Осветительные приборы

DIY: Реалистичная робот-рыба из пвх трубы под Arduino. Пошаговая инструкция по созданию

  DIY: Реалистичная робот-рыба из пвх трубы под Arduino. Пошаговая инструкция по созданию

​Данный робот-рыба изготовлен из ПВХ водопроводной трубы и представляет собой механизм с использованием водонепроницаемых сервоприводов и контроллера на базе Arduino Рro mini.
Стоит отметить, что несмотря на свой примитивизм, робот способен стать полезным инструментом для изучения подводных экосистем. Он может быть оснащен различными датчиками, такими как сенсоры рН, датчик глубины воды, сонар, камеры и так далее, чтобы определять качество воды и экосистемы в ней. Главное, что робот не будет пугать живых рыб и других животных водного мира.

Видеопрезентация

Шаг 1. Необходимые материалы и инструменты

1. 3 дюймовая пвх труба (можно использовать и меньше диаметр)

2. 5 водонепроницаемых серводвигателей

3. плата Arduino Pro mini

4. ИК пульт (подойдет от телевизора или музыкального центра)

5. ИК приемник t-sop (1 - VCC, 2 – данные, 3 - ИК приемник)

6. защита питания Ubec

7. 2 lipo батареи 1000mAh

8. шприцы на 50 мл

9. 14 небольших пружин (можно взять из шариковых ручек)

10. использованный флакончик из-под духов

11. водонепроницаемая бумага для ткани

12. суперклей

Шаг 2. Голова

Сначала нужно подготовить материалы, которые вы будете использовать для создания головы робота-рыбы. Основным материалом является плоская водопроводная пвх труба. Как развернуть и сделать плоской трубу, вы можете увидеть здесь:

Распечатайте шаблон и убедитесь, что размер объекта является правильным. Приложите шаблон к каждой стороне рисунка, как на фото для изгиба трубки. Для соединения каждой части используйте суперклей (будьте осторожны в этом процессе). Для покрытия жабр используйте небольшой шарнир таким образом, чтобы он мог перемещаться, когда оболочка открывается. Сделайте отверстие на губе и голове робота-рыбы. Соедините части с помощью винтов. В конце сделайте отверстие для винта на верхней части головы, чтобы соединить её с телом.

Шаг 3. Тело

Разрежьте водопроводную трубу вдоль на 10см. Сделайте ей форму, как показано на фото, чтобы можно было использовать воздуходувку для нагрева трубы. Чтобы сформировать пазы, отрежьте трубу с левой и правой стороны, как показано на фото. Далее порежьте часть на полосы и вставьте их в тело.

Шаг 4. Хвостовая часть

Хвост рыбы очень важен, потому что он является основной движущей силой. Распечатайте шаблон, представленный ниже, чтобы правильно соответствовать всем деталям. Нужно сделать 8 частей хвоста, состоящего из костей, начиная с наибольшей.

На приложенных фото показано, как создать формы и полосы из пвх. С помощью суперклея прикрепите небольшую пластину, а затем через резьбовые отверстия скрепить все части. Если все кости уже сформированы, пришло время объединить все части с помощью соединительной пластины от наименьшей кости или кончика хвоста. Используйте маленький, но длинный винт, чтобы прикрепить сервопривод, а также подготовьте небольшую пружину. Установите её на стороне кости слева и справа, так чтобы хвост оставался в прямом положении.


Шаг 5. Часть грудных и хвостовых плавников

Так же, как в предыдущем шаге распечатайте шаблоны и сделайте макет на пласте ПВХ. Для каждого плавника нужно обеспечить также пластмассовую вставку между 2-х слоев уже сформированных частей с использованием суперклея. Присоедините также пластиковую вставку у основания плавников, чтобы соединить их с телом робота.

Шаг 6. Балласт

Эта часть немного сложнее. Вам нужны электронные компоненты, а также шприцы. Вытяните внутренний стержень от шприца и используйте только внешнюю часть. Подключите небольшой двигатель постоянного тока к шестерни, которая проведена к стержню.

Проверьте двигатель постоянного тока с блоком батареи, а затем прикрепите также флакончик из-под духов для уплотнения воздуха. Убедитесь, что оболочка хорошо герметизирована. Чтобы более подробно понять принцип, следуйте по изображениям:

Шаг 7. Защитная коробка

Эта коробка герметична для электронной системы. Для того, чтобы сделать её, вам нужен шаблон, выполненный на основе корпуса робота-рыбы, который будет помещен в его тело. Прежде чем сделать шаблон, должны быть установлены все компоненты в корпусе робота, в частности серводвигатели для плавников и балласта.

Используйте бумагу, чтобы сделать шаблон, и вырежьте по нему пласты из пвх размером примерно 7 см х 5 см. Сверните их под углом 100 градусов, чтобы использовать воздуходувку для нагрева. Соедините части сначала суперклеем. Следуйте по изображениям, чтобы сформировать коробку, соответствующую корпусу робота-рыбы.

Чтобы покрыть часть спины, можно установить специальную резиновую накладку, чтобы вода не попадала вовнутрь.

Шаг 8. Сборка

Итак, после того, как все части сделаны, нужно собрать все это вместе. На передней части защитной коробки нужно сделать отверстия для электропроводки. Установите датчики и протяните провода серводвигателей, положите коробку, так чтобы не было никакого зазора для поступающей воды. Не забудьте установить T-sop (ИК-приемник в глаза робота-рыбы).

Далее прикрепите плавники, а также установите водонепроницаемый сервопривод. Вы можете использовать термоклей для того, чтобы прикрепить сервопривод, балласт и защитную коробку в тело робота, пару грудных плавников с помощью небольшого стержня одинакового размера с отверстием сервоприводов и хвостовые плавники. Прикрепите хвост рыбы, как показано на фото, и соедините голову с телом с помощью армированного провода, подготовленного раньше.

Шаг 9. Кожа робо-рыбы (по желанию)

Вы можете сделать вашего робота максимально похожим на живую рыбу, добавив ему кожу. Чтобы сделать это, вам понадобиться тонкая марля, а также водонепроницаемая бумага, которая специально продается для одежды. Скачайте текстуру кожи рыбы, распечатайте и вставьте её на марлю с помощью утюга. Оберните полученную кожу вокруг тела рыбы и закрепите с помощью стежек.



Шаг 10. Код для Arduino с библиотекой

На данный момент робот управляется с ИК-пульта. Здесь требуется загрузка программы FTDI для Arduino Pro mini.

Чтобы иметь возможность использовать ИК-приемник на Arduino, вам нужна IR-библиотека. Скачайте Arduino-IRremote-master.rar и поместите в Arduino libllary с / ProgramFiles / Arduino / liblaries. Прежде чем скачать IR_receiver и загрузить программу, установите ИК-приемник, расположив правильно все контакты. Подключите FTDI к pro mini и к компьютеру. Загрузите IR_receiver, если все готово, откройте последовательный код и попытаетесь нажать любую кнопку, если на мониторе появляются числовые значения, то ИК уже работает.

Откройте ir_command_codes.h и измените значение для команды значением, которое вы получаете от каждой нажатой клавиши. Нажмите цифровые клавиши для правильного порядка значений, чтобы загрузить другие команды.

Наконец, загрузите исходный код Ir_robofish sourcode в Rar файл для тестового испытания.

Файлы

Многие, кто из нас сталкивался с вычислительной техникой, мечтали собрать своего робота. Чтобы это устройство выполняло какие-то обязанности по дому, к примеру, приносило пиво. Все сразу берутся за создание наисложнейшего робота, однако зачастую быстро обламываются в результатах. Своего первого робота, который должен был делать умищу фишек, мы так и не довели до ума. Поэтому нужно начинать с простого, постепенно усложняя своего зверя. Сейчас мы поведаем тебе, как можно создать простейшего робота своими руками, который будет самостоятельно передвигаться по твоей квартире.

Концепция

Мы поставили перед собой простую задачу, сделать не сложного робота. Забегая вперёд, скажу, что обошлись мы конечно не пятнадцатью минутами, а значительно более длинным сроком. Но всё же это можно сделать за один вечер.

Обычно подобные поделки делаются годами. Народ бегает по магазинам в поисках нужной шестерёнки по нескольку месяцев. Но мы сразу осознали – это не наш путь! Посему мы будем использовать в конструкции такие детали, которые можно легко найти под рукой, или выкорчевать из старой техники. В крайнем случае, купить за гроши в любом радио магазине или на рынке.

Другая идея была в том, чтобы максимально удешевить нашу поделку. Подобный робот стоит в радиоэлектронных магазинах стоит от 800 до 1500 рублей! При чём он продаётся в виде деталей, а его ещё придётся собирать, и не факт что после этого он ещё и заработает. Производители таких наборов часто забывают положить какую-нибудь детальку и всё – робот потерян вместе с деньгами! Зачем нам такое счастье? Наш робот должен по деталям быть не дороже 100-150 рублей, включая двигатели и батарейки. При этом, если моторчики выковырять из старой детской машинки, то цена его станет вообще около 20-30 рублей! Чувствуешь, какая экономия, при этом получаешь отличного товарища.

Следующая часть была в том, что будет делать наш красавец. Мы решили изготовить робота, который будет искать источники света. Если источник света будет поворачиваться, то наша машинка будет рулить вслед за ним. Такая концепция называется “робот стремящийся жить”. Можно у него будет заменить батарейки на солнечные элементы и тогда он будет искать свет, чтобы ездить.

Необходимые детали и инструмент

Что же нам понадобится для изготовления нашего чада? Поскольку концепция из подручных средств, то нам понадобится монтажная плата, или даже обычная плотная картонка. В картонке можно шилом проделать дырочки для крепления всех деталей. Мы же будем использовать монтажку, ибо она оказалась под рукой, а картонку в моём доме днём с огнём не сыщешь. Это будет шасси, на которое мы будем монтировать весь остальной обвяз робота, крепить двигатели и датчики. В качестве движущий силы, мы будем использовать трёх или пятивольтовые моторчики, которые можно выковырять из старой машинки. Колёсики мы сделаем из крышек от пластиковых бутылок, например от Coca-Cola.

В качестве датчиков используются трёхвольтовые фототранзисторы или фотодиоды. Их можно выковырять даже из старой оптомеханической мышки. В ней стоят инфракрасные датчики (в нашем случае они были чёрненькие). Там они спарены, то есть два фотоэлемента в одном флаконе. С тестером ничего не мешает выяснить, какая ножка для чего предназначена. Управляющим элементом у нас будут выступать отечественные транзисторы 816Г. В качестве источников питания заюзаем три пальчиковых батарейки спаянные между собой. Либо можно взять батарейный отсек от старой машинки, как сделали мы. Для монтажа нужны будут проводочки. Для этих целей идеально подходят провода из витой пары, которой в доме любого уважающего себя хакера должно быть завались. Для закрепления всех деталей удобно использовать термоклей с термопистолетом. Это прекрасное изобретение быстро плавиться и так же быстро схватывается, что позволяет с ним быстро работать и монтировать простенькие элементы. Штука идеальна для таких поделок и я не раз использовал его в своих статьях. Ещё нам понадобится жёсткая проволока, за неё вполне сойдёт обычная канцелярская скрепка.

Монтируем схему

Итак, мы достали все детали и сложили их на своём столе. Паяльник уже тлеет канифолью и ты потираешь руки, жаждя сборки, ну что же – тогда приступим. Берём кусок монтажки и обрезаем его по размерам будущего робота. Для резки текстолита используем ножницы по металлу. Мы сделали квадрат со стороной примерно 4-5 см. Главное, чтобы на нём уместилась наша мизерная схемка, батарейки питания два двигателя и крепёж для переднего колеса. Чтобы плата не лохматилась и была ровной можно её обработать напильником, и ещё убрать острые края. Следующим нашим шагом будет запайка датчиков. Фототранзисторы, и фотодиоды имеют плюс и минус, иначе говоря анод и катод. Нужно соблюдать полярность их включения, что несложно определить простейшим тестером. В случае, если вы ошибётесь – ничего не сгорит, но робот ездить не будет. Датчики впаиваются по углам монтажной платы с одной стороны, чтобы они смотрели в стороны. Запаивать их надо не полностью в плату, а оставить где-то полтора сантиметра выводов, чтобы можно было их легко изгибать в любую сторону – это в дальнейшем нам это понадобится при настройке нашего робота. Это будут наши глаза, они должны находиться на одной стороне нашего шасси, которая в будущем будет передом робота. Сразу можно отметить, что мы собираем две управляющие схемы: одна для управления правым, и вторая левым двигателями.

Чуть поодаль переднего края шасси, рядом с нашими датчиками, нужно впаять транзисторы. Для удобства запайки и сборки дальнейшей схемы, оба транзистора мы запаяли «смотрящими» своей маркировкой в сторону правого колеса. Сразу надо отметить расположение ножек у транзистора. Если транзистор взять в руки, и повернуть металлической подложкой к себе, а маркировкой к лесу (как в сказке), а ножки будут направлены вниз, то слева на право ножки будут соответственно: база, коллектор и эмиттер. Если посмотреть на схему, где изображён наш транзистор, то база будет палочка перпендикулярная толстому отрезку в кружке, эмиттер палочка со стрелочкой, коллектор такая же палочка, только без стрелки. Здесь вроде всё понятно. Подготовим батарейки и приступим к непосредственной сборке электрической схемы. Изначально мы просто взяли три пальчиковых батарейки и спаяли их последовательно. Можно их сразу вставить в специальный держатель для батареек, который, как мы уже говорили, вытаскивается из старой детской машинки. Теперь подпаиваем провода к батарейкам и определим у себя на плате две ключевые точки, куда будут сходиться все провода. Это будет плюс и минус. Мы сделали просто – продели витую пару в края платы, запаяли концы к транзисторам и фотодатчикам, сделали скрученную петельку и туда подпаяли батарейки. Возможно не самый лучший вариант, но зато самый удобный. Ну что же, теперь готовим провода, и приступаем к сборке электрики. Будем идти от положительного полюса батарейки к отрицательному контакту, по всей электрической схеме. Берём кусок витой пары, и начинаем идти – припаиваем положительный контакт обоих фотодатчиков к плюсу батареек, в то же место запаиваем эмиттеры транзисторов. Вторую ножку фотоэлемента припаиваем небольшим куском провода к базе транзистора. Оставшиеся, последние ножки транзюка припаиваем соответственно к двигателям. Второй контакт моторчиков можно через выключатель подпаять к батарейке.

Но как истинные джедаи, мы решили включать нашего робота подпаиванием и отпаиванием провода, так как выключателя подходящего размера в моих закромах не обнаружилось.

Отладка электрики

Всё, электрическую часть мы собрали, теперь приступим к тестированию схемы. Включаем нашу схему, и подносим её к зажженной настольной лампе. По очереди, поворачивая то одним, то другим фотоэлементом. И смотрим что происходит. Если у нас двигатели начинают по очереди вращаться с разной скоростью, в зависимости от освещения, то значит всё в порядке. Если нет, то ищи косяки в сборке. Электроника – наука о контактах, а это значит, что если что-то не работает, то где-то нет контакта. Важный момент: правый фотодатчик отвечает за левое колесо, и левый соответственно за правое. Теперь, прикидываем, в какую сторону вращается правый и левый двигатель. Они должны оба крутиться вперёд. Если этого не происходит, то надо поменять полярность включения двигателя, который крутиться не в ту сторону, просто перепаяв провода на клеммах моторчика наоборот. Оцениваем ещё раз расположение моторчиков на шасси и проверяем направление движения в сторону, где установлены наши датчики. Если всё в порядке, то поедем дальше. В любом случае, это можно исправить, даже после того, как всё собрано окончательно.

Сборка девайса

С муторной электрической частью мы разобрались, теперь приступим к механике. Колёсики мы будем изготавливать из крышек, от пластиковых бутылок. Для изготовления переднего колеса, возьмём две крышки, и склеим их между собой.

Мы склеивали по периметру полой частью во внутрь, для большей устойчивости колеса. Дальше, точно по центру крышки просверливаем отверстие в первой и второй крышке. Для сверления и всяких домашних поделок очень удобно пользоваться дремелем, – этакая маленькая дрель с уймищей насадок, фрезеровальных, отрезных и многих других. Ей очень удобно пользоваться для сверления отверстий меньше одного миллиметра, где уже обычная дрель не справляется.

После того как мы просверлим крышки, вдеваем в отверстие предварительно разогнутую скрепку.

Изгибаем скрепку в форме буквы «П», где на верхней планке нашей буковки болтается колесо.

Теперь закрепляем эту скрепку межу фотодатчиками, спереди нашей машины. Скрепка удобна тем, что можно легко подрегулировать высоту переднего колеса, и этой юстировкой мы займёмся позже.

Перейдём к движущим колёсам. Их тоже будем делать из крышек. Аналогично – просверливаем каждое колесо строго по центру. Лучше всего чтобы сверло было размером с ось моторчика, а идеально - на доли миллиметра меньше, чтобы ось туда вставлялась, но с трудом. Одеваем оба колеса на вал движков, и чтобы они не соскакивали, закрепляем их термоклеем.

Это важно сделать не только для того, чтобы колёса не слетали при движении, и ещё и не проворачивались в месте крепежа.

Самая ответственная часть – крепёж электродвигателей. Мы их ставили в самом конце нашего шасси, с противоположной стороны монтажной платы, относительно всей остальной электроники. Надо помнить, что управляемый двигатель ставится с напротив своей управляющей фотосистемы. Это сделано для того, чтобы робот мог поворачивать на свет. Справа фотодатчик, слева двигатель и наоборот. Для начала мы их перехватим движки кусочками витой пары, продетыми сквозь отверстия в монтажке и скрученными сверху.

Подаём питание, и смотрим куда у нас вращаются движки. В тёмной комнате двигатели вращаться они не будут, желательно направить на лампу. Проверяем - все ли двигатели работают. Поворачиваем робот, и следим, как двигатели изменяют свою скорость вращения в зависимости от освещения. Повернём правым фотодатчиком, и левый движок должен шустренько закрутиться, а другой – наоборот притормозится. Напоследок, проверяем направление вращения колёс, чтобы робот ехал вперёд. Если всё работает, как мы описали, то можно аккуратно закреплять движки термоклеем.

Стараемся сделать так, чтобы их колёса находились на одной оси. Всё – закрепляем батарейки на верхней площадке шасси и переходим к настройке и играм с роботом.

Подводные камни и настройка

Первый подводный камень в нашей поделке был неожиданным. Когда мы собрали всю схему и техническую часть, все двигатели прекрасно реагировали на свет, и вроде всё шло отлично. Но когда мы поставили нашего робота на пол – он у нас не поехал. Оказалось, что мощности моторчиков попросту не хватает. Пришлось в срочном порядке раскурочивать детскую машинку, чтобы достать от туда движки помощнее. Кстати, если брать моторчики из игрушек – точно не прогадаешь с его мощностью, так как они рассчитаны на то, чтобы возить массу машинки с батарейками. Когда мы разобрались с двигателями, то перешли к настройке и приводу косметического вида. Для начала нужно собрать бороды проводов, которые у нас волочатся по полу, и укрепить их на шасси термоклеем.

Если робот волочится где-то пузом, то можно приподнять переднее шасси, изогнув крепящую проволоку. Самое главное фотодатчики. Лучше всего их выгнуть смотрящими в сторону под тридцать градусов от основного курса. Тогда он будет улавливать источники света, и направляться к ним. Нужный угол изгиба придётся подобрать экспериментально. Всё, вооружаемся настольной лампой, кладём робота на пол, включаем и начинай проверять и радоваться тому, как твоё чадо чётко следует источнику света, и как он ловко его находит.

Усовершенствования

Нет предела совершенству и в нашего робота можно добавлять функций до бесконечности. Были мысли даже поставить контроллер, но тогда стоимость и сложность изготовления возросли бы в разы, а это не наш метод.

Первое усовершенствование – сделать робота, который бы ездил по заданной траектории. Здесь всё просто, берётся и на принтере печатается чёрная полоса, или аналогично рисуется чёрным перманентным маркером на листе ватмана. Главное, чтобы полоса была немного уже ширины запаянных фотодатчиков. Сами фотоэлементы мы опускаем вниз, чтобы они смотрели на пол. Рядом с каждым нашим глазиком устанавливаем сверхяркий светодиод последовательно с сопротивлением в 470 Ом. Сам светодиод с сопротивлением запаиваем напрямую к батарейке. Идея проста, от белого листа бумаги свет прекрасно отражается, попадает на наш датчик и робот едет прямо. Как только луч попадает на тёмную полосу, то на фотоэлемент почти не попадает света (чёрная бумага прекрасно поглощает свет), и следовательно один двигатель начинает вращаться медленнее. Другой моторчик резво поворачивает робота, выравнивая курс. В результате робот катается по чёрной полоске, словно по рельсам. Можно такую полосу начертить на белом полу и робота посылать на кухню за пивом от твоего компутера.

Вторая идея – это усложнить схему, добавив ещё два транзистора и два фотодатчика и сделать так, чтобы робот искал свет не только спереди, но и со всех сторон, и как только находил – устремлялся к нему. Всё только будет зависеть с какой стороны появится источник света: если спереди, то поедет вперёд, а коли сзади, то покатится назад. Можно даже в этом случае для упрощения сборки, использовать микросхему LM293D, однако она стоит порядка ста рублей. Но с помощью неё можно легко настроить дифференциальное включение направления вращения колёс или, проще говоря, направление движения робота: вперёд-назад.

Последнее, что можно сделать – вообще убрать постоянно садящиеся батарейки и поставить солнечную батарею, которую можно сейчас купить в магазине аксессуаров к мобильным телефонам (или на диалэкстриме). Чтобы исключить полной потери дееспособности робота в этом режиме, если он случайно заедет в тень, можно подключить параллельно солнечной батареи – электролитический конденсатор очень большой ёмкости (тысячи микрофарад). Поскольку напряжение у нас там не превышает пяти вольт, то конденсатор можно взять рассчитанным на 6,3 вольта. Такой ёмкости и такого напряжения он будет достаточно миниатюрен. Кондёры можно либо купить, или выкорчевать из старых блоков питания.
Остальные возможные вариации, мы думаем, можно придумаешь самому. Если будет что-то интересное – обязательно напишите.

Выводы

Вот мы и приобщились к величайшей науке, движителю прогресса – кибернетике. В семидесятые годы прошлого века было очень популярно конструировать подобных роботов. Надо отметить, что в нашем создании применяются зачатки аналоговой вычислительной техники, которая отмерла с появлением цифровых технологий. Но как я показал в этой статье – не всё потерянно. Надеюсь, мы не остановимся на конструировании такого простого робота, а будем придумывать новые и новые конструкции, и удивишь нас своими интересными поделками. Удачи в сборке!

Авг 27, 2017 Геннадий

Робототехника подводных устройств развивается по многим направлениям. Большинство подводных роботов создаются для проведения спасательных операций и исследований. В будущем подводные роботы будут помогать осваивать океан для организации рыбной ловли, в фармацевтике, поиске полезных ископаемых и источников энергии.

Подводные роботы могут использоваться также в качестве моделей тестирования роботов, предназначенных для космических исследований. Роботы с нулевой плавучестью являются в определенном смысле невесомыми. В подобных роботах ракетные двигатели моделируются двигателями с гребными винтами. Подводные испытания позволяют имитировать отсутствие трения, наблюдаемое в космическом пространстве. Если вы хотите создать робота, работающего в условиях космоса, то хорошие предварительные результаты можно получить с помощью модели подводного робота. Организация НАСА начала развитие технологий дистанционно управляемых устройств с использованием систем телеслежения (TROV) (см. рис. 13.1) и автономных подводных устройств (AUV). В устройствах TROV в качестве систем дистанционного управления используются системы виртуальной реальности. Технологии телеслежения играют еще более важную роль в исследованиях окружающего пространства и вредном для человека окружении. В будущем технологии телеслежения будут развиваться как в этих направлениях, так и осваивать новые, например индустрию развлечений.

Рис. 13.1 Аппарат TROV NASA. Фотография НАСА.

Дельфины и тунцы

Были предприняты интересные исследования принципов плавания и плавательных движений рыб. Общеизвестно, что подводные обитатели могут передвигаться и плыть более эффективно и экономично, чем гребной винт может двигать судно. Хотите легко доказать это самим себе? Вы когда-нибудь постукивали по стеклу аквариума, в котором плавают рыбы? Внезапный шум заставляет рыб метаться по аквариуму настолько быстро, что ваши глаза не способны уследить за их перемещениями. Представьте, что вы можете создать корабль, способный перемещаться с подобной быстротой и внезапностью. Поэтому неудивительно, что правительство США финансирует некоторые из этих исследований.

Насколько эффективнее плывет рыба по сравнению с нашими современными способами передвижения по воде? Давайте проведем краткий анализ. В 1936 году британский зоолог Джеймс Грей исследовал дельфинов. Его целью было подсчитать мощность, развиваемую дельфином, чтобы перемещаться со скоростью 20 узлов – скоростью, которую обычно наблюдают у дельфинов. Модель Грея была очень жесткой в предположении, что сопротивление воды для движущегося дельфина остается одинаковым для жесткой и гибкой моделей. Это оказалось неверным, но даже с учетом необходимой поправки, результаты Грея оказались очень любопытными. Оказалось, что его дельфин оказался в 7 раз слабее, чем это необходимо для достижения скорости в 20 узлов. Используя дедукцию, можно предположить, что дельфин каким-то образом способен в 7 раз уменьшить сопротивление воды. Но до настоящего времени точного ответа нет.

За последние 60 лет никто не смог окончательно подтвердить или опровергнуть вычисления Грея. Любой плавающий механизм, имитирующий движения рыбы, оказывается значительно менее эффективным. В последнее время предпринимаются новые исследования для изучения способа плавания рыб. С использованием новых компьютерных технологий ученые надеются получить ответ на этот давно волнующий вопрос.

В последние несколько лет ученые Массачусетского технологического института исследовали голубого тунца. Они создали модель робота-рыбы длиной 120 см, которая плавает в специальном бассейне для проверки ходовых качеств судов. Робот-рыба похож на настоящую рыбу. Шкура рыбы сделана из специальной пены и покрыта лайкрой. В роботе использованы шесть внешних двигателей, соединенных со шкивами и «сухожилиями» внутри робота. Движение рыбы напоминает плавание настоящего голубого тунца.

Плавание с помощью крыла

Хвост рыбы можно рассматривать как подводное крыло. При движении хвоста из стороны в сторону он отбрасывает поток воды назад и соответственно движет рыбу вперед. Во время движения хвоста в воде за ним образуются вихри. Есть основания полагать, что принцип образования этих вихрей может быть ключом к пониманию эффективности передвижения рыбы.

Дельфины интересны тем, что их хвост – подводное крыло расположен горизонтально. Он не перемещается из стороны в сторону как у рыбы, а совершает движения вверх-вниз. Такие движения в той же степени эффективно толкают тело дельфина вперед.

Пингвины плывут с помощью толчков их крыльев. Вид пингвина, плывущего в воде, сильно напоминает полет птицы. Однако существует разница. При полете птица взмахами крыльев должна поддерживать тело в воздухе, а также обеспечивать движение вперед. Создание подъемной силы необходимо для преодоления силы притяжения. Для пингвинов подъемная сила не нужна. Плотность воды равна плотности тела пингвина (нулевая плавучесть), поэтому пингвин машет крыльями только для продвижения вперед.

Лопасти и весла

Рассматривая способы передвижения в воде, мы должны включить сюда использование лопастей и весел. При движении по воде утки используют перепончатые лапы в качестве лопастей. Водомерки используют ножки в качестве весел и двигаются вперед, как маленькие лодки.

Что мы знаем?

Исследования в МТИ привели исследователей к идее использования жидкостного динамического параметра, известного как индекс Строхала. Для рыбы этот параметр вычисляется умножением частоты взмахов хвоста рыбы на ширину образующегося вихря, деленную на скорость рыбы. Были исследованы рыбы разных пород. Оказалось, что КПД у рыбы максимален, когда индекс Строхала лежит в пределах 0,25-0,35.

Когда плавники робота-рыбы, созданной в МТИ были переделаны и настроены так, что индекс Строхала попал в этот диапазон, КПД устройства возрос более чем до 86 %. Это большое достижение по сравнению с гребными винтами, обеспечивающими КПД не более 40 %.

Приступаем к проекту

B этой главе рассмотрены два основных проекта подводных роботов. Один из них предусматривает переделку игрушечной подводной лодки, а другой – изготовление робота-рыбы из подручных материалов.

Подводная лодка

Модели игрушечных подводных лодок производятся и продаются многими компаниями. Их возможности зависят от степени сложности модели, но обычно они управляются по радио и способны погружаться и всплывать (см. рис. 13.2).


Рис. 13.2. Игрушечная подводная лодка готова к переделке в TROV


При переделке игрушечной подводной лодки я советую отказаться от радиоуправления и перейти к управлению по проводам с использованием соответствующего кабеля. По специальному кабелю можно подвести к подводной лодке питание и управляющие сигналы.

Такие подводные лодки для «хобби» могут быть превращены в небольшие системы телеслежения. Первоначальной переделкой может быть установка цветной видеокамеры. Большинство из подобных лодок имеют пустые отсеки, куда можно установить электронную схему (см. рис. 13.3).


Рис. 13.3. Открытый отсек для размещения электронных компонентов


В подводную лодку можно установить большинство блоков, использованных в автомобиле с дистанционным управлением (см. гл. 9). Единственным отличием является управление по проводам вместо радиоканала.

Подводная лодка является игрушкой, поэтому лучше не запускать ее в открытые водоемы. Крошечные водяные движители в таких лодках могут работать только в спокойной воде. Конечно, создание такой лодки может служить началом для более совершенных конструкций.

Существуют ли какие-либо другие способы использования подобных лодок, кроме использования их в качестве подводных «наблюдателей»? Я могу вообразить себе 10 или более подводных лодок в одном бассейне, причем, каждой управляет отдельный оператор. Я уверен, что на этой базе можно создать множество подводных или «космических» сценариев интересных игр.

Плавание с помощью хвоста

Как уже утверждалось ранее, устройства, имитирующие движения рыб, имеют очень низкий КПД. Эта модель не является исключением. Однако тщательный сбор информации источников типа МТИ может способствовать созданию модели (здесь этого не сделано) с гораздо большим КПД. И если кто-то хочет изготовлять роботов-андроидов, имеющих форму животного, то можно начать именно с этого проекта.

Кольцевые соленоиды

Движение робота-рыбы обеспечивается с помощью кольцевого соленоида (см. рис. 13.4). При включении питания верхняя часть соленоида поворачивается на угол примерно 30°. При отключении питания пружина возвращает механизм в исходное положение.


Рис. 13.4. Открытый отсек для размещения электронных компонентов


В верхней части соленоида находятся, по крайней мере, два резьбовых отверстия 1,6 мм, которые могут быть использованы для крепления деталей. В нижней части соленоида имеются две стойки с резьбой 1,6 мм для крепления соленоида. Соленоид оказался не таким мощным, как мне бы хотелось, но его все же достаточно для обеспечения подводного продвижения.

Электрическая схема

Для генерации медленной последовательности импульсов в схеме использован однопереходный транзистор Q1 (UJT2646) (см. рис. 13.5). Частота импульсов определяется номиналами C1 и R1. Импульсы подаются через резистор R2 на базу Q2. Q2 представляет собой NPN транзистор типа 2N2222. Транзистор Q2 используется для подачи инвертированного импульса на вывод 2 ИС 1. ИС 1 представляет собой таймер 555, включенный по схеме одновибратора. Форма и длина импульса определяются ИС 1. Выход таймера 555 управляет включением транзистора Q3. Транзистор Q3 управляет током, протекающим через кольцевой соленоид, использованный в роботе.


Рис. 13.5. Принципиальная схема устройства


Питание схемы осуществляется с помощью батареи 9 В. Схема достаточно проста и монтируется на печатной плате.

Проверьте работу схемы, соединив ее с соленоидом перед дальнейшей сборкой. Постоянная времени работы соленоида должна быть в районе 1 с.

Механика

Для снижения общей массы и веса устройства большинство деталей выполнено из алюминия. Первый вариант механизма, передающего движение соленоида к машущему хвосту «рыбы», изображен на рис. 13.6. Оказалось, что такой механизм сложнее, чем требуется. Окончательный вариант привода хвоста показан на рис. 13.7.


Рис. 13.6. Первоначальный привод движения хвоста



Рис. 13.7. Окончательный вариант привода


Полоса алюминия размерами 3х 12х 140 мм прикреплена к верхней крышке соленоида при помощи двух винтов 1,6 мм и длиной 6 мм. Просверлите сперва два отверстия в алюминиевой полосе, совпадающие с положением отверстий в верхней части соленоида. Затем, чтобы предотвратить излишне глубокое вворачивание винтов в соленоид, предварительно наверните на каждый винт гайку до упора. Если винты слишком глубоко ввернуты в верхнюю подвижную часть соленоида, то они будут препятствовать ее легкому вращению. Прикрепите алюминиевую полосу к подвижной части соленоида.

Плавник хвоста сделан из квадратного кусочка алюминия 30 мм, разрезанного по диагонали. Плавники крепятся к основанию 12 мм с помощью достаточного количества термоклея. Для лучшего контакта можно предварительно зачистить поверхности с помощью наждачной бумаги.

Соленоид крепится к задней части алюминиевой пластины размерами 3x30x50 мм на двух задних стойках 1,6 мм с помощью нескольких гаек. К передней части крепится плата электрической схемы и батарея (см. рис. 13.8).


Рис. 13.8. Робот-рыба в сборе


Гидроизоляция

Мы изготовили привод соленоида и электрическую схему. Для исключения попадания воды, которая может привести к порче устройства, необходимо завернуть плату соленоида в тонкую прозрачную пленку, используемую в кулинарии. Чехол из пленки крепится к хвосту с помощью проволоки. Крепление должно обеспечивать легкое поперечное перемещение хвоста.

Перед тем как опускать устройство в воду, ему необходимо обеспечить нулевую плавучесть. Если вы опустите его в воду «как есть», то передняя тяжелая часть робота «спикирует» на дно, а взмахи хвоста будут осуществляться «в воздухе». При помощи резиновой ленты прикрепите полоски пенопласта к передней части модели поверх прозрачного чехла. Положите модель в воду для проверки. Добейтесь горизонтального или почти горизонтального положения равновесия. После этого можно включить модель и отпустить ее в «плавание».

Эффективность модели

Данная модель робота не обладает КПД настоящей живой рыбы, хотя и обеспечивает движение. Я думаю, что КПД устройства можно повысить, распилив алюминиевую хвостовую пластину 12х 140 мм пополам, и затем соединить половины с помощью пружины 50 мм. Такая пружина позволит хвосту поворачиваться и изгибаться, что может обеспечить больший КПД передвижения.

Рыба-андроид

Робот отличается от андроида своим внешним видом. Если робот выглядит как «робот», то андроид копирует облик человека или иного живого существа. По этой причине андроидная рыба должна иметь вид рыбы.

Создание рыбы-андроида не столь сложно, как это может показаться на первый взгляд. Причина в том, что можно приобрести достаточно хорошо сделанную искусственную «шкуру» рыбы (см. рис. 13.9). Подобные предметы продаются в магазинах «хобби» и иллюзионного реквизита. Такая рыба может быть «вспорота» для установки внутри соответствующего механизма.


Рис. 13.9. Робот-рыба, заключенный в оболочку резиновой рыбы


Некоторые типы подобных муляжей выглядят более натурально. Я нашел модель, сделанную из толстой и мягкой резины. Такая «рыба» на вид и на ощупь очень реалистична, но требует более мощной «начинки», чтобы она могла двигаться. Лучшим выбором могут служить менее натуральные муляжи рыб, имеющие более тонкую шкуру и, следовательно, требующие меньше усилий для их передвижения.

Дополнительная информация

Чтобы больше узнать об устройствах, использующих принцип движения рыб, вы можете прочитать следующие статьи: Scientific American, March 1955, «An Efficient Swimming Machine» by Micheal S. Triantafyllou и George S. Triantafyllou, и Exploring Biomechanics, by R.McNeill Alexander, опубликованная в Scientific American Library, 1992, ISBN 0-7167-5035-X.

Список деталей для робота-рыбы

R2 и R6 100 Ом

Q2 транзистор NPN 2N2222

Q3 TIP 120 NPN Darlington

IC1 таймер 555

C1 и C2 22 мкФ

С3 0,01 мкФ

Кольцевой соленоид $5,95

Q1 2N2646 UJT $5,95

Алюминиевая полоса 3х12х150 мм

Алюминиевая полоса 3х30х50 мм


Детали можно заказать в:

Недавно американская компания Leidos совместно с Агентством перспективных оборонных разработок Пентагона испытания робота-тримарана «Си Хантер» проекта ACTUV. Основной задачей аппарата после принятия на вооружение станет охота за подводными лодками противника, но он также будет использоваться для доставки провизии и в разведывательных операциях. Про сухопутных роботов и беспилотники, создаваемых в интересах военно-воздушных сил многие уже наслышаны. Мы же решили разобраться, какими аппаратами в ближайшие несколько лет будут пользоваться военные на море.

Морские роботы могут использоваться для решения самых разных задач, причем их список военные составили далеко не полостью. В частности, командования военно-морских сил многих стран уже определились, что морские роботы могут быть полезны для разведки, картографирования дна, поиска мин, патрулирования входов в морские базы, обнаружения и сопровождения кораблей, охоты на подводные лодки, ретрансляции сигналов, дозаправки самолетов и нанесения ударов по наземным и морским целям. Для выполнения таких заданий сегодня разрабатываются сразу несколько классов морских роботов.

Условно морских роботов можно разделить на четыре большие класса: палубные, надводные, подводные и гибридные. К палубным аппаратам относятся различного рода беспилотники, запускаемые с палубы корабля, надводным - роботы, способные передвигаться по воде, к подводным - автономные корабли, предназначенные для работы под водой. Гибридными морскими роботами принято называть аппараты, способные одинаково эффективно функционировать в нескольких средах, например, в воздухе и на воде или в воздухе и под водой. Надводные и подводные аппараты используются военными, да и не только ими, уже несколько лет.

Патрульными роботами-катерами уже на протяжении последних пяти лет пользуются ВМС Израиля, а подводные роботы, называемые еще автономными необитаемыми подводными аппаратами, входят в состав нескольких десятков военно-морских сил, включая Россию, США, Швецию, Нидерланды, Китай, Японию и обе Кореи. Подводные роботы пока наиболее распространены, поскольку их разработка, производство и эксплуатация относительно просты и значительно просты по сравнению с морскими роботами других классов. Дело в том, что подводные аппараты в большинстве своем «привязаны» к кораблю тросом, кабелем управления и энергоснабжения и не могут уходить от носителя на большие расстояния.

Для полетов палубных беспилотников требуется соблюдение множества непростых условий. Например, управления комбинированным воздушным движением пилотируемых и непилотируемых летательных аппаратов, повышения точности инструментальных средств посадки на колеблющуюся палубу корабля, защиты тонкой электроники от агрессивной среды моря и обеспечения прочности конструкции для посадки на корабль во время сильной качки. Надводные роботы, особенно те, что должны функционировать в районах судоходства и на большом удалении от берега, должны получать сведения о других кораблях и обладать хорошей мореходностью, то есть способностью плавать при сильном волнении моря.

Палубные беспилотники

С середины 2000-х годов американская компания Northrop Grumman по заказу ВМС США демонстратора технологий палубного беспилотного летательного аппарата X-47B UCAS-D. На программу разработки, производства двух экспериментальных аппаратов и проведение их испытаний было потрачено чуть меньше двух миллиардов долларов. Свой первый полет X-47B совершил в 2011 году, а первый взлет с палубы авианосца - в 2013-м. В том же году беспилотник совершил первую автономную посадку на авианосец. Аппарат также проверили на возможность взлетать в паре с пилотируемым самолетом, выполнять полеты в ночное время и дозаправлять другие самолеты.

В целом X-47B использовался военными для оценки потенциальной роли крупных беспилотников на флоте. В частности, речь шла о разведке, нанесении ударов по позициям противника, дозаправке других аппаратов и даже применении лазерного оружия. Длина реактивного X-47B составляет 11,63 метра, высота - 3,1 метра, а размах крыла - 18,93 метра. Беспилотник может развивать скорость до 1035 километров в час и совершать полеты на расстояние до четырех тысяч километров. Он оборудован двумя внутренними бомбовыми отсеками для подвесного вооружения общей массой до двух тонн, хотя на применение ракет или бомб никогда не испытывался.

В начале февраля ВМС США , что ударный палубный беспилотник им не нужен, поскольку с бомбардировкой наземных целей быстрее и качественнее справятся многофункциональные истребители. При этом палубный аппарат все же будет разработан, но заниматься он будет разведкой и дозаправкой истребителей в воздухе. Создание беспилотника будет вестись в рамках проекта CBARS. На вооружении беспилотник получит обозначение MQ-25 Stingray. Победителя конкурса на разработку палубного беспилотника-заправщика назовут в середине 2018 года, а первый серийный аппарат военные рассчитывают получить уже к 2021 году.


При создании X-47B конструкторам пришлось решать несколько задач, самыми простыми из которых была защита аппарата от коррозии во влажном и соленом воздухе и разработка компактной, но прочной конструкции со складным крылом, прочным шасси и посадочным гаком. К крайне сложным задачам относилось маневрирование беспилотника на загруженной палубе авианосца. Этот процесс отчасти автоматизировали, а отчасти перевели в ведение оператора взлета и посадки. Этот человек получил небольшой планшет на руку, при помощи которого, водя пальцем по экрану, он мог управлять перемещением X-47B по палубе до взлета и после посадки.

Для того, чтобы палубный беспилотник мог взлетать с авианосца и садиться на него, корабль нужно было модернизировать, установив на него системы инструментальной посадки. Пилотируемые самолеты садятся по голосовому наведению оператора воздушного движения авианосца, командам оператора посадки и визуальным данным, включая показания оптического курсо-глиссадного индикатора . Для беспилотника все это не годится. Данные для посадки он должен получать в цифровом защищенном виде. Для возможности использования X-47B на авианосцы разработчикам пришлось совместить понятную «человеческую» систему посадки и непонятную «беспилотную».


Между тем, уже сегодня на американских кораблях активно используются беспилотники RQ-21A Blackjack. Они Морской пехоты США. Аппарат оснащен небольшой катапультой, не занимающей много места на палубе корабля. Беспилотник используется для разведки, рекогносцировки и наблюдения. Blackjack имеет в длину 2,5 метра и размах крыла 4,9 метра. Аппарат способен развивать скорость до 138 километров в час и находиться в воздухе до 16 часов. Запуск беспилотника производится при помощи пневматической катапульты, а посадка - при помощи воздушного аэрофинишера. В данном случае - это штанга с тросом, за который аппарат цепляется крылом.


Надводные роботы

В конце июля 2016 года американская компания Leidos совместно с Агентством перспективных оборонных разработок (DARPA) Пентагона ходовые испытания робота - охотника за подлодками «Си Хантер». Его разработка ведется в рамках программы ACTUV. Испытания признали успешными. Аппарат построен по схеме тримарана, то есть судна с тремя параллельными корпусами, соединенными друг с другом в верхней части. Длина дизель-электрического робота составляет 40 метров, а полное водоизмещение - 131,5 тонны. Тримаран может развивать скорость до 27 узлов, а дальность его хода составляет десять тысяч миль.

Испытания «Си Хантера» проводятся с весны прошлого года. Он оснащен различным навигационным оборудованием и сонарами. Основной задачей робота станет обнаружение и преследование подводных лодок, однако робот будет использоваться и для доставки провизии. Кроме того, он будет периодически выводиться и на разведывательные задания. При этом аппарат будет действовать в полностью автономном режиме. Военные намерены использовать таких роботов в первую очередь для поиска «тихих» дизель-электрических подводных лодок. Кстати, по неподтвержденным данным, во время испытаний робот смог обнаружить подлодку на расстоянии полумили от себя.

Конструкция «Си Хантера» при полном водоизмещении предусматривает возможность надежной работы при волнении моря до пяти баллов (высота волны от 2,5 до 5 метров) и выживаемость аппарата при волнении моря до семи баллов (высота волны от шести до девяти метров). Другие технические подробности о надводном роботе засекречены. Его испытания будут проводиться до конца текущего года, после чего робот поступит на вооружение ВМС США. Последние полагают, что роботы, подобные «Си Хантеру» существенно удешевят обнаружение субмарин противника, поскольку не нужно будет использовать дорогостоящие специальные корабли.


Между тем, надводный робот проекта ACTUV станет не первым аппаратом такого класса, используемым военными. На протяжении последних пяти лет на вооружении Израиля стоят роботы - патрульные катера, которые используются для контроля территориальных вод страны. Это небольшие катера, оснащенные сонарами и радиолокационными станциями для обнаружения надводных кораблей и подводных лодок на небольших расстояниях. Катера также вооружены пулеметами калибра 7,62 и 12,7 миллиметра и системами радиоэлектронной борьбы. В 2017 году ВМС Израиля примут на вооружение новые более быстрые патрульные катера-роботы Shomer Hayam («Защитник»).

В начале февраля 2016 года израильская компания Elbit Systems прототип робота Seagull, который будет использоваться для поиска подводных лодок противника и мин. Робот оснащен набором сонаров, которые позволяют ему эффективно обнаруживать крупные и небольшие подводные объекты. Seagull, выполненный в корпусе катера длиной 12 метров, способен автономно работать на протяжении четырех суток, а дальность его действия составляет около ста километров. Он оснащен двумя двигателями, которые позволяют ему развивать скорость до 32 узлов. Seagull может нести полезную нагрузку массой до 2,3 тонны.


При разработке системы поиска подводных лодок и мин Elbit Systems использовала данные о 135 атомных подводных лодках, 315 дизель-электрических подлодках и субмаринах с воздухонезависимыми энергетическими установками, а также нескольких сотнях минисубмарин и подводных аппаратов. 50 процентов кораблей и аппаратов, попавших в базу, не принадлежат странам - членам НАТО. Стоимость одного автономного комплекса оценивается в 220 миллионов долларов. По данным Elbit Systems, два автономных комплекса Seagull при выполнении противолодочных операций могут заменить в составе военно-морских сил один фрегат.

Помимо Израиля надводными роботами располагает и Германия. В середине февраля текущего года немецкие ВМС робота ARCIMS, предназначенного для поиска и обезвреживания мин, обнаружения подводных лодок, ведения радиоэлектронной борьбы и охраны морских баз. Этот автономный катер, разработанный немецкой компанией Atlas ElektroniK имеет в длину 11 метров. Он может нести полезную нагрузку массой до четырех тонн. Катер имеет ударостойкий корпус и небольшую осадку. Благодаря двум двигателям роботизированный комплекс может развивать скорость до 40 узлов.


defenseupdate / Youtube

Подводные роботы

Подводные роботы появились на флоте первыми, практически сразу после начала их использования в исследовательских целях. В 1957 году ученые из Лаборатории прикладной физики Вашингтонского университета впервые использовали подводного робота SPURV для исследования распространения звуков под водой и записи шумов подводных лодок. В 1960 годах в СССР подводных роботов стали использовать для исследования дна. В эти же годы автономные необитаемые подводные аппараты начали поступать на флот. Первые такие роботы имели несколько двигателей для перемещения под водой, простые манипуляторы и телевизионные камеры.

Сегодня подводные роботы используются военными в самых разнообразных операциях: для разведки, поиска и обезвреживания мин, поиска подводных лодок, проверки подводных конструкций, картографирования дна, обеспечения связи между кораблями и подводными лодками и доставки грузов. В октябре 2015 года ВМФ России подводных роботов «Марлин-350», разработанных петербургской компанией «Тетис Про». Роботов военные будут использовать в поисково-спасательных операциях, включая осмотр аварийных подводных лодок, а также для установки гидроакустических маркеров и подъема со дна различных объектов.

Новый подводный робот предназначен для поиска различных объектов и осмотра дна на глубине до 350 метров. Робот оснащен шестью движителями. При длине 84 сантиметра, ширине 59 сантиметров и высоте 37 сантиметров масса «Марлина-350» составляет 50 килограммов. На аппарат можно установить гидролокатор кругового обзора, многолучевой гидролокатор, альтиметр, видеокамеры и приборы освещения, а также различное коммуникационное оборудование. В интересах флота также проходит испытания разведывательный подводный робот «Концепт-М», способный погружаться на глубину до тысячи метров.


В середине марте текущего года Крыловский научный центр на новый способ патрулирования акваторий. Для этого планируется использовать подводных роботов, а для определения точных координат подводных объектов - реактивные гидроакустические буи. Предполагается, что подводный робот будет вести патрулирование по заранее заданному маршруту. В случае, если он засечет какое-либо движение в своей зоне ответственности, он выйдет на связь с ближайшими кораблями или береговой базой. Те, в свою очередь, запустят по району патрулирования реактивные гидроакустические буи (запускаются как ракеты, а попав в воду излучают гидроакустический сигнал, по отражению которого и определяется местонахождение подлодки). Такие буи уже определят точное местоположение обнаруженного объекта.

Между тем, шведская компания Saab новый автономный необитаемый подводный аппарат Sea Wasp, предназначенный для поиска, перемещения и обезвреживания самодельных взрывных устройств. Новый робот создан на базе Seaeye, линейки коммерческих подводных дистанционно управляемых аппаратов. Sea Wasp, оснащенный двумя элекромоторами мощностью пять киловатт каждый, может развивать скорость до восьми узлов. Он также имеет шесть маневровых двигателей мощностью 400 ватт каждый. Для перемещения мин Sea Wasp может использовать манипулятор.

В марте текущего года концерн Boeing крупнотоннажного подводного робота Echo Voyager длиной 15,5 метра. Этот аппарат оснащен системой уклонения от столкновения и может перемещаться под водой полностью автономно: специальные сонары отвечают за обнаружение препятствий, а компьютер просчитывает маршрут уклонения. Echo Voyager получил перезаряжаемую энергетическую систему, подробности о которой не уточняется. Робот может собирать различные данные, включая картографирования дна, и передавать их оператору. Для обслуживания Echo Voyager не требуется специального корабля поддержки, как для других подводных роботов.


Christopher P. Cavas / Defense News

Гибридные роботы

Морские роботы, способные работать в нескольких средах, стали появляться относительно недавно. Считается, что благодаря таким аппаратам военные смогут сэкономить свои бюджеты, поскольку не нужно будет раскошеливаться на разных роботов, способных, скажем летать и плавать, а купить вместо них одного, умеющего делать и то, и другое. Последние четыре года Школа повышения квалификации офицерских кадров ВМС США занимается квадрокоптера Aqua-Quad, способного садиться на воду и взлетать с нее. Аппарат работает на солнечной энергии и использует ее для подзарядки аккумуляторов. Дрона можно оснастить гидроакустической системой, способной обнаруживать подводные лодки.

Разработка Aqua-Quad пока еще не завершена. Первые пробные испытания аппарата состоялись осенью прошлого года. Дрон построен по четырехлучевой схеме с расположением на концах лучей электромоторов с воздушными винтами. Эти винты диаметром 360 миллиметров каждый забраны в обтекатели. Кроме того, весь аппарат также заключен в тонкое кольцо диаметром один метр. Между лучами расположены 20 солнечных панелей. Масса аппарата составляет около трех килограммов. Беспилотник оснащен аккумулятором, используя энергию которого он и совершает полеты. Продолжительность полета Aqua-Quad составляет около 25 минут.

В свою очередь Научно-исследовательская лаборатория ВМС США занимается созданием двух типов беспилотников - Blackwing и Sea Robin. Аппараты проходят испытания с 2013 года. Эти беспилотники примечательны тем, что их можно запускать с подводных лодок. Они помещаются в специальные контейнеры для стандартного торпедного аппарата калибра 533 миллиметра. После запуска и всплытия контейнер раскрывается, а беспилотник взлетает вертикально. После этого он может вести разведку морской поверхности, передавая данные в режиме реального времени, или выступать ретранслятором сигналов. Отработав, такие беспилотники будут садиться на воду или «отлавливаться» воздушными аэрофинишерами кораблей.

В феврале текущего года сингапурская компания ST Engineering беспилотный летательный аппарат самолетного типа, способный летать, садиться на воду и даже плавать под водой. Этот беспилотник, способный эффективно работать в двух средах, получил название UHV (Unmanned Hybrid Vehicle, беспилотный гибридный аппарат). Масса UHV составляет 25 килограммов. Он может находиться в воздухе до 20-25 минут. UHV имеет один воздушный винт и два водяных гребных винта. При посадке на водную поверхность лопасти воздушного винта складываются и для движения беспилотника используются уже водяные движители.

В подводном режиме UHV может перемещаться со скоростью до четырех-пяти узлов. За перевод систем управления из одной среды в другую полностью отвечает бортовой компьютер беспилотника. Разработчики полагают, что аппарат пригодится военным для ведения разведки и поиска подводных мин. Похожий проект в прошлом году Центр беспилотных систем Технологического института Джорджии. Он разработал двухсредный квадрокоптер GTQ-Cormorant. Дрон способен погружаться на заданную глубину и плавать под водой, используя в качестве движителей воздушные винты. Проект финансируется Научно-исследовательским управлением ВМС США.


А вот DARPA занимается разработкой особых гибридных роботов, которые будут использоваться военными в качестве схронов. Предполагается, что такие аппараты, разработка которых ведется с 2013 года, нагруженные топливом, боеприпасами или малыми разведывательными беспилотниками, будут выпускаться с корабля и уходить на дно. Там они будут переключаться в спящий режим, в котором смогут функционировать несколько лет. При необходимости корабль сможет с поверхности послать на дно акустический сигнал, который разбудит робота и тот поднимется на поверхность, подплывет к кораблю и моряки смогут забрать с него свою заначку.

Подводные хранилища должны будут выдерживать давление более 40 мегапаскалей, поскольку устанавливать их военные планируют на больших глубинах, где они будут недоступны ни для дайверов-любителей, ни для подводных лодок потенциального противника. В частности, глубина установки хранилищ будет достигать четырех километров. Для сравнения, стратегические подлодки могут погружаться на глубину 400-500 метров. Технические подробности о гибридных роботах-схронах засекречены. Как ожидается, первые такие аппараты американские военные получат на испытания во второй половине 2017 года.

Рассказать обо всех морских роботах, уже принятых на вооружение и еще только разрабатываемых, в рамках одного материала невозможно - каждый класс таких аппаратов уже насчитывает по меньше мере десяток разных названий. Помимо военных морских роботов активно развиваются и гражданские аппараты, которые разработчики намерены использовать в самых разных целях: от перевозки пассажиров и грузов до мониторинга погоды и изучения ураганов, от подводных исследований и контроля линий связи до ликвидации последствий техногенных катастроф и спасения пассажиров аварийных судов. На море роботам всегда найдется работа.


Василий Сычёв