Осветительные приборы

Биологические методы анализа в аналитической химии. Аналитическая химия

Биологические методы анализа в аналитической химии. Аналитическая химия

I. Химия и медицина

1. Предмет, цели и задачи аналитической химии. Краткий исторический очерк развития аналитической химии. Место аналитической химии среди естественных наук и в системе медицинского образования.

Аналитическая химия – наука о методах определения состава веществ. Предмет ее - решение общих проблем теории химического анализа, совершенствование существующих и разработка новых, более быстрых и точных методов анализа (т.е теория и практика хим. анализа). Задача - развитие теории химических и физико-химических методов анализа, процессов и операций в научном исследовании, совершенствование старых методов анализа, разработка экспрессных и дистанционных м.а, разработка методов ультра- и микроанализа.

В зависимости от объекта исследования аналитическую химию делят на неорганический и органический анализ . Аналитическая химия относится к прикладным наукам. Практическое значение ее весьма разнообразно. С помощью методов химического анализа были открыты некоторые законы - закон постоянства состава, закон кратных отношений, определены атомные массы элементов,

химические эквиваленты, установлены химические формулы многих соединений и т. д.

Аналитическая химия в значительной степени способствует развитию естественных наук: геохимии, геологии, минералогии, физики, биологии, агрохимии, металлургии, химической технологии, медицины и др.

Предмет качественного анализа - развитие теоретических основ, усовершенствование существующих и разработка новых, более совершенных методов определения элементарного состава веществ. Задача качественного анализа - определение “качества” веществ или обнаружение отдельных элементов или ионов, входящих в состав исследуемого соединения.

Качественные аналитические реакции по способу их выполнения делятся на реакции “мокрым” и “сухим” путем . Наибольшее значение имеют реакции “мокрым” путем. Для проведения их исследуемое вещество должно быть предварительно растворено.

В качественном анализе находят применение только те реакции, которые сопровождаются какими-либо хорошо заметными для наблюдателя внешними эффектами: изменением окраски раствора; выпадением или растворением осадка; выделением газов, обладающих характерным запахом или цветом.

Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями “открытия ”, так как с их помощью обнаруживаются присутствующие в растворе ионы.

Широко используются также реакции идентификации , с помощью которых проверяется правильность “открытия” того или иного иона. Наконец, применяются реакции осаждения, с помощью которых обычно отделяется одна группа ионов от другой или один ион от других ионов.

В зависимости от количества анализируемого вещества, объема раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро-, микро-, полумикро- и ультрамикроанализ и др.

II. Качественный анализ

2. Основные понятия аналитической химии. Типы аналитических реакций и реагентов. Требования, предъявляемые к анализу, чувствительности, селективности определения состава веществ.

Аналитическая реакция - хим. реакция, используемая для разделения, обнаружения и количественного определения элементов, ионов, молекул. Она должна сопровождаться аналитическим эффектом (выпадением осадка, выделением газа, изменением окраски, запаха).

По типу химических реакций:

Общие – аналитические сигналы одинаковы для многих ионов. Реагент – общий. Пример: осаждение гидроксидов, карбонатов, сульфидов и т.д.

Групповые – аналитические сигналы характерны для определенной группы ионов, обладающих близкими свойствами. Реагент – групповой. Пример: осаждение ионов Ag + , Pb 2+ реагентом – соляной кислотой с образованием белых о садков AgCl, PbCl 2

Общие и групповые реакции применяют для выделения и разделения ионов сложной смеси.

Селективные – аналитические сигналы одинаковы для ограниченного количества ионов. Реагент – селективный. Пример: при действии реагента NH 4 SCN на смесь катионов только два катиона образуют окрашенные комплексные со единения: кроваво-красное 3-

и синее 2-

Специфические – аналитический сигнал характерен только для одного иона. Реагент – специфический. Таких реакций крайне мало.

По типу аналитического сигнала:

Цветные

Осадительные

Газовыделительные

Микрокристаллические

По функции:

Реакции обнаружения (идентификации)

Реакции разделения (отделения) для удаления мешающих ионов путем осаждения, экстракции или возгонки.

По технике выполнения:

Пробирочные – выполнятся в пробирках.

Капельные выполняются:

На фильтровальной бумаге,

На часовом или предметном стекле.

При этом на пластинку или на бумагу наносят 1-2 капли анализируемого раствора и 1-2 капли реагента, дающего характерное окрашивание или образование кристаллов. При выполнении реакций на фильтровальной бумаге используются адсорбционные свойства бумаги. Капля жидкости, нанесенная на бумагу, быстро рассасывается по капиллярам, а окрашенное соединение адсорбируется на небольшой площади листа. При наличии в растворе нескольких веществ скорость движения их может быть различной, что дает распределение ионов в виде концентрических зон. В зависимости от произведения растворимости осадка – или в зависимости константы устойчивости комплексных соединений: чем больше их значения, тем ближе к центру или в центре определенная зона.

Капельный метод разработал советский ученый-химик Н.А. Тананаев.

Микрокристаллические реакции основаны на образовании химических соединений, имеющих характерную форму, цвет и светопреломляющую способность кристаллов. Они выполняются на предметных стеклах. Для этого на чистое стекло наносят капиллярной пипеткой 1-2 капли анализируемого раствора и рядом 1-2 капли реагента, осторожно соединяют их стеклянной палочкой, не перемешивая. Затем с текло помещают на предметный столик микроскопа и рассматривают осадок, образовавшийся на месте

соприкосновения капель.

Для правильного использования в аналитике реакций следует учитывать чувствительность реакции . Она определяется наименьшим количеством искомого вещества, которое может быть обнаружено данным реактивом в капле раствора (0,01-0,03 мл). Чувствительность выражается рядом величин:

    Открываемый минимум - наименьшее количество вещества, содержащееся в исследуемом растворе и открываемое данным реактивом при определенных условиях выполнения реакции.

    Минимальная (предельная) концентрация показывает при какой наименьшей концентрации раствора данная реакция позволяет еще однозначно открывать обнаруживаемое вещество в небольшой порции раствора.

    Предельное разбавление - максимальное количество разбавителя, при котором еще определяется вещество.

Вывод: аналитическая реакция тем чувствительней, чем меньше открываемый минимум, меньше минимальная концентрация, но чем больше предельное разбавление.

Курс физической и коллоидной химии, включающий физико-химические методы анализа и методы разделения и очистки, играет существенную роль при подготовке специалистов в области инженерной экологии. Основные разделы физической химии - химическая кинетика и химическая термодинамика - служат теоретической основой других разделов химии, а также химической технологии и методов разделения и очистки веществ. Измерения физико-химических свойств веществ лежат в основе многих современных инструментальных (физико-химических) методов анализа и контроля состояния окружающей среды. Поскольку большинство природных объектов являются коллоидными системами, необходимо изучить основы коллоидной химии.

Опасности загрязнения среды продуктами - вредными веществами могут быть существенно уменьшены тщательной очисткой продуктов. Химические методы очистки включают обработку реагентами, нейтрализующими вредные компоненты. Необходимо знать скорость и полноту протекания реакций, их зависимость от внешних условий, уметь рассчитать концентрацию реагентов, обеспечивающих необходимую степень очистки. Также широко применяются физико-химические методы очистки, включающие ректификацию, экстракцию, сорбцию, ионный обмен, хроматографию.

Изучение курса физической и коллоидной химии студентами экологических специальностей (№№) включает освоение теоретического (лекционного) курса, семинары по аналитической химии, включая физико-химические методы анализа, методы разделения и очистки, хроматографию и разделы коллоидной химии, выполнение лабораторных работ и практических занятий, а также самостоятельную работу, включающую выполнение трёх домашних заданий. В ходе лабораторных и практических работ студенты приобретают навыки проведения физико-химических экспериментов, построения графиков, математической обработки результатов измерений и анализа погрешностей. При выполнении лабораторных, практических и домашних заданий студенты приобретают навыки работы со справочной литературой.

Семинары по аналитической и коллоидной химии

Семинар 1. Предмет аналитической химии. Классификация методов анализа. Метрология. Классические методы количественного анализа.

Специалистам, работающим в области инженерной экологии, необходима достаточно полная информация о химическом составе сырья, продуктов производства, отходов производства и окружающей среды - воздуха, воды и почвы; особое внимание необходимо уделить выявлению вредных веществ и определению их количеств. Эту задачу решает аналитическая химия - наука об определении химического состава веществ. Химический анализ - главное и необходимое средство контроля за загрязнением окружающей среды.

Суперкраткое изучение данного раздела химии не может дать квалификацию химика-аналитика, его цель - ознакомление с минимальным количеством знаний, достаточным для того, чтобы ставить конкретные задачи химикам, ориентируясь в возможностях тех или иных методов анализа, и понимать смысл полученных результатов анализа.

Классификация методов анализа

Различают качественный и количественный анализ. Первый определяет наличие тех или иных компонентов, второй - их количественное содержание. При исследовании состава вещества качественный анализ всегда предшествует количественному анализу, так как выбор метода количественного анализа зависит от качественного состава изучаемого объекта. Методы анализа подразделяются на химические и физико-химические. Химические методы анализа основаны на превращении анализируемого вещества в новые соединения, обладающие определенными свойствами. По образованию характерных соединений элементов и устанавливают состав вещества.

Качественный анализ неорганических соединений основан на ионных реакциях и позволяет обнаруживать элементы в форме катионов и анионов. Например, ионы Cu 2+ можно определить по образованию комплексного иона 2+ ярко-синего цвета. При анализе органических соединений обычно определяют C, H, N, S, Р, Сl и другие элементы. Углерод и водород определяют после сжигания пробы, регистрируя выделившийся углекислый газ и воду. Существуют ряд приемов для обнаружения других элементов.

Качественный анализ подразделяют на дробный и систематический.

Дробный анализ основан на применении специфических и избирательных реакций, при помощи которых можно в любой последовательности обнаружить искомые ионы в отдельных порциях исследуемого раствора. Дробный анализ дает возможность быстро определить ограниченное число ионов (от одного до пяти), содержащихся в смеси, состав которой приблизительно известен.

Систематический анализ - это определенная последовательность обнаружения индивидуальных ионов после того, как все другие ионы, мешающие определению, будут найдены и удалены из раствора.

Отдельные группы ионов выделяют, используя сходство и различия свойств ионов при использовании так называемых групповых реагентов - веществ, которые одинаково реагируют с целой группой ионов. Группы ионов подразделяют на подгруппы, а те, в свою очередь, - на индивидуальные ионы, которые и обнаруживают при помощи т.н. аналитических реакций, характерных для данных ионов. Такие реакции обязательно сопровождаются аналитическим признаком, то есть внешним эффектом - выпадением осадка, выделением газа, изменением цвета раствора.

Аналитическая реакция обладает свойством специфичности, избирательности и чувствительности.

Специфичность позволяет обнаружить данный ион в определенных условиях в присутствии других ионов по тому или иному характерному признаку (цвет, запах и т.п.). Таких реакций сравнительно немного (например, реакция обнаружения иона NH 4 + действием на вещество щелочи при нагревании). Количественно специфичность реакции оценивается величиной предельного отношения, равного отношению концентраций определяемого иона и мешающих ионов. Например, капельная реакция на ион Ni 2+ действием диметилглиоксима в присутствии ионов Co 2+ удается при предельном отношении Ni 2+ к Co 2+ , равном 1: 5000.

Избирательность (или селективность) реакции определяется тем, что сходный внешний эффект возможен лишь с ограниченным числом ионов, с которыми реакция дает положительный эффект. Степень избирательности (селективности) тем больше, чем меньше число ионов, с которыми реакция дает положительный эффект.

Чувствительность реакции характеризуется рядом взаимно связанных величин: пределом обнаружения и пределом разбавления. Например, предел обнаружения в микрокристаллоскопической реакции на ион Ca 2+ действием серной кислоты равен 0,04 мкг Ca 2+ в капле раствора. Предельное разбавление (V пред, мл) рассчитывают по формуле: V пред = V · 10 2 /С мин, где V - объем раствора (мл). Предельное разбавление показывает, в каком объеме раствора (в мл) содержится 1 г определяемого иона. Например, в реакции иона К + с гексанитрозокобальтатом натрия - Na 3 образуется желтый кристаллический осадок К 2 Na. Чувствительность этой реакции характеризуется предельным разбавлением 1:50000. Это значит, что с помощью данной реакции можно открыть ион калия в растворе, содержащем не менее 1 г калия в 50000 мл воды.

Химические методы качественного анализа имеют практическое значение только для небольшого числа элементов. Для многоэлементного, молекулярного, а также функционального (определение природы функциональных групп) анализа используют физико-химические методы.

Компоненты подразделяют на основные (1 - 100% по массе), неосновные (0,01 - 1% по массе) и примесные или следовые (менее 0,01% по массе).

    В зависимости от массы и объема анализируемого образца различают макроанализ (0,5 - 1 г или 20 - 50 мл),

    полумикроанализ (0,1 - 0,01 г или 1,0 - 0,1 мл),

    микроанализ (10 -3 - 10 -6 г или 10 -1 - 10 -4 мл),

    ультрамикроанализ (10 -6 - 10 -9 г, или 10 -4 - 10 -6 мл),

    субмикроанализ (10 -9 - 10 -12 г или 10 -7 - 10 -10 мл).

Анализируемыми компонентами могут быть атомы и ионы, изотопы элементов, молекулы, функциональные группы и радикалы, фазы.

Классификация по природе определяемых частиц:

1.изотопный (физический)

2. элементный или атомный

3. молекулярный

4. структурно-групповой (промежуточный между атомным и молекулярным) - определение отдельных функциональных групп в молекулах органических соединений.

5. фазовый - анализ включений в неоднородных объектах, например минералах.

Другие виды классификации анализа:

Валовой и локальный.

Деструктивный и не деструктивный.

Контактный и дистанционный.

Дискретный и непрерывный.

Важные характеристики аналитической процедуры - экспрессность метода (быстрота проведения анализа), стоимость анализа, возможность его автоматизации.

Инженеры-экологи должны знать химический состав сырья, продуктов и отходов производства и окружающей среды - воздуха, воды и почвы; важно выявить вредные вещества и определить их концентрацию. Эту задачу решает аналитическая химия - наука об определении химического состава веществ.

Задачи аналитической химии решаются главным образом физико-химическими методами анализа, которые, называют также инструментальными. Они используют измерение какого-либо физического или физико-химического свойства вещества для определения его состава. Он включает также разделы, посвящённые методам разделения и очистки веществ.

Цель данного курса лекций - ознакомление с принципами инструментальных методов анализа, чтобы ориентироваться в их возможностях и на этой основе ставить конкретные задачи специалистам - химикам и понимать смысл полученных результатов анализа.

Литература

    Алесковский В.Б. и др. Физико-химические методы анализа. Л-д, "Химия", 1988 г.

    Ю.С.Ляликов. Физико-химические методы анализа. М.,изд-во "Химия", 1974 г.

    Васильев В.П. Теоретические основы физико-химических методов анализа.М., Высшая школа, 1979 г.

    А.Д.Зимон, Н.Ф.Лещенко. Коллоидная химия. М., "Агар", 2001 г.

    А.И.Мишустин, К.Ф.Белоусова. Коллоидная химия (Методическое пособие). Изд-во МИХМ, 1990 г.

Первые две книги являются учебниками для студентов-химиков и поэтому достаточно сложные для вас. Это делает данные лекции весьма полезными. Однако можно читать отдельные главы.

К сожалению, для данного курса администрация пока не выделила отдельного зачёта, поэтому материал входит в общий экзамен, вместе с курсом физической химии.

2. Классификация методов анализа

Различают качественный и количественный анализ. Первый определяет наличие тех или иных компонентов, второй - их количественное содержание. Методы анализа подразделяются на химические и физико-химические. В данной лекции рассмотрим только химические методы, которые основаны на превращении анализируемого вещества в соединения, обладающие определенными свойствами.

При качественном анализе неорганических соединений исследуемый образец переводят в жидкое состояние растворением в воде или растворе кислоты или щёлочи, что позволяет обнаруживать элементы в форме катионов и анионов. Например, ионы Cu 2+ можно определить по образованию комплексного иона 2+ ярко-синего цвета.

Качественный анализ подразделяют на дробный и систематический. Дробный анализ- обнаружение нескольких ионов в смеси с приблизительно известным составом.

Систематический анализ - это полный анализ по определенной методике последовательного обнаружения индивидуальных ионов. Выделяют отдельные группы ионов со сходными свойствами посредством групповых реагентов, затем группы ионов подразделяют на подгруппы, а те, в свою очередь, - на отдельные ионы, которые и обнаруживают при помощи т.н. аналитических реакций. Это реакции с внешним эффектом - выпадением осадка, выделением газа, изменением цвета раствора.

Свойства аналитических реакций - специфичность, избирательность и чувствительность .

Специфичность позволяет обнаружить данный ион в присутствии других ионов по характерному признаку (цвет, запах и т.п.). Таких реакций сравнительно немного (например, реакция обнаружения иона NH 4 + действием на вещество щелочи при нагревании). Количественно специфичность реакции оценивается величиной предельного отношения, равного отношению концентраций определяемого иона и мешающих ионов. Например, капельная реакция на ион Ni 2+ действием диметилглиоксима в присутствии ионов Co 2+ удается при предельном отношении Ni 2+ к Co 2+ , равном 1:5000.

Избирательность (или селективность) реакции определяется тем, что сходный внешний эффект дают лишь несколько ионов. Bзбирательность тем больше, чем меньше число ионов, дающих сходный эффект.

Чувствительность реакции характеризуется пределом обнаружения или пределом разбавления. Например, предел обнаружения в микрокристаллоскопической реакции на ион Ca 2+ действием серной кислоты равен 0,04 мкг Ca 2+ в капле раствора.

Более сложная задача - анализ органических соединений. Углерод и водород определяют после сжигания пробы, регистрируя выделившийся углекислый газ и воду. Существуют ряд приемов для обнаружения других элементов.

Классификация методов анализа по количеству.

Компоненты подразделяют на основные (1 - 100% по массе), неосновные (0,01 - 1% по массе) и примесные или следовые (менее 0,01% по массе).

    В зависимости от массы и объема анализируемого образца различают макроанализ (0,5 - 1 г или 20 - 50 мл),

    полумикроанализ (0,1 - 0,01 г или 1,0 - 0,1 мл),

    микроанализ (10 -3 - 10 -6 г или 10 -1 - 10 -4 мл),

    ультрамикроанализ (10 -6 - 10 -9 г, или 10 -4 - 10 -6 мл),

    субмикроанализ (10 -9 - 10 -12 г или 10 -7 - 10 -10 мл).

Классификация по природе определяемых частиц:

1.изотопный (физический) - определяются изотопы

2. элементный или атомный - определяется набор химических элементов

3. молекулярный - определяется набор молекул, из которых состоит образец

4. структурно-групповой (промежуточный между атомным и молекулярным) - определяются функциональных группы в молекулах органических соединений.

5. фазовый - анализируются компоненты неоднородных объектов (например минералов).

Другие виды классификации анализа:

Валовой и локальный.

Деструктивный и не деструктивный.

Контактный и дистанционный.

Дискретный и непрерывный.

Важные характеристики аналитической процедуры - экспрессность метода (быстрота проведения анализа), стоимость анализа, возможность его автоматизации.

Классификация методов качественного анализа.

Предмет и задачи аналитической химии.

Аналитической химией называют науку о методах качественного и количественного исследования состава веществ (или их смесей). Задачей аналитической химии является развитие теории химических и физико-химических методов анализа и операций в научных исследованиях.

Аналитическая химия состоит из двух основных разделов: качественный анализ состоит в “открытии “, т.е. обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество. Количественный анализ заключается в определении количественного содержания отдельных составных частей сложного вещества.

Практическое значение аналитической химии велико. С помощью методов хим. анализа открыты законы: постоянства состава, кратных отношений, определены атомные массы элементов, химические эквиваленты, установлены формулы многих соединений.

Аналитическая химия способствует развитию естественных наук - геохимии, геологии, минералогии, физики, биологии, технологических дисциплин, медицины. Химический анализ - основа современного химико-технологического контроля всех производств, в которых производится анализ сырья, продукции и отходов производства. По результатам анализа судят о течении технологического процесса и о качестве продукции. Химические и физико-химические методы анализа лежат в основе установления госстандарта на всю выпускаемую продукцию.

Велика роль аналитической химии в организации мониторинга окружающей среды. Это мониторинг загрязнения поверхностных вод, почв ТМ, пестицидами, нефтепродуктами, радионуклидами. Одной из задач мониторинга является создание критериев, устанавливающих пределы возможного экологического ущерба. Например ПДК - предельно-допустимая концентрация - это такая концентрация, при воздействии которой на организм человека, периодически или в течении всей жизни, прямо или косвенно через экологические системы, не возникает заболеваний или изменений состояния здоровья, обнаруживаемые современными методами сразу же или в отдаленные сроки жизни. Для каждого хим. вещества имеется свое значение ПДК.

Классификация методов качественного анализа.

Исследуя новое соединение, прежде всего определяют, из каких элементов (или ионов) оно состоит, а затем уже количественные отношения, в которых они находятся. Поэтому качественный анализ, как правило, предшествует количественному анализу.

Все аналитические методы основаны на получении и измерении аналитического сигнала, т.е. любого проявления химических или физических свойств вещества, которое можно использовать для установления качественного состава анализируемого объекта или для количественной оценки содержащихся в нем компонентов. Анализируемым объектом может быть индивидуальное соединение в любом агрегатном состоянии. смесь соединений, природный объект (почва, руда, минерал, воздух, вода), продукты промышленного производства и продукты питания. Перед анализом проводят отбор пробы, измельчение, просеивание, усреднение и т.д. Подготовленный для анализа объект называют образцом или пробой.

В зависимости от поставленной задачи выбирают метод. Аналитические методы качественного анализа по способу выполнения делятся на: 1) анализ “сухим” и 2) анализ “мокрым” путем.

Анализ “сухим” путем проводится с твердыми веществами. Он делится на пирохимический и метод растирания.

Пирохимический (греч. - огонь) вид анализа проводится нагреванием исследуемого образца в пламени газовой или спиртовой горелки, выполняется двумя путями: получение окрашенных “перлов” или окрашивание пламени горелки.

1.“Перлы” (франц. - жемчуг) образуются при растворении в расплаве солей NaNH 4 PO 4 ∙ 4 H 2 O, Na 2 B 4 O 7 ∙ 10 H 2 O - бура) или оксидов металлов. Наблюдая окраску полученных перлов “стекол” устанавливают присутствие тех или иных элементов в образце. Так, например, соединения хрома делают зеленую окраску перла, кобальта - синюю, марганца - фиолетово-аметистовую и т.д.

2. Окрашивание пламени - летучие соли многих металлов при внесении их в несветящуюся часть пламени окрашивают его в разные цвета, например, натрий - интенсивно желтый, калий - фиолетовый, барий - зеленый, кальций - красный и т.д. Эти виды анализа используются в предварительных испытаниях и в качестве “экспресс” - метода.

Анализ методом растирания. (1898г. Флавицкий). Исследуемый образец растирают в фарфоровой ступке с равным количеством твердого реагента. По окраске полученного соединения судят о наличии определяемого иона. Метод используется в предварительных испытаниях и проведения “экспресс” анализа в полевых условиях для анализа руд и минералов.

2.Анализ “мокрым” путем - это анализ образца, растворенного в каком - либо растворителе. В качестве растворителя чаще всего используют воду, кислоты или щелочи.

По способу проведения методы качественного анализа делятся на дробный и систематический. Метод дробного анализа - это определение ионов с помощью специфических реакций в любой последовательности. Применяется в агрохимических, заводских и пищевых лабораториях, когда состав исследуемого образца известен и требуется только проверить отсутствие примесей или в проведении предварительных испытаний. Систематический анализ - это анализ в строго определенной последовательности, в которой каждый ион обнаруживается только после того, как будут обнаружены и удалены мешающие определению ионы.

В зависимости от взятого количества вещества для анализа, а также от техники выполнения операций методы подразделяются на:

- макроанализ - проводится в сравнительно больших количествах вещества(1- 10 г). Анализ выполняется в водных растворов и в пробирках.

-микроанализ - исследует очень малые количества вещества (0,05 - 0,5 г). Выполняется либо на полоске бумаги, часовом стекле с каплей раствора (капельный анализ) или на предметном стекле в капле раствора получают кристаллы, по форме которых под микроскопом устанавливают вещество (микрокристаллоскопический).

Основные понятия аналитической химии.

Аналитические реакции - это реакции, сопровождающиеся хорошо заметным внешним эффектом:

1) выпадением или растворением осадка;

2) изменением окраски раствора;

3) выделение газа.

Кроме того, к аналитическим реакциям предъявляются еще два требования: необратимость и достаточная скорость реакции.

Вещества, под действием которых происходят аналитические реакции, называются реагентами или реактивами. Все хим. реагенты делятся на группы:



1) по химическому составу (карбонаты, гидроксиды, сульфиды и т.д.)

2) по степени очистки основного компонента.

Условия выполнения хим. анализа:

1. Среда реакции

2. Температура

3. Концентрация определяемого иона.

Среда. Кислая, щелочная, нейтральная.

Температура. Большинство хим. реакций выполняются при комнатных условиях “на холоду”, или иногда требуется охладить под краном. Многие реакции идут при нагревании.

Концентрация - это количество вещества, содержащееся в определенном весовом или объемном количестве раствора. Реакция и реактив, способный вызвать в заметной степени свойственный ему внешний эффект даже при ничтожно малой концентрации определяемого вещества, называются чувствительными .

Чувствительность аналитических реакций характеризуется:

1) предельным разбавлением;

2) предельной концентрацией;

3) минимальным объемом предельно разбавленного раствора;

4) пределом обнаружения (открываемым минимумом);

5) показателем чувствительности.

Предельное разбавление Vlim – максимальный объем раствора, в котором может быть (больше чем в 50 опытах из 100 опытов) обнаружен один грамм данного вещества при помощи данной аналитической реакции. Предельное разбавление выражается в мл/г.

Например, при реакции ионов меди с аммиаком в водном растворе

Cu 2+ + 4NH 3 = 2+ ¯ярко-синий комплекс

Предельное разбавление иона меди равно (Vlim = 2,5 · 10 5 мг/л), т.е. ионы меди можно открыть с помощью этой реакции в растворе, содержащем 1 г меди в 250 000 мл воды. В растворе, в котором содержится менее 1 г меди (II) в 250 000 мл воды, обнаружить эти катионы вышеприведенной реакцией невозможно.

Предельная концентрация Сlim (Cmin) – наименьшая концентрация, при которой определяемое вещество может быть обнаружено в растворе данной аналитической реакцией. Выражается в г/мл.

Предельная концентрация и предельное разбавление связаны соотношением: Сlim = 1 / V lim

Например, ионы калия в водном растворе открывают с помощью гексанитрокобальтатом (III) натрия

2K + + Na 3 [ Co(NO 2) 6 ] ® NaK 2 [ Co(NO 2) 6 ] ¯ + 2Na +

Предельная концентрация ионов К + при этой аналитической реакции равна С lim = 10 -5 г/мл, т.е. ион калия нельзя открыть указанной реакцией, если его содержание составляет меньше 10 -5 г в 1 мл анализируемого раствора.

Минимальный объем предельно разбавленного раствора Vmin – наименьший объем анализируемого раствора, необходимый для обнаружения открываемого вещества данной аналитической реакцией. Выражается в мл.

Предел обнаружения (открываемый минимум) m – наименьшая масса определяемого вещества, однозначно открываемого данной ан. реакциейв минимальном объеме предельно разбавленного раствора. Выражается в мкг (1 мкг = 10 -6 г).

m = C lim · V min × 10 6 = V min × 10 6 / V lim

Показатель чувствительности аналитической реакции определяется

pС lim = - lg C lim = - lg(1/Vlim) = lg V lim

Ан. реакция тем чувствительнее, чем меньше ее открываемый минимум, минимальный объем предельно разбавленного раствора и чем больше предельное разбавление.

Величина предела обнаружения зависит от:

1. Концентрации исследуемого раствора и реагента.

2. Продолжительности протекания ан. реакции.

3. Способа наблюдения внешнего эффекта (визуально или с помощью прибора)

4. Соблюдения условий выполнения ан. Реакций (t, рН, количество реагента, его чистота)

5. Присутствии и удаления примесей, посторонних ионов

6. Индивидуальные особенности химика-аналитика (аккуратность, острота зрения, умение различать цвета).

Типы аналитических реакций (реактивов):

Специфические - реакции, позволяющие определять данный ион или вещества в присутствии любых других ионов или веществ.

Например: NH4 + + OH - = NH 3 ­ (запах) + H 2 O

Fe 3+ + CNS - = Fe(CNS) 3 ¯

кроваво-красный

Селективные - реакции позволяют избирательно открывать сразу несколько ионов с одинаковым внешним эффектом. Чем меньше ионов открывает данный реактив, тем выше его избирательность.

Например:

NH 4 + + Na 3 = NH 4 Na

K + + Na 3 = NaК 2

Групповые реакции (реагенты) позволяют обнаруживать целую группу ионов или каких-то соединений.

Например: катионы II группы - групповой реагент (NH4)2CO3

СaCI 2 + (NH 4) 2 CO 3 = CaCO 3 + 2 NH 4 CI

BaCI 2 + (NH 4) 2 CO 3 = BaCO 3 + 2 NH 4 CI

SrCI 2 + (NH 4) 2 CO 3 = SrCO 3 + 2 NH 4 CI

Методом анализа называют принципы, положенные в основу анализа вещества, то есть вид и природу энергии, вызывающей возмущение химических частиц вещества.

В основе анализа лежит зависимость между фиксируемым аналитическим сигналом от наличия или концентрации определяемого вещества.

Аналитический сигнал – это фиксируемое и измеряемое свойство объекта.

В аналитической химии методы анализа классифицируют по характеру определяемого свойства и по способу регистрации аналитического сигнала:

1.химические

2.физические

3.физико-химические

Физико-химические методы называют инструментальными или измерительными, так как они требуют применения приборов, измерительных инструментов.

Рассмотрим полную классификацию химических методов анализа.

Химические методы анализа - основаны на измерении энергии химической реакции.

В ходе реакции изменяются параметры, связанные с расходом исходных веществ или образованием продуктов реакции. Эти изменения можно либо наблюдать непосредственно (осадок, газ, цвет), либо измерять такие величины, как расход реагента, массу образующегося продукта, время реакции и т.д.

По цели проведения методы химического анализа подразделяют на две группы:

I.Качественный анализ – заключается в обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество.

Методы качественного анализа классифицируются:

1. анализ катионов

2. анализ анионов

3. анализ сложных смесей.

II.Количественный анализ – заключается в определении количественного содержания отдельных составных частей сложного вещества.

Количественные химические методы классифицируют:

1. Гравиметрический (весовой) метод анализа основан на выделении определяемого вещества в чистом виде и его взвешивании.

Гравиметрические методы по способу получения продукта реакции делят:



а) химиогравиметрические методы основаны на измерении массы продукта химической реакции;

б) электрогравиметрические методы основаны на измерении массы продукта электрохимической реакции;

в) термогравиметрические методы основаны на измерении массы вещества, образующегося при термическом воздействии.

2. Волюмометрические методы анализа основаны на измерении объема реагента, израсходованного на взаимодействие с веществом.

Волюмометрические методы в зависимости от агрегатного состояния реагента делят на:

а) газоволюметрические методы, которые основаны на избирательном поглощении определяемого компонента газовой смеси и измерением объема смеси до и после поглощения;

б) ликвидоволюметрические (титриметрические или объёмные) методы основаны на измерении объема жидкого реагента, израсходованного на взаимодействие с определяемым веществом.

В зависимости от типа химической реакции выделяют методы объемного анализа:

· протолитометрия – метод, основанный на протекании реакции нейтрализации;

· редоксометрия – метод, основанный на протекании окислительно-восстановительных реакциях;

· комплексонометрия – метод, основанный на протекании реакции комплексообразования;

· методы осаждения – методы, основанные на протекании реакций образования осадков.

3. Кинетические методы анализа основаны на определении зависимости скорости химической реакции от концентрации реагирующих веществ.

Лекция № 2. Стадии аналитического процесса

Решение аналитической задачи осуществляется путем выполнения анализа вещества. По терминологии ИЮПАК анализом[‡] называют процедуру получения опытным путем данных о химическом составе вещества.

Независимо от выбранного метода проведение каждого анализа складывается из следующих стадий:

1) отбор пробы (пробоотбор);

2) подготовка пробы (пробоподготовка);

3) измерение (определение);

4) обработка и оценка результатов измерений.

Рис1. Схематическое изображение аналитического процесса.

Отбор проб

Проведение химического анализа начинают с отбора и подготовки пробы к анализу. Следует отметить, что все стадии анализа связаны между собой. Так, тщательно измеренный аналитический сигнал не дает правильной информации осодержании определяемого компонента, если неправильно проведен отбор или подготовка пробы к анализу. Погрешность при отборе пробы часто опреде­ляет общую точность определения компонента и делает бессмысленным ис­пользование высокоточных методов. В свою очередь отбор и подготовка пробы зависят не только от природы анализируемого объекта, но и от способа изме­рения аналитического сигнала. Приемы и порядок отбора пробы и ее подготов­ки настолько важны при проведении химического анализа, что обычно предпи­сываются Государственным стандартом (ГОСТ).

Рассмотрим основные правила отбора проб:

· Результат может быть правильным только в том случае, если проба достаточно представительна , то есть точно отражает состав материала, из которого она была отобрана. Чем больше материала отобрано для пробы, тем она представительней. Однако с очень большой пробой трудно работать, это увеличивает время анализа и расходы на него. Таким образом, отбирать пробу нужно так, чтобы она была представительной и не очень большой.

· Оптимальная масса пробы обусловлена неоднородностью анализируемого объекта, размером частиц, с которых начинается неоднородность, и требованиями к точности анализа.

· Для обеспечения представительности пробы необходимо обеспечить однородность партии. Если сформировать однородную партию не удается, то следует использовать расслоение партии на однородные части.

· При отборе проб учитывают агрегатное состояние объекта.

· Должно выполняться условие по единообразию способов отбора проб: случайный отбор, периодический, шахматный, многоступенчатый отбор, отбор «вслепую», систематический отбор.

· Один из факторов, который нужно учитывать при выборе способа отбора пробы – возможность изменения состава объекта и содержания определяемого компонента во времени. Например, переменный состав воды в реке, изменение концентрации компонентов в пищевых продуктах и т.д.