химическом машиностроении как в чистом виде, так и в виде сплавов.

Неметаллические конструкционные материалы. Применение в химическом машиностроении неметаллических конструкционных материалов позволяет экономить дорогостоящие и дефицитные металлы.

Фторопласт (тефлон) - элементы конструкций из фторсодержащих полимеров обладают высокой стойкостью практически во всех агрессивных средах в широком интервале температур.

Углеграфитовые материалы - графит, пропитанный фенолформальдегидной смолой, или графитопласт - прессованная пластмасса на основе фенолформальдегиднои смолы с графитовым наполнителем. Обладают высокой коррозионной стойкостью в кислых и щелочных средах.

Стекло и эмали. Стекло применяется в качестве конструкционного материала в производствах особо чистых веществ. Эмали - специальные силикатные стекла, обладающие хорошей адгезиеи с металлом. Промышленностью выпускаются чугунные и стальные эмалированные аппараты, работающие в широком интервале температур от -15 до +250 °С при давлениях до 0,6 МПа.

Керамика - выпускается кислотоупорный кирпич для футеровки химического оборудования, крупноблочная керамика для аппаратов башенного типа, например, в производстве серной кислоты. Керамические материалы обладают высокой устойчивостью ко многим агрессивным средам, исключение составляют шелочные среды. Трубопроводы из кислотостойкой керамики широко применяют для транспортировки серной и соляной кислот.

Фарфор - обладает высокой стойкостью ко всем кислотам, за исключением плавиковой. Недостаточно стоек к действию щелочей. Фарфор используется в качестве конструкционного материала в производствах, где к чистоте продуктов предъявляются повышенные требования.

Винипласт - термопластичная масса, обладающая высокой устойчивостью почти во всех кислотах, щелочах и растворах, за исключением азотной и олеума. Детали из винипласта надежно работают в интервале температур 0 - 40 °С и давлении до 0,6 МПа.

Асбовинил - композиция из кислотостойкого асбеста и лака, обладающая сравни-

тельно высокой стойкостью к действию большинства кислот и щелочей в интервале температур от - 50 до +110 °С.

Полиэтилен, полипропилен - термопластичные материалы, стойкие к действию минеральных кислот и щелочей при условиях:

Полиэтилен - температура от - 60 до +60 °С, давление до 1 МПа,

Полипропилен - температура от - 10 до +100 °С, давление до 0,07 МПа.

Фаолит - кислотостойкая пластмасса с наполнителями: асбест, графит, кварцевый песок. Используют при температуре до 140 °С и давлении до 0,06 МПа. Фаолит стоек к действию многих кислот, в том числе серной (концентрацией до 50%), соляной (всех концентраций), уксусной, муравьиной (до 50%), фосфорной, а также бензола, но не стоек в растворах щелочей и окислителей.

Текстолит - по механической прочности превосходит фаолит и отличается высокой стойкостью к агрессивным средам, в том числе к кислотам - серной (концент-

рацией до 30%), соляной (до 20%), фосфорной (до 25%), уксусной (всех концентраций). Верхний температурный предел применения текстолита 80 °С.

Пропитанный графит - графит, полученный после прокалки каменноугольной смолы и пропитанный связующими смолами - фенолформальдегидными, кремне-

органическими, эпоксидными и др.

Вследствие хорошей теплопроводности пропитанного графита его широко приме-

няют для изготовления теплообменников и трубопроводной арматуры. Пропитанный графит стоек во многих химически активных средах, в том числе в кислотах - азотной (низкой концентрации), плавиковой (концентрацией до 40%), серной (до 50%), соляной, уксусной, муравьиной, фосфорной. Некоторые сорта пропитанного графита стойки к действию щелочей.

Жаропрочный кислотостойкий бетон - применяется для бетонирования днищ башенного оборудования сернокислотного производства, для изготовления фундаментов под оборудование. Надежно работает в условиях 900 - 1200 °С. В последнее время находят применение полимербетоны на основе органических смол, которые обладают высокой стойкостью к действию концентрированных кислот, щелочей, бензола, толуола и фторсодержащих сред.

Природные силикатные материалы : диабаз, базальт, асбест, хризотил, андезит обладают высокой кислотостойкостью, исключение составляет хризотил, который не стоек в кислотах, но устойчив к действию щелочей. Все эти материалы обладают хорошими физико-механическими свойствами и широко используются в качестве конструкционных теплоизоляционных и футеровочных материалов.

Конструкционные материалы – это материалы, на основе которых изготавливают детали для машин, инженерных сооружений и конструкций. Они в ходе работы неоднократно будут подвергаться механическим нагрузкам. Такие детали характеризуются большим разнообразием не только форменным, но и эксплуатационным. Их применяют в разных отраслях промышленности, с их помощью делают промышленные печи, детали для автомобилей, их используют в авиационной сфере. Задача производителя выполнить конструкционную деталь, готовую работать при разных температурах, в разных средах и с достаточно интенсивными нагрузками. Главным отличием продукции от остальных дополнений конструкций является их готовность долговременно принимать на себя максимальные нагрузки.

Виды, типы, классификации

Ввиду того что металлы являются практически самыми надежными и долговечными составляющими, конструкционные материалы изготавливаются в большей степени из них. Поэтому КМ классифицируются и распознаются по материалу, из которого были изготовлены. Зачастую из металлов предпочитают сталь из-за ее прочности, надежности и легкости в обработке.

За основу материалов берут сплавы, выполненные из стали, чугуна и железа. Данный вид имеет хорошую прочность, детали и элементы используются чаще других. Также используют сплавы с магнитными и немагнитными формами. Применяются цветные и не цветные сочетания металлов. Зачастую это алюминий, но в некоторых деталях возможно использование сплавов на его основе. Сплавы используют в том случае, когда деталь нужно деформировать и преобразовывать неоднократно. Из цветных также используют медь (бронзу), титан.

Неметаллические материалы стали использоваться гораздо позднее предыдущей группы. Развитие технологий помогло создать более дешевую альтернативу. При этом неметаллы также прочны и надежны. Неметаллические конструкционные материалы изготавливают из древесины, керамики, стекла и разных видов резины.

  • Композиционные материалы

Композиционные материалы состоят из элементов, сильно отличающихся друг от друга по свойствам. Они позволяют создавать конструкции с заранее определенными характеристиками. Материалы применяют для повышения эффективности. Название состава задается материалом матрицы. Такие материалы все имеют основу. Композиты, имеющие металлическую матрицу – металлические, керамическую – керамические и так далее. Они созданы искусственным путем, материал, который получают на выходе, имеет новый комплекс свойств. Композиционные материалы могут включать в себя как металлические, так и с неметаллические составляющие.

Существует еще одна классификация, позволяющая распознать какой именно необходим материал для выполнения выбранной задачи – это разбор на виды по техническим критериям.

  • Материалы с повышенной прочностью;
  • Материалы, имеющие отличительные технологические возможности;
  • Долговечные материалы (элементы, на эксплуатацию которых не влияют механические раздражители);
  • Упругие конструкционные материалы;
  • Неплотные материалы;
  • Материалы устойчивые к природным воздействиям;
  • Материалы, имеющие высокую прочность.

Сферы применения

Использование конструкционных материалов приходится на любую сферу, связанную со строением и производством. Наиболее широкий спектр в использовании получили электроэнергетическая, строительная и машиностроительная отрасли. Именно здесь собрание конструкций является первой частью для созидания большого проекта.

Группы Материалы Сфера применения Мех. свойства
Металлические конструкционные материалы Бронза Для получения фасонных отливок, втулок, подшипников, зубчатых колес и шестерен. Высокая прочность на сжатие и фрикционные нагрузки, не окисляется.
Инструментальная сталь Для изготовления мерительных инструментов, режущих частей и мерных шаблонов. Прочная, тяжелая, не окисляется, водостойкая.
Титан Ответственные детали в сфере авиации, ракетостроения и медицине. Легкий, водостойкий, токопроводящий.
Неметаллические конструкционные материалы Резина Уплотняющие элементы любых конструкций, изоляторы от напряжения, герметизация, гибкие детали в сфере автомобилестроения, медицины, ракетостроения. Низкая плотность при высокой упругости. Устойчивость к химическим и термическим воздействиям.
Пластмассы Широкое применение для изготовления изделий народного хозяйства, автомобилестроения, пищевой, авиационной, строительной промышленностей. Низкая плотность и хорошая прочность. Низкая температура плавления. Устойчивость к химическим воздействиям.
Азбест Производство труб, покрытия домов, огнеупорных тканей и уплотнителей. Низкая прочность при ударе. Устойчивость к природным воздействиям и химическим.
Керамика Изготовление посуды, изделий для туалета и ванной. Изготовление моделей и сувениров. Отдельные виды используются для изготовления ножей и режущего инструмента. Высокая плотность, хрупкость, устойчивость к коррозии. Низкая упругость. Устойчивость к стиранию.
Производство бронежилетов, армирующего слоя автомобильных шин, защитного слоя кабелей, экипировка для космонавтов, мотоциклистов, пожарников. Высокая прочность, гибкость и низкая плотность. Устойчивость к химическому и механическому воздействию.
Композиционные материалы Фанера Мебельное производство, отделка помещений, сборно-щитовые конструкции в строительстве Низкая плотность при высокой прочности. Простота обработки
Бетон Строительство самых разнообразных домов и конструкций. Высокая прочность на сжатие. Большая плотность.
Стеклопластик Изготовление корпусов лодок и катеров. Обвеска автомобиля и диэлектрические детали. Корпуса бассейнов и декоративных изделий. Высокая прочность и низкая плотность. Низкая пластичность.

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ, материалы, предназначенные для изготовления конструкций (деталей машин или механизмов, приборов, сооружений, транспортных средств и др.), воспринимающих механические нагрузки. Конструкционные материалы (в отличие от других технических материалов - оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и пр.) должны иметь высокую конструкционную прочность, обеспечивающую их надёжную и длительную работу в условиях эксплуатации. К основным критериям качества конструкционных материалов относятся параметры сопротивления внешним (статическим, циклическим и ударным) нагрузкам - прочность, удельная прочность (особенно для конструкционных материалов, используемых в авиа- и ракетостроении), жаропрочность, выносливость и вязкость разрушения (сопротивление материала образованию трещин). В ряде случаев важными характеристиками конструкционных материалов также являются износо-, термо- и коррозионная стойкость, свариваемость, прокаливаемость и др. На механические свойства конструкционных материалов оказывает влияние (преимущественно негативное) рабочая среда, вызывая повреждение поверхности вследствие коррозионного растрескивания или изменение химического состава поверхностного слоя в результате насыщения нежелательными элементами (например, водородом, вызывающим охрупчивание металлических конструкций). Конструкционные материалы эксплуатируются в широком температурном диапазоне - от -269 до 2500 °С; для обеспечения работоспособности при высокой температуре материал должен обладать жаропрочностью, при низкой - хладостойкостью. От технологичности конструкционных материалов (их обрабатываемости резанием, давлением, способности к литью и др.) зависит качество изготовления деталей.

Конструкционные материалы подразделяются: по природе материалов - на металлические, неметаллические и композиционные материалы, по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и др.); по условиям эксплуатации - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и др.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности и высокопрочные с умеренным запасом пластичности.

Наибольшее распространение среди металлических конструкционных материалов получили конструкционная сталь и чугун. Конструкционные стали характеризуются широким диапазоном предела прочности - 200-3000 МПа; применяются в строительстве, авто-, авиа-, тракторо-, судостроении и др. Предел прочности чугунов в зависимости от легирования колеблется от 110 МПа (чугаль) до 1350 МПа (чугун, легированный магнием). Чугуны широко используются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительной среде, и др. Сплавы на основе цветных металлов также широко применяются в различных областях техники. Никелевые сплавы и кобальтовые сплавы сохраняют прочность и жаропрочность до 1000-1100 °С, интерметаллидные сплавы на основе соединения Ni 3 Al - до 1200 °С; применяются в авиационных и ракетных двигателях, паровых и газовых турбинах, аппаратах, работающих в агрессивных средах, и др. Алюминиевые сплавы по удельной жёсткости значительно превосходят стали, предел прочности деформируемых сплавов составляет до 750 МПа, литейных - до 550 МПа; служат для изготовления корпусов самолётов, вертолётов, ракет, судов и др. Магниевые сплавы отличаются малой плотностью (в 4 раза меньше, чем у стали), имеют предел прочности до 400 МПа и выше; применяются преимущественно в виде литых деталей в конструкциях ЛА, в автомобилестроении, в полиграфической промышленности и др. Титановые сплавы (предел прочности до 1600 МПа и более) превосходят стали и алюминиевые сплавы по удельной прочности, коррозионной стойкости и жёсткости; служат для изготовления компрессоров авиационных двигателей, аппаратов нефтеперерабатывающей и химической промышленности и др. Циркониевые сплавы, наряду с малым поперечным сечением поглощения тепловых нейтронов, обладают прочностью, пластичностью и коррозионной стойкостью в агрессивных средах; используются в ядерной энергетике для элементов конструкции активной зоны реакторов АЭС. Повышение эксплуатационных свойств металлических конструкционных материалов, получаемых традиционными методами, связано с использованием легированных и нанокристаллических металлических порошков.

Неметаллические конструкционные материалы включают полимерные материалы, керамику, огнеупоры, стёкла, резины, древесину. Термопласты (полистирол, полиметилметакрилат, полиамиды, фторопласты), а также реактопласты используются в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе в химически активных: топливах, маслах и др. Стёкла (силикатные, кварцевые, органические) и триплексы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Огнеупоры применяются преимущественно в чёрной и цветной металлургии при изготовлении огнеупорных футеровок в агрегатах, работающих в условиях высоких температур (более 900 °С). Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений. Древесина используется в качестве шпал, крепи для угольной и горнорудной промышленности, для производства строительных конструкций, домов и др.

Композиционные конструкционные материалы по удельной прочности и удельному модулю упругости на 50-100% превосходят стали или алюминиевые сплавы и обеспечивают снижение массы конструкций на 20-50%. Композиционные конструкционные материалы (углепластики, органопластики, органотекстолиты, алюмостеклопластики и др.) широко применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др.

Получение новых конструкционных материалов с улучшенными (по сравнению с традиционными конструкционными материалами) свойствами связано с синтезом материалов с субмикроскопической структурой из элементов, имеющих предельные значения свойств (предельно прочных, тугоплавких, термостабильных), а также с применением специальных методов изготовления (значительно повышающих прочность и долговечность материалов). Например, для металлических конструкционных материалов используется направленная кристаллизация сталей и сплавов для получения литых деталей со столбчатой структурой зёрен, монокристаллических деталей из никелевых сплавов с определённой кристаллографической ориентацией относительно действующих напряжений (лопатки газовых турбин); для неметаллических конструкционных материалов применяются методы ориентации линейных макромолекул полимерных материалов, модифицирование наночастицами (фуллеренами, нанотрубками, нановолокнами), создание полимерных нанокомпозитов.

Лит.: Машиностроение: Энциклопедия. М., 2001. Т. 2/3: Цветные металлы и сплавы. Композиционные металлические материалы / Ред.-сост. И. Н. Фридляндер; Болтон У. Конструкционные материалы: металлы, сплавы, полимеры, керамика, композиты. 2-е изд. М., 2007.

1.

2. Исходные материалы и способы получения алюминия .

3. Свойства и применение древесины.

4.

1. Классификация свойств конструкционных материалов. Эксплуатационные свойства, их показатели.

Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами конструкционных материалов являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества конструкционных материалов относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др.

Конструкционные материалы подразделяются (рис. 1): по природе материалов - на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению - на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т. п.); по условиям работы - на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т. д.; по критериям прочности - на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями . Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами.

Рис. 1. Схема классификации конструкционных материалов

При выборе материала для того или иного изделия или конструкции учитывают экономическую целесообразность его применения (соответствие цены и качества), сохранение конструкционных критериев (требуемые долговечность, прочность, надежность) и возможность переработки в изделие (технологические критерии – обрабатываемость резанием, свариваемость, ковкость и т. п.). С учетом данных критериев выбирают материал той или иной природы.

Металлические материалы. К ним относятся металлы и сплавы на их основе. Они в свою очередь подразделяются на несколько групп, отличающихся друг от друга по свойствам:

1. Черные металлы. Это железо и сплавы на его основе – стали и чугуны;

2. Цветные металлы. В эту группу входят металлы и их сплавы, такие как медь, алюминий, титан, никель и др.;

3. Благородные металлы. К ним относятся золото, серебро, платина; 4. Редкоземельные металлы. Это лантан, неодим, празеодим.

Неметаллические материалы. Они также подразделяются на несколько групп:

1. Пластмассы. Это материалы на основе высокомолекулярных соединений – полимеров, в основном, с наполнителями;

2. Керамические материалы (керамика). Их основой являются порошки тугоплавких соединений типа карбидов, боридов, нитридов и оксидов. Например: TiC, SiC, Cr7C3, CrB, Ni3B, TiB2, BN, TiN, Al2O3, SiO2, ZrO2 и др.;

3. Металлокерамические материалы (металлокерамика). В этих материалах основой является керамика, в которую добавляется некоторое количество металла, являющегося связкой и обеспечивающего такие свойства, как пластичность и вязкость;

4. Стекло. Оно представляет собой систему, состоящую из оксидов различных элементов, в первую очередь оксида кремния SiO2;

5. Резина. Это материалы на основе каучука - углеродноводородного полимера с добавле-нием серы и других элементов;

6. Дерево. Сложная органическая ткань древесных растений.

Композиционные материалы. Они представляют собой материалы, полученные искусственным путем из двух и более различных материалов, сильно отличающихся друг от друга по свойствам. В результате композиция по своим свойствам существенно отличается от свойств составляющих компонентов, т. е. получаемый материал имеет новый комплекс свойств. В состав композиционных материалов могут входить как металлические, так и неметаллические составляющие.

Классификация свойств конструкционных материалов

1. Механические свойства характеризуются способностью материала сопротивляться деформированию и разрушаться под действием внешних воздействующих факторов.

· Прочность – это способность материала сопротивляться разрушению и пластично деформироваться под воздействием внешних нагрузок;

· Твердость – это способность материалов сопротивляться деформированию в поверхностном слое при местном, контактном и силовом воздействии;

· Упругость - это способность материала восстанавливать свою форму и размеры, под действием внешних сил без разрушения;

· Вязкость - способность материала поглощать механическую энергию и при этом испытывать значительную пластическую деформацию до разрушения;

· Хрупкость – это способность материала разрушаться под действием внешних сил, сразу после упругой деформации.

2. Физические свойства характеризуют поверхность материала в тепловых, гравитационных, электромагнитных и радиоактивных полях.

· Свет – это способность материала отражать световые лучи с определенной длиной световой волны;

· Плотность – это масса единицы объема вещества;

· Температура плавления – это температура, при которой вещество переходит из твердой фазы в жидкую;

· Электропроводность – это способность материала хорошо и без потерь проводить электрический ток;

· Теплопроводность – это способность материала переносить Тепловую энергию от более нагретого участка к менее нагретому;

· Теплоёмктсть - это способность материала поглощать определенное количество теплоты;

· Магнитные свойства - способность материалахорошо намагничиваться;

· Коэффициент объемного и линейного расширения – характеризует изменение размеров тела при изменении температуры.

3. Технологические свойства характеризуются способностью материала подвергаться различным видам горячей и холодной обработки.

Литейные свойства; К ней относятся жидкотекучесть - способность металлов и сплавов течь по каналам формы и заполнять ее. Заполняемость - она характеризует способность металлов и сплавов воспроизводить контур отливок в особо тонких сечениях, где в значительной степени проявляется действие капиллярных сил. Объемная усадка - характеризует изменение объема металла при понижении температуры в жидком состоянии, в процессе затвердевания и при охлаждении твердого металла. Линейная усадка - отражает изменение линейных размеров отливки после образования на ее поверхности жесткого кристаллического скелета и охлаждения до комнатной температуры.

· Ковкость (важно при обработке давлением) - это способность металлов и сплавов подвергаться ковке и другим видам обработки давлением (прокатка, волочение, прессование, штамповка);

· Свариваемость (это показатель того, на сколько материал может показать свариваемые соединения);

· Обработка резанием;

· Прокаливаемость;

· Закаливаемость.

4. Эксплуатационные свойства, характеризуют способность материалов обеспечивает надежную и долговечную работу изделий в конкретных условиях и эксплуатации, базируются на механических, физических и химических свойствах.
Эксплуатационные свойства. Эти свойства определяют в зависимости от условий работы машины специальными испытаниями. Одним из важнейших эксплуатационных свойств является износостойкость, хладостойкость, жаропрочность, антифрикционность и др.

Износостойкость - свойство материала оказывать сопротивление износу, т. е. постепенному изменению размеров и формы тела вследствие разрушения поверхностного слоя изделия при трении. Испытание металлов на износ проводят на образцах в лабораторных условиях, а деталей - в условиях реальной эксплуатации. При испытаниях образцов моделируются условия трения, близкие к реальным. Величину износа образцов или деталей определяют различными способами: измерением размеров, взвешиванием образцов и другими методами.

Хладостойкость - способность материалов, элементов, конструкций и их соединений сопротивляться хрупким разрушениям при низких температурах окружающей среды.

Жаропрочность - это способность металла сопротивляться пластической деформации и разрушению при высоких температурах. Жаропрочные материалы используются для изготовления деталей, работающих при высоких температурах, когда имеет место явление ползучести. Критериями оценки жаропрочности являются кратковременная и длительная прочности, ползучесть.

Антифрикционность - это способность материала обеспечивать низкий коэффициент трения скольжения и тем самым низкие потери на трение и малую скорость изнашивания сопряженной детали.

5. Химические свойства характеризуют способность материала вступать в химическое взаимодействие с другими веществами.

· Растворимость (способность материала образовывать с одним или несколькими веществами однородные системы, называющихся растворами);

· Жаростойкость (способность материала противостоять химическому разрушению поверхности под действием воздуха или другой окислительной атмосферой при высоких температурах);

· Коррозионостойкость (способность металлических материалов противостоять разрушению в результате химического или электрохимического воздействия на их поверхности внешней агрессивной среды (аналогичное свойство для неметаллических материалов - химикостойкость ));

· Окисление (способность материалов отдавать электроны, то есть окисляться при химическом взаимодействии с окружающей средой или другой материей).

2. Исходные материалы и способы получения алюминия.

Алюминий – это один из важнейших металлов, причем количество его производства намного опережает объем выпуска всех остальных цветных металлов и уступает только производству стали. Высокая популярность алюминия обусловлена его уникальными физико - химическими свойствами, благодаря которым он нашел широкое применение в электротехнике , авиа - и автостроении, транспорте, производстве бытовой техники , строительстве, упаковке пищевых продуктов и пр.

В последнее время машиностроение во все большей мере требует легких металлов, особенно в авиастроении, ракетостроении, атомной промышленности и железнодорожном транспорте . Поэтому развитие новых и более экономичных методов получения алюминия и усовершенствование уже существующих методов имеет большое значение.

Электролиз криолитоглиноземных расплавов является основным способом получения алюминия, хотя некоторое количество алюминиевых сплавов получается электротермическим способом.

Первые промышленные электролизеры были на силу тока до 0,6 кА и за последующие 100 лет она возросла до 300 кА. Тем не менее, это не внесло существенных изменений в основы производственного процесса.

Общая схема производства алюминия представлена на рис. 2. Основным агрегатом является электролизер. Электролит представляет собой расплав криолита с небольшим избытком фторида алюминия, в котором растворен глинозем. Процесс ведут при переменных концентрациях глинозема приблизительно от 1 до 8 % (масс.). Сверху в ванну опущен угольный анод , частично погруженный в электролит. Существуют два основных типа расходуемых анодов: самообжигающиеся и предварительно обожженные. Первые используют тепло электролиза для обжига анодной массы, состоящей из смеси кокса-наполнителя и связующего – пека. Обожженные аноды представляют собой предварительно обожженную смесь кокса и пекового связующего.

Рис. 2 Схема производства алюминия из глинозема.

Расплавленный алюминий при температуре электролиза (950 – 960°С) тяжелее электролита и находится на подине электролизера. Криолитоглиноземные расплавы – очень агрессивны, противостоять которым могут углеродистые и некоторые новые материалы. Из них и выполняется внутренняя футеровка электролизера.

Для преобразования переменного тока в постоянный на современных заводах применяются полупроводниковые выпрямители с напряжением 850В и коэффициентом преобразования 98,5%, установленные в кремниевой преобразовательной подстанции (КПП). Один выпрямительный агрегат дает ток силой до 63 кА. Число таких агрегатов зависит от необходимой силы тока, так как все они включены параллельно.

Процесс, протекающий в электролизере, состоит в электролитическом разложении глинозема, растворенного в электролите. На жидком алюминиевом катоде выделяется алюминий, который периодически выливается с помощью вакуум-ковша и направляется в литейное отделение на разливку или миксер, где в зависимости от дальнейшего назначения металла готовятся сплавы с кремнием, магнием, марганцем, медью или проводится рафинирование. На аноде происходит окисление выделяющимся кислородом углерода. Отходящий анодный газ представляет собой смесь СО2 и СО.

Электролизеры обычно снабжены укрытиями, отводящими отходящие газы, и системой очистки. Это снижает выделение вредных веществ в атмосферу. Технологический процесс требует, чтобы укрытие было герметично для обеспечения отсоса газа в коллектор с помощью вентиляторов . В удаляемых газах от электролизеров преобладают диоксид углерода (большая часть оксида углерода дожигается либо над электролитом, либо в специальных горелках после газосборного колокола), азот , кислород, газообразные и твердые фториды и частицы глиноземной пыли. Для их удаления и возвращения в процесс применяются различные технологические схемы.

Современные электролизеры оборудованы системой автоматического питания глиноземом (АПГ) с периодом загрузки 10 – 30 мин.

Суммарная реакция, происходящая в электролизере, может быть представлена уравнением

Таким образом, теоретически на процесс электролиза расходуются глинозем и углерод анода, а также электроэнергия, необходимая не только для осуществления электролитического процесса – разложения глинозема, но и для поддержания высокой рабочей температуры. Практически расходуется и некоторое количество фтористых солей, которые испаряются и впитываются в футеровку. Для получения 1 т алюминия необходимо:

Производство алюминия является одним из самых энергоемких процессов, поэтому алюминиевые заводы строят вблизи источников энергии.

Все материалы, поступающие на электролиз, должны иметь минимальное количество примесей более электроположительных, чем алюминий (железо, кремний, медь и др.), так как эти примеси при электролизе практически полностью переходят в металл.

Электротермическое получение алюминиево-кремниевых сплавов.

Получить чистый алюминий непосредственным восстановлением его оксида невозможно. Карботермические процессы требуют высоких температур (около 2000°С) для восстановления глинозема и при отсутствии сплавообразующих компонентов металл связывается с углеродом, давая карбид алюминия (А14С3). Известно, что карбид алюминия и алюминий растворимы друг в друге и образуют весьма тугоплавкие смеси. Кроме того, А14С3 растворяется в А12О3, поэтому в результате восстановления оксида алюминия углеродом получаются смеси алюминия, карбида и оксида, имеющие высокие температуры плавления. Выпустить такую массу из печи обычно не представляется возможным. Даже если это и удается сделать, потребуются большие затраты на разделение.

Общая технологическая схема производства алюминиево-кремниевых сплавов представлена на рис. 3. В качестве исходного сырья, кроме каолинов (Al2O3×2SiO2×2H2O), могут быть использованы кианиты (Al2O3×SiO2), дистенсиллиманиты (Al2O3×SiO2) и низкожелезистые бокситы.

Сплав после электроплавки поступает на очистку от неметаллических примесей. Для этого подают флюс, состоящий из смеси криолита и хлорида натрия, который смачивает эти примеси и "собирает" их. Рафинированный силикоалюминий имеет средний состав (%): А1 – 61; Si – 36; Fe – 1,7; Ti – 0,6; Zr – 0,5; Ca – 0,7. Этот сплав не годится для производства силумина и требует очистки от железа. Наиболее распространен способ очистки марганцем, который образует с железом тугоплавкие интерметаллиды.

Рис. 3. Общая схема производства алюминиево-кремниевых сплавов.

Полученный сплав разбавляют техническим электролитическим алюминием или вторичным алюминием до состава, отвечающего различным сортам силуминов, и разливают в слитки.

Преимущества такого способа получения силумина перед сплавлением электролитического алюминия с кристаллическим кремнием состоят в следующем: большая мощность единичного агрегата – современные печи имеют мощность 22,5 MB×A, что примерно в 30 раз выше мощности электролизера на 160 кА, а, следовательно, уменьшение грузопотоков , снижение капитальных затрат и затрат труда; применение сырья с низким кремниевым модулем, запасы которого в природе достаточно велики.

Теоретически из алюминиево-кремниевого сплава можно выделить различными приемами чистый алюминий. Однако из-за сложности аппаратурного и технологического оформления в промышленности эти способы в настоящее время не реализуются.

Тот-процесс

Схема получения алюминия по способу Тота представлена на рис. 4. Алюминийсодержащее сырье после соответствующей подготовки хлорируют в кипящем слое в присутствии кокса и SiCl4. Последний используется для подавления реакции хлорирования SiO2. В результате хлорирования в печах кипящего слоя (КС) получается парогазовая смесь (ПГС), в состав которой входят А1С13, FeCl3, TiCl4 и SiCl4. В первом конденсаторе из ПГС выделяется около 75 % FeCl3 в твердом состоянии и направляется в реактор-окислитель, где взаимодействует с кислородом воздуха, в результате чего образуются Fe2O3 и С12. Хлор возвращается на хлорирование. Во втором конденсаторе выделяется оставшийся FeCl3 и происходит конденсация А1С13. Хлориды титана и кремния конденсируются в третьем конденсаторе. Разделение этих хлоридов осуществляется в ректификационной колонне.

Рис. 4. Схема получения алюминия по методу Тота.

Хлориды алюминия и железа, выгруженные из второго конденсатора, нагреваются, перекачиваются в контактный очиститель, где контактируют в противотоке с подвижным слоем твердых частиц алюминия. При этом идет реакция:

Очищенный хлорид алюминия поступает на металлотермическое восстановление. Технически доступными восстановителями, имеющими большее сродство к хлору, чем алюминий, являются натрий, магний и марганец. Однако первые два элемента дороги и их производство весьма энергоемко. Поэтому, по мнению разработчиков процесса, определенные преимущества имеет использование марганца, который можно регенерировать из хлорида карботермическим методом со значительно меньшими энергозатратами. При восстановлении хлорида алюминия марганцем протекают реакции:

Алюминий из смеси МпС12 с непрореагировавшим А1С13, выделяется в циклонных сепараторах, а хлориды марганца и алюминия разделяются в выпарном аппарате. Хлорид алюминия возвращается в реактор для получения алюминия, а хлорид марганца взаимодействует с кислородом с образованием твердых оксидов марганца и хлора. Оксид марганца восстанавливается до металла карботермическим методом в шахтных печах, куда загружают кокс и известняк. Марганец в печь добавляется для восполнения потерь его в ходе процесса.

К недостаткам данного процесса, как и других металлотермических методов, относятся загрязнение получаемого продукта металлом-восстановителем, необходимость организации производства по регенерации восстановителя и увлечение капитальных затрат.

Электролиз хлоридных расплавов

В январе 1973 г. фирма "Alcoa", один из мировых лидеров по производству и переработке алюминия, заявила о разработке нового способа получения алюминия.

Принципиальная технологическая схема представлена на рис. 5.

Хлорид алюминия имеет высокое сродство к воде и тенденцию к образованию оксидов и гидрооксихлоридов. В связи с этим получение его в чистом виде является трудной задачей. Присутствие влаги вызывает коррозию, а присутствие кислородсодержащих соединений приводит к выделению осадков и окислению анодов. Фирмой "Alcoa" предложено хлорирование очищенного глинозема, что частично решает названные проблемы. Тем не менее, необходимо соблюдать повышенные требования к чистоте углерода при хлорировании в отношении водорода или влаги.

Рис. 5. Технологическая схема получения алюминия из хлорида.

Полученный хлорид алюминия в гранулированном или парообразном состоянии поступает на электролиз. Электролизер, используемый в данной технологии, состоит из стального кожуха, футерованного шамотным и в нижней части дополнительно диатомовым кирпичом, т. е. теплоизоляционным непроводящим огнеупорным материалом, который слабо взаимодействует с хлоридными расплавами. На дне ванны распо­ложен графитовый отсек для сбора жидкого алюминия. На крышке электролизера имеются отверстия для загрузки хлорида алюминия, периодического отсоса алюминия и непрерывного вывода газообразного хлора, используемого в производстве хлорида алюминия. Боковые стенки и крышка электролизера – водоохлаждаемые.

При электролизе используются графитовые нерасходуемые электроды. Это преимущество (по сравнению с электролизом криолитоглиноземных расплавов) вместе с относительно низкой температурой процесса (около 700ºС) дает возможность полной герметизации электролизеров.

Электролитическое разложение хлорида алюминия теоретически требуют более высокого напряжения, чем электролиз криолитоглиноземных расплавов, так как напряжение разложения хлорида алюминия много больше. Таким образом, к недостаткам процесса можно было бы отнести необходимость подвода в электролизер большого количества тепла и значительные потери напряжения. Однако высокие омические и тепловые потери значительно снижаются при использовании системы биполярных электродов. В электролизере верхний электрод является анодом, нижний – катодом, а между ними располагаются графитовые электроды, верхняя часть которых является катодом, а нижняя – анодом. В то же время результаты расчетов показывают, что с ростом числа биполярных электродов и снижением площади их сечения возрастают токи утечки, т. е. часть тока протекает по пропитанной электролитом части футеровки и каналам между футеровкой и биполями, не совершая электрохимическую работу. Эти токи утечки приводят к снижению выхода по току.

Вследствие близости температур плавления и кипения при атмосферном давлении хлорид алюминия возгоняется практически не плавясь. Температура сублимации составляет 180,2°С. Тройная точка соответствует температуре 192,6°С и абсолютному давлению 0,23 МПа. В связи с этим в качестве электролита используется расплавленная смесь хлорида алюминия (5 ± 2 % (масс.)), хлорида лития (~28% (масс.)) и хлорида натрия (67% (масс.)). В указанных расплавах снижается активность А1С13. Это в значительной степени обусловлено тем, что в расплавленных смесях хлоридов А1С13 связывается в комплексные анионы.

Основные прогнозируемые и подтвержденные при промышленном внедрении в США преимущества предложенного фирмой «Alcoa» способа производства алюминия электролизом его хлорида по сравнению с электролизом криолитоглиноземных расплавов заключаются в возможности использования низкокачественного алюминийсодержащего сырья, снижении примерно на 30 % удельного расхода электроэнергии при электролизе, исключении расхода высококачественных углеродсодержащих электродных материалов, применении менее дефицитных и агрессивных хлоридов вместо фторидов, повышении производительности труда, снижении капитальных вложений , приведенных затрат, стоимости конечной продукции и вредных выбросов в окружающую среду.

Таким образом, наиболее перспективным из альтернативных способов получения алюминия является электролиз хлорида алюминия в электролизерах с биполярными электродами.

3. Свойства и применение древесины .

Огромные пространства нашей планеты покрывают леса, они занимают около одной трети суши. Основным продуктом леса является древесина. По типу лесной растительности различают хвойные леса теплого умеренного климата, экваториальные дождевые леса, тропические влажные лиственные леса, леса сухих областей.

Древесина с древних времен используется для строительства жилищ , изготовления предметов домашнего обихода, для средств транспорта и разных изделий. Со временем наряду с древесиной в строительстве стали применяться металл, цемент, черепица, стекло, пластические массы.

Надо отметить, что древесина имеет и ряд недостатков: изменчивость свойств в направлении вдоль оси ствола и поперек; обладает гигроскопичностью, что приводит к увеличению ее массы и уменьшению прочности, а при высыхании древесина уменьшается в размерах (происходит усушка); она растрескивается и коробится; поражается грибами, что приводит к гниению; древесина способна гореть. Перечисленные недостатки в значительной мере устраняются путем химической и химико-механической переработки древесины в листовые и плитные материалы – бумагу, картон, древесностружечные и древесноволокнистые плиты, фанеру и др.

Взрослое дерево имеет ствол, крону и корни. Ствол связывает корневую систему с кроной дерева. Ствол дает основную массу древесины (от 50 до 90% объема всего дерева) и имеет главное промышленное значение. Верхняя тонкая часть ствола называется вершиной, нижняя толстая часть – комлем. Древесина занимает наибольшую часть объема ствола. Диаметр ствола изменяется в широких пределах, примерно от 6-8 до 100 см. Форма поперечного сечения ствола и, следовательно, древесины чаще всего близка к окружности, но иногда сечение приобретает форму эллипса. Диаметр уменьшается по высоте ствола. В верхней части ствола древесину пронизывают сучки, представляющие собой остатки ветвей. Снаружи древесину покрывает кора, относительный объем которой для основных пород приведен в таблице:

Порода

Объем коры, %

Лиственница

ОСНОВНЫЕ СВОЙСТВА ДРЕВЕСИНЫ

1. Химические свойства древесины

Химический состав древесины и коры. Древесина в основном состоит из органических веществ. Элементарный химический состав древесины всех пород практически одинаков. Органическая часть абсолютно сухой древесины (высушенной при 103оС) содержит в среднем 49-50 % углерода, 43-44 % кислорода, около 6 % водорода и 0,1-0,3 % азота.

Неорганическая часть может быть выделена в виде золы путем сжигания древесины. Количество золы в древесине около 0,2-1 %. В состав золы входят кальций, калий, натрий, магний, в меньших количествах фосфор, сера и другие элементы. Они образуют минеральные вещества, большая часть которых нерастворима в воде. Среди растворимых первое место занимают щелочные – поташ и сода, а из нерастворимых – соли кальция.

Химические элементы образуют сложные органические соединения. Главные из них – целлюлоза, лигнин, гемицеллюлоза, входящие в состав клеточных стенок древесины. Остальные вещества называются экстрактивными. Это смолы, дубильные и красящие вещества.

2. Физические свойства древесины

Физическими свойствами древесины называются такие, которые определяют без нарушения целостности испытываемого образца и изменения ее химического состава, т. е. выявляют путем осмотра, взвешивания, измерения, высушивания.

К физическим свойствам древесины относятся: внешний вид и запах, плотность, влажность и связанные с ней изменения – усушка, разбухание, растрескивание и коробление.

Внешний вид древесины определяется ее цветом, блеском, текстурой и макроструктурой.

Запах древесины зависит от находящихся в ней смол, эфирных масел, дубильных и других веществ. Характерный запах скипидара имеют хвойные породы – сосна, ель. Дуб имеет запах дубильных веществ, бакаут и палисандр – ванили. Приятно пахнет можжевельник, поэтому его ветви применяют при запаривании бочек. Большое значение имеет запах древесины при изготовлении тары. В свежесрубленном состоянии древесина имеет более сильный запах, чем после высыхания.

Влажность древесины. В растущем дереве вода необходима для его жизни и роста, в срубленной древесине наличие воды нежелательно, так как приводит к ряду отрицательных явлений.

Влажностью (абсолютной) древесины называется отношение массы воды к массе абсолютно сухой древесины, выраженное в процентах.

Усушка. Усушкой называется уменьшение линейных размеров и объема древесины при высыхании. Она начинается после полного удаления из древесины свободной влаги и с начала удаления связанной влаги, т. е. когда ее влажность снизится за предел насыщения клеточных стенок.

Разбухание – это свойство древесины обратное усушке и подчиняется тем же закономерностям. Разбуханием называется увеличение линейных размеров и объема древесины при повышении содержания связанной воды.

3 Механические свойства древесины

Механические свойства характеризуют способность древесины сопротивляться действию усилий. К механическим свойствам древесины относятся прочность и деформативность, а также некоторые эксплуатационные и технологические свойства.

Прочность – способность древесины сопротивляться разрушения под действием механических усилий; характеристикой ее является предел прочности – максимальное напряжение, которое выдерживает древесина без разрушения. Показатели пределов прочности устанавливают при испытании древесины на сжатие, растяжение, изгиб, сдвиг и редко при кручении.

Деформативностью называется изменение формы и размеров древесины под действием внешних сил.

Твердость – это свойство древесины сопротивляться внедрению тела определенной формы.

Ударная вязкость характеризует способность древесины поглощать работу при ударе без разрушения. Определяется при испытаниях на изгиб. Чем больше требуется затратить работы на разрушение образца, тем выше вязкость.

Износостойкость древесины – способность поверхностных слоев противостоять износу, т. е. разрушению в процессе трения.

Древесина используется для получения различных древесных материалов. К этим материалам относятся: круглые материалы, пиленые, строганные, лущеные, колотые лесоматериалы, измельченная древесина, композиционные древесные материалы. Все эти материалы широко используются в мебельной промышленности, судостроении, вагоностроении, машиностроении, электротехнике, строительстве, при изготовлении стандартных деревянных домов , в производстве автомобилей , пластмасс, линолеума, промышленных взрывчатых веществ, для упаковки продовольственных и промышленных товаров, для изготовления фибриловых плит и др., а также в других отраслях промышленности в качестве конструкционного, изоляционного и отделочного материала .

4. Чугун. Маркировка, свойства и применение серого чугуна.

К чугунам относятся сплавы железа с углеродом, содержащие более 2,14 %С (рис. 6).

Практическое применение находят чугуны с содержанием углерода до 4.0 – 4,5 %. При большем количестве углерода, механические свойства существенно ухудшаются.

Промышленные чугуны не являются двойными сплавами, а содержат кроме Fe и С, такие же примеси, как и углеродистые стали Мn, Si, S, P и др. Однако в чугунах этих примесей больше и их влияние иное, чем в сталях. Если весь имеющийся в чугуне углерод находится в химически связанном состоянии, в виде карбида железа (F3C - цементит), то такой чугун называется белым. Чугуны, в которых весь углерод или большая часть, находится в свободном состоянии в виде графитных включений той или иной формы, называются графитизированными.

Рис. 6. Структурная диаграмма состояния системы железо-цементит

В зависимости от формы графитных включений графитизированный чугун бывает серым, высокопрочным, ковким чугуны и с вермикулярным графитом.

Серые чугуны получают при меньшей скорости охлаждения отливок, чем белые. Они содержат 1 – 3 %Si – обладающего сильным графитизирующим действием.

Серый чугун хорошо обрабатывается режущим инструментом. Из него производят станины станков, блоки цилиндров, фундаментные рамы, цилиндровые втулки, поршни и т. д.

Механические свойства серого чугуна

Марка чугуна

Предел прочностипри растяжении, кгс/мм2, не менее

Предел прочностипри изгибе, кгс/мм2, не менее

Стрела прогиба, мм, при расстоянии между опорами, мм

Твердость по Бринеллю, НВ

Испытания не производятся

Графит в сером чугуне наблюдается в виде темных включении на светлом фоне нетравленного шлифа. По нетравленному шлифу оценивают форму и дисперсность графита, от которых в сильной степени зависят механические свойства серого чугуна.

Серые чугуны подразделяют по микроструктуре металлической основы в зависимости от полноты графитизации. Степень или полноту графитизации оценивают по количеству свободно выделившегося (несвязанного) углерода (рис. 7).

Полнота графитизации зависит от многих факторов, из которых главными являются скорость охлаждения и состав сплава. При быстром охлаждении кинетически более выгодно образование цементита, а не графита. Чем медленнее охлаждение, тем больше степень графитизации. Кремний действует в ту же сторону, что и замедление охлаждения, т. е. способствует графитизации, а марганец – карбидообразующий элемент – затрудняет графитизацию.

Рис. 7. Классификация чугунов по структуре металлической основы и в форме

графитовых включений

Если графитизация в твердом состоянии прошла полностью, то чугун содержит две структурные составляющие – графит и феррит. Если же эвтектоидный распад аустенита прошел в соответствии с метастабильной системой

эвтектоид (перлит), то структура чугуна состоит из графита и перлита. Такой сплав называют серым чугуном на перлитной основе. Также возможен промежуточный вариант, когда аустенит частично распадается по эвтектоидной реакции на феррит и графит, а частично с образованием перлита. В этом случае чугун содержит три структурные – графит, феррит и перлит. Такой сплав называют серым чугуном на феррито-перлитной основе.

Феррит и перлит в металлической основе чугуна имеют те же микроструктурные признаки, что и в сталях. Серые чугуны содержат повышенное количество фосфора, увеличивающего жидкотекучесть и дающего тройную эвтектику.

В металлической основе серого чугуна фосфидная эвтектика обнаруживается в виде светлых, хорошо очерченных участков.