Осветительные приборы

Как решить функцию f x. Функция

Как решить функцию f x. Функция

Материал, представленный в видеоуроке, является продолжением темы построения графиков функций путем различных преобразований. Мы рассмотрим, как строится график функции y= f (kx ), если известен график функции у= f (x ) . В данном случае k - любое действительное число, не равное нулю.

Вначале рассмотрим случай, когда k - положительное число. Для примера построим график функции у= f (3 x ) , если график функции у= f (х) у нас есть. На рисунке на оси координат изображен график у= f ), на котором есть точки с координатами А и В. Выбирая произвольные значения х и подставляя их в функцию у= f (3 x ), находят соответствующие значения функции у . Таким образом, получают точки графика функции у= f (3 x ) А 1 и В 1 , у которых ординаты такие же, как у точек А и В. То есть мы можем сказать, что из графика функции у= f (x ) путемсжатия с коэффициентом k к оси ординат можно получить график функции y= f (kx ) . Важно отметить, что точки пересечения с осью ординатпри сжатии остаются на прежнем месте.

В случае, когда k - отрицательное число, график функции y= f (kx ) преобразовывается из графика функции у= f (x ) путем растяжения от оси ординат с коэффициентом 1/ k .

1) вначале строится часть волны графика функции у = sin х (см. рисунок);

2) т.к. k = 2, выполняется сжатие графика функции у= sinx к оси ординат, коэффициент сжатия равен 2. Находим точку пересечения с осью x . Т.к. график функции у = sin х пересекает ось абсцисс в точке π, то график функции у = sin 2 х пересекает ось абсцисс в точке π/k = π/2.Аналогичным способом находятся все остальные точки графика функции у = sin 2x и по этим точкам строится весь график.

Рассмотрим 2-й пример - построение графика функции у = cos (x/2) .

1) строим часть волны графика функции у = cosх (см. рисунок);

2) т.к. k =1/2, выполняем растяжение графика функции у = sin х от оси ординат с коэффициентом ½.

Найдем точку пересечения графика с осью х . Т.к. график функции у = cos х пересекает ось абсцисс в точке π/2, то график функции у = cos (x/2) пересекает ось абсцисс в точке π. Таким же образом находим все остальные точки графика функции у = cos (x/2) , построим по этим точкам весь график.

Далее рассмотрим вариант построения графика функции y = f (kx ), где k - число отрицательное. Например, при k = -1 функция y = f (kx ) = f (- x ). На рисунке изображен график у= f (х), на котором есть точки с координатами А и В. Выбрав произвольные значения х и подставив их в функцию y = f (- x ), находим соответствующие значения функции у . Получим точки графика функции y = f (- x ) А 1 и В 1 , которые будут симметричны точкам А и В относительно оси ординат. То есть при использовании симметрии относительно оси ординат из графика функции у= f (kx ) получаем график функции y= f (- x ).

Переходим к построению графика функции y = f (kx ) при k<0 на примере функции у = 4 sin (- x/2).

1) построим часть волны графика у = sin х ;

2) т.к. k = 4, выполним растяжение полуволны графика относительно оси абсцисс, где коэффициент растяжения равен 4;

3) выполним симметричное преобразование относительно оси абсцисс;

4) произведем растяжение от оси ординат (коэффициент растяжения равен 2);

5) завершим построение всего графика.

В данном видеоуроке мы подробно рассмотрели, каким образом поэтапно можно построить график функции y= f (kx ) при разных значениях k .

ТЕКСТОВАЯ РАСШИФРОВКА:

Сегодня познакомимся с преобразованием, которое поможет научиться строить график функции у = f (kx)

(игрек равен эф от аргумента, который представляет произведение ка и икс), если известен график функции у = f (x) (игрек равно эф от икс), где ка - любое действительное число (кроме нуля)».

1) Рассмотрим случай, когда k - положительное число на конкретном примере, когда k = 3.То есть нужно построить график функции

у = f (3x) (игрек равен эф от трех икс), если известен график функции у = f (x). Пусть на графике функции у = f (x) есть точка А с координатами (6; 5) и В с координатами (-3; 2). Это значит, что f (6) = 5 и f (- 3) = 2 (эф от шести равно пяти и эф от минус трех равно двум). Проследим за перемещением этих точек при построении графика функции у = f (3x).

Возьмем произвольное значение х = 2, вычислим у, подставив значение х в график функции у = f (3x) , получим, что у = 5. (на экране: у = f (3x) = f (3∙2)= f (6) = 5.) То есть на графике функции у= f (3x) есть точка с А 1 координатами (2; 5). Если же х = - 1, то подставив значение х в график функции у = f (3x), получим значение у= 2.

(На экране: у = f (3x) = f (- 1∙ 3) = f (- 3) = 2.)

То есть на графике функции у= f (3x) есть точка с координатами В 1 (- 1; 2). Итак, на графике функции у = f (3x) есть точки с той же ординатой, что и на графике функции у = f (x), при этом абсцисса точки в два раза меньше по модулю.

То же будет справедливо и для других точек графика функции у = f (x), когда мы будем переходить к графику функции у = f (3x).

Обычно такое преобразование называют сжатием к оси у(игрек) с коэффициентом 3.

Следовательно, график функции у = f (kx) получается из графика функции у = f (x) с помощью сжатия к оси у(игрек) с коэффициентом k. Заметим, что при таком преобразовании на месте остается точка пересечения графика функции у = f (x) с осью ординат.

Если же k меньше единицы, то говорят не о сжатии с коэффициентом k, а о растяжении от оси у с коэффициентом (то есть, если k = , то говорят о растяжении с коэффициентом 4).

ПРИМЕР 1. Построить график функции у = sin 2x (игрек равен синусу двух икс).

Решение. Вначале построим полуволну графика у = sin x на промежутке от ноля до пи. Так как коэффициент равен двум, а значит k - положительное число больше единицы, значит осуществим сжатие графика функции у = sin x к оси ординат с коэффициентом 2. Найдем точку пересечения с осью ОХ. Если график функции у = sin x пересекает ось ОХ в точке π, то график функции у = sin 2x будет пересекать в точке (π: k =π: 2 =)(пи делим на ка равно пи деленное на два равно пи на два). Аналогичным способом найдем все остальные точки графика функции у = sin2 x. Так, точке графика функции у = sin x с координатами (;1) будет соответствовать точка графика функции у = sin 2x с координатами (;1). Таким образом получим одну полуволну графика функции у = sin 2x. Используя периодичность функции построим весь график.

ПРИМЕР 2. Построить график функции у = cos (игрек равен косинусу частного икс и двух).

Решение. Вначале построим полуволну графика у = cos x. Так как k - положительное число меньше е единицы, значит осуществим растяжение графика функции у = cos x от оси ординат с коэффициентом 2.

Найдем точку пересечения с осью ОХ. Если график функции у = cos x пересекает ось ОХ в точке, то график функции у = cos будет пересекать в точке π. (: k =π: = π). Аналогичным способом найдем все остальные точки графика функции у = cos. Таким образом получим одну полуволну искомого графика функции. Используя периодичность функции построим весь график.

Рассмотрим случай, когда k равно минус единице. То есть нужно построить график функции у = f (-x) (игрек равен эф от минус икс), если известен график функции у = f (x). Пусть на графике есть точка А с координатами (4; 5) и точка В (-5; 1). Это значит, что f (4) = 5 и f (- 5) = 1.

Так как при подстановке в формулу у = f (-x) вместо х = - 4 получим у = f (4) = 5, то на графике функции у = f (-x) есть точка с координатами А 1

(- 4 ; 5) (минус четыре, пять). Аналогично, графику функции у = f (-x) принадлежит точка В 1 (5; 1).То есть графику функции у = f (x) принадлежат точки А(4; 5) и В(-5; 1), а графику функции у = f (-x) принадлежат точки А 1 (- 4; 5) и В 1 (5; 1). Эти пары точек симметричны относительно оси ординат.

Следовательно, график функции у = f (-x) с помощью преобразования симметрии относительно оси ординат можно получить из график функции у = f (x).

3) И, наконец, рассмотрим случай, когда k - отрицательное число. Учитывая, что равенство f (kx) = f (- |k|x) (эф от произведения ка на икс равно эф от произведения минус модуля ка и икса) справедливое, то речь идет о построении графика функции у = f (- |k|x), который можно построить поэтапно:

1) построить график функции у = f (x);

2) построенный график подвергнуть сжатию или растяжению к оси ординат с коэффициентом |k| (модуль ка);

3) осуществить преобразование симметрии относительно оси у

(игрек) полученного во втором пункте графика.

ПРИМЕР 3. Построить график функции у = 4 sin (-) (игрек равно четыре, умноженное на синус частного минус икс на два).

Решение. Прежде всего вспомним, что sin(- t) = -sint(синус от минус тэ равно минус синусу тэ), значит, у = 4 sin (-) = - 4 sin (игрек равен минус четырем, умноженным на синус частного икс на два). Строить будем поэтапно:

1) Построим одну полуволну графика функции у= sinх.

2) Осуществим растяжение построенного графика от оси абсцисс с коэффициентом 4 и получим одну полуволну графика функции

у= 4sinх(игрек равно четыре, умноженное на синус икс).

3) К построенной полуволне графика функции у= 4sinх применим преобразование симметрии относительно оси х(икс) и получим полуволну графика функции у= - 4sinх.

4) Для полуволны графика функции у= - 4sinх осуществим растяжение от оси ординат с коэффициентом 2; получим полуволну графика функции - 4 sin .

5) С помощью полученной полуволны построим весь график.

ФУНКЦИЯ - F(X) y=f(x).

Что такое функция f(х)?
Как бывший школьный учитель математики напоминаю тем, кто забыл.
Y – функция, Х-аргумент, f- закон, по которому находим Y.
Пример:
Поезд идет со средней скоростью 30 км. в час. Два часа в пути – 60 км прошел. 4 часа в пути – 120 км. и т.д. Чем больше времени поезд в пути, тем большее расстояние он проходит. Х и Y –переменные величины, и функция y =f(x) ,где Y – расстояние, a X – время в пути, и есть необходимый закон.
Вспомнили? Я тоже вспомнил, нo другое.
По окончании физмата Хабаровского пединститута меня направили на работу в Биробиджан, в школу номер 6, которая располагалась в поселке Сопка, за рекой, где стоял военный гарнизон, довольно многочисленный, со своим госпиталем, Домом офицеров, мастерскими по ремонту танков, деревянными двухэтажными домами, где жили семьи военослужащих.
Школа имела два здания: большое, кирпичное, двухэтажное, и маленькое, деревянное, одноэтажное, где располагались классы начальной школы – с 1-го по 4-й. В ней меня и поселили. В маленьком угловом классе я жил с бабушкой, которая поехала со мной, зная мою житейскую неприспособленность. Она мне варила, стирала, сидела рядом, когда я проверял тетради, защищала от работников местного КЭЧ, которые сильно хотели забрать наши две кровати, числящиеся у них на учете.
Зарплата была минимальная для учителя. 18 рабочих часов в неделю, три 5-х класса, самый трудный для учителя возраст. Денег нехватало даже на еду, и бабушка отказалась от мяса, ела картошку, так как считала, что мясо стоит слишком дорого. Хорошо, что не нужно было платить за свет, печное отопление и канализацию, которой не было. Кроме того, в классе, в котором я был классным руководителем, учились дети высокопоставленных офицеров гарнизона: сын командира части полковника Андронова, сын начальника госпиталя подполковника мед, службы Заровняева, дочь начмеда Жекова, дети врачей госпиталя и офицеров. Контроль за моей деятельностью, как воспитателя, был постоянный. Надо сказать, что дети этих высоких чинов были исключительно дисциплинированными, все они учились только на отлично, с ними было приятно работать. Мне был 21 год, я играл с ними в баскетбол, футбол, но, к сожалению, это не прибавляло денег в мой кошелек. К тому же, в классе учились и другие дети, которые резко отличались по уровню развития от детей военных.
Но мне, случайно, улыбнулась удача. Моя коллега сообщила мне, что требуется, временно, преподаватель математики в «Школу паровозных машинистов», которая существовала в то время в Биробиджане.
Это был хороший приработок. Меня приняли преподавателем по совместительству.
Известно, что на тепловозную тягу Дальний Восток перешел последним на Транссибе.
Студентами «Школы" были мужики, все старше меня: демобилизованные солдаты, бывшие заключенные, которых на Дальнем Востоке всегда было много, бывшие деревенские жители, часто малограмотные, хотя принимали в школу только закончивших семилетку. Школа давала им шанс хорошего заработка, и они «грызли гранит науки» очень добросовестно, хотя многим было трудно.

Однажды, когда я проверял тетради, бабушка привела посетителя, который искал в здании средней школы «Владимира Давидовича». Оказалось – курсант «Школы» по имени Вася Дорошенко, бывший деревенский житель из пригородного совхоза. Поставил на стол чемоданчик, открыл. Там – бутылка водки с закуской: деревенская колбаса, копченое мясо, деревенский хлеб. Я – опешил.
Васю я приметил давно, Он ничего не понимал из моих обьяснений, от опросов уклонялся, контрольные списывал.
-Что тебя привело ко мне?
-Владимир Давидович, я все понимаю, что Вы обьясняете, но функция F(X) ! Что это?
Мы с бабушкой еле-еле заставили Васю сложить все принесенное обратно в чемодан, я отставил в сторону тетради, и мы начали занятия. К своему ужасу, я обнаружил, что Вася не знает таблицы умножения. Дла меня это был шок. Теперь, с высоты своих лет и опыта я понимаю всю нищету моих тогдашних понятий. В дальнейшей своей жизни мне встретились и директор музыкальной школы, который всегда ходил с карандашом, на котором была таблица умножения, и жена моего друга, русского писателя Эдуарда П…… Наталия К........., - бывший преподаватель МАИ - профессор математики, которая сама мне сказала, что таблицу не знает до сих пор.
Но тогда, в далекой молодости, мне это казалось невероятным, отбивало охоту что-то обьяснять. Я сосредоточился на функции
F(x). Долго обьяснял, приводил примеры, что-то получилось. Вася встал удовлетворенный. Опять открыл чемодан, предложил выпить и закусить. Для меня выпивка - острый нож в сердце. Душа не приемлет, возможно, на генетическом уровне, хотя мой отец вернулся с фронта с большим пристрастием к водке.
Ах, водка! Сколько раз мне пришлось ее выливать незаметно, заменять, отдавать, когда участвовал в застольях, как гармонист, затем, баянист! Ведь на Руси всегда первый стакан – гармонисту!
Наконец, мы убедили Васю снова собрать все в чемоданчик. Он сказал, что идет в туалет и больше не вернулся. Чемоданчик остался на столе.
Я боялся, что его примеру последуют и другие курсанты, имеющие с математикой проблемы, но обошлось. Очевидно, сработал слух, что я не пью.
Вася «Школу» закончил. Я уже там в это время не работал, вернулась прежняя преподавательница, которая была в декрете. Скоро «Школу» закрыли. Дорога переходила на тепловозную тягу, значит снова Васе учиться. Мне, наконец, дали две небольшие комнаты в «коммуналке» и мои родители, жившие в городке Пограничный, возле Уссурийска, все бросили и приехали ко мне.
А Вася? Думаю, что стал достойным железнодорожником и без функции Y = F(X).
А эта функция, как маленький золотой ключик, открывает потайную дверь в ту область знаний, которая приучает человека мыслить отвлеченно, абстрактно и которая на всех великих языках называется почти одинаково – МАТЕМАТИКА.
P.S.
|Эти дети, у которых я был классным руководителем в 5,6,7,8 классах, были моими первыми учениками в моей учительской карьере, я их запомнил навсегда. Они – на 10 лет младше меня, сегодня им – по 68. Некоторые из них стали очень известными людьми в России и Израиле.

Рецензии

Здравствуйте, Владимир! С удовольствием и интересом прочитал Ваш рассказ. Должен сказать, что к старости пропадает желание читать выдуманные истории, даже если написано хорошим языком и, с художественной точки зрения, правдиво. Не знаю, хорошо это или плохо. ...А математику я люблю. Как и Вы. С уважением, Юрий.

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Определение. Пусть функция \(y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \(x_0 \). Дадим аргументу приращение \(\Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \(\Delta y \) (при переходе от точки \(x_0 \) к точке \(x_0 + \Delta x \)) и составим отношение \(\frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \(\Delta x \rightarrow 0 \), то указанный предел называют производной функции \(y=f(x) \) в точке \(x_0 \) и обозначают \(f"(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x_0) $$

Для обозначения производной часто используют символ y". Отметим, что y" = f(x) - это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x) .

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\(k = f"(a) \)

Поскольку \(k = tg(a) \), то верно равенство \(f"(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \(y = f(x) \) имеет производную в конкретной точке \(x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x) $$
Это означает, что около точки х выполняется приближенное равенство \(\frac{\Delta y}{\Delta x} \approx f"(x) \), т.е. \(\Delta y \approx f"(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \(y = x^2 \) справедливо приближенное равенство \(\Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \(x \), найти \(f(x) \)
2. Дать аргументу \(x \) приращение \(\Delta x \), перейти в новую точку \(x+ \Delta x \), найти \(f(x+ \Delta x) \)
3. Найти приращение функции: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \(\frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f"(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \(\Delta y \approx f"(x) \cdot \Delta x \). Если в этом равенстве \(\Delta x \) устремить к нулю, то и \(\Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке .

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \(y=\sqrt{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \(f"(0) \)

Итак, мы познакомились с новым свойством функции - дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием . При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C - постоянное число и f=f(x), g=g(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования :

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ (Cf)"=Cf" $$ $$ \left(\frac{f}{g} \right) " = \frac{f"g-fg"}{g^2} $$ $$ \left(\frac{C}{g} \right) " = -\frac{Cg"}{g^2} $$ Производная сложной функции:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблица производных некоторых функций

$$ \left(\frac{1}{x} \right) " = -\frac{1}{x^2} $$ $$ (\sqrt{x}) " = \frac{1}{2\sqrt{x}} $$ $$ \left(x^a \right) " = a x^{a-1} $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac{1}{x} $$ $$ (\log_a x)" = \frac{1}{x\ln a} $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text{tg} x)" = \frac{1}{\cos^2 x} $$ $$ (\text{ctg} x)" = -\frac{1}{\sin^2 x} $$ $$ (\arcsin x)" = \frac{1}{\sqrt{1-x^2}} $$ $$ (\arccos x)" = \frac{-1}{\sqrt{1-x^2}} $$ $$ (\text{arctg} x)" = \frac{1}{1+x^2} $$ $$ (\text{arcctg} x)" = \frac{-1}{1+x^2} $$