Измерительные

Прямое и непрямое поражение током диэлектрики. Условия поражения электрическим током

Прямое и непрямое поражение током диэлектрики. Условия поражения электрическим током

7.Защита от воздействия электрического тока.

7.1. Действие электрического тока на организм человека.

При эксплуатации и ремонте электрических сетей и электрооборудования человек может оказаться в непосредственном соприкосновений с находящимися под напряжением частями электропроводок. В результате прохождения тока через организм человека может произойти нарушение его жизнедеятельности функции. Общие нарушения вызывают сбои функции центральной нервной системы, органов дыхания и кровообращения.

Электрический ток проходя через тело человека может оказывать биологическое, тепловое, механическое и химическое действие.

Биологическое действие проявляется в возбуждении и раздражении живых тканей организма;

Тепловое – в способности вызывать ожоги отдельных участков тела;

Механическое – приводит к разрыву тканей, вывиху суставов, и повреждению костей;

Химическое – к электролизу крови (разложению).

Опасность электрического тока состоит в том, что он не имеет внешних признаков и не ощущается органами чувств человека. Только в момент прикосновения к токоведущим частям и возникновения поражающего действия организм начинает ощущать болевые проявления от протекания тока.

Тяжесть поражения электрическим током зависит от ряда факторов, в том числе силы тока, электрического сопротивления тела человека и длительности протекания тока через него, рода и частоты тока, пути его прохождения, индивидуальных свойств организма и условий окружающей среды.

По степени воздействия на человека различают три пороговых значения тока: ощутимый, неотпускающий и фибрилляционный .

Ощутимый – это электрический ток, который при прохождений через организм вызывает ощутимое раздражение. В качестве этого критерия электробезопасности принят ток I =0,6 мА, который не вызывает нарушений деятельности организма. Допустимая длительность протекания такого тока через тело человека не более 10 минут.

Неотпускающий – ток, который при прохождении через тело человека вызывает непреодолимые судорожные сокращения мышц руки, ноги или других частей тела, соприкасающихся с токоведущим проводником. В качестве этого критерия электробезопасности принят ток I =6 мА . Длительность воздействия такого тока ограничивается защитной реакцией самого человека.

Фибрилляционный – ток, вызывающий при прохождений через организм фибрилляцию сердца – хаотические, разновременные и разрозненные сокращения мышечных волокон сердца и паралич дыхания.

При частоте тока 50 Гц фибрилляционными являются токи в пределах от 50 мА до 5 А, а среднее значение порогового фибрилляционного тока – примерно 100 мА. При постоянном токе средним значением порогового фибрилляционного тока можно считать 300 мА, а верхним пределом 5 А.

На степень поражения сильно влияет электрическое сопротивление тела человека, которое изменяется в очень больших пределах.

Наибольшим сопротивлением обладает верхний слой кожи толщиной около 0,2 мм, состоящий из ороговевших клеток. Удельное электрическое сопротивление сухой кожи равно 3∙10 3 -2∙10 4 Ом∙м, а внутренних мышечных тканей – 200-300 Ом∙м. Повреждение рогового слоя (порезы, царапины, ссадины и другие микротравмы) может снизить сопротивление до значений, близких к значению внутреннего сопротивления, что увеличивает опасность поражения человека током.

Такое же влияние оказывает увлажнение кожи, а также загрязнение проводящей пылью или грязью.

Повышение напряжения приложенного к телу человека, в десятки раз уменьшает сопротивление кожи, а следовательно и полное сопротивление тела, которое приближается к своему наименьшему значению 300-500 Ом.

В качестве расчётных значений электрическое сопротивление тела человека принимают 1000 Ом при напряжении U = 50В и 6000 Ом при U = 36В.

В связи с большими различиями значений сопротивлений тканей человека и невозможностью заранее предвидеть место контакта тела человека с токоведущими частями оборудования, определить поражающую силу тока невозможно. Для оценки безопасных условий исходят из допустимых напряжений.

Безопасным напряжением считают напряжение 36 В(для светильников местного стационарного освещения, переносных светильников и электроинструмента в помещениях с повышенной опасностью) и 12 В в особо опасных помещениях (при работах внутри котлов, металлических резервуарах и др.).

В производственных процессах используют два рода тока: постоянный и переменный. При напряжениях до 500 В опасность поражения переменным током выше чем постоянным. Переменный ток частотой 50 Гц представляет наибольшую опасность, а с повышением частоты эта опасность уменьшается.

Опасность поражения электрическим током зависит от условий выполнения работ в производственных помещениях. По степени опасности поражения людей электрическим током производственные помещения, согласно ПУЭ, подразделяют на помещения особо опасные, с повышенной опасностью и без повышенной опасности.

Особо опасные помещения имеют повышенную влажность (по производственным условиям относительная влажность в них приближается к 100%) или химически активную среду, которая постоянно или длительно разрушающе действует на изоляцию и токоведущие части. Возможно и одновременное Действие этих двух факторов, определяющих признаки повышенной опасности производственных помещений. Особо опасными помещениями являются пропиточные, гальванические, газогенераторные участки и отделения, душевые, прачечные, помещения для зарядки аккумуляторов и др. В них разрешается работать электроинструментом напряжением не выше 42В при обязательном применении средств индивидуальной защиты (диэлектрических перчаток, ковриков и др.). Переносные электрические светильники должны иметь напряжение не более 12В.

Помещения с повышенной опасностью – это такие помещения, в которых относительная влажность длительно превышает 75%; имеются токопроводящие полы (металлические, земляные, железобетонные и др.) или токопроводящая пыль; температура воздуха длительно превышает +35°С; установлены большие заземлённые металлические конструкции и возможно одновременное прикосновение человека к имеющим соединение с землёй металлоконструкций зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования – с другой. К таким помещениям относят кузнечные, механические, столярные производственные участки и отделения, неотапливаемые складские помещения и др. Напряжение электроинструмента и переносных электрических светильников, применяемых в помещениях с повышенной опасностью, не должно превышать 42В.

Помещениями без повышенной опасности являются все помещения, в которых отсутствуют факторы, определяющие особую и повышенную опасность помещений. Это служебные и бытовые помещения, отапливаемые склады и др.

Электроустановки вне помещений по степени опасности приравнивают к электроустановкам, эксплуатируемых в особо опасных помещениях.

Все электроустановки (трансформаторы, электрооборудование, электроприборы и т.п.) согласно Правилам устройства электроустановок (ПУЭ) по условиям электробезопасности разделяют на:

· электроустановки напряжением выше 1000В.

· электроустановки напряжением до 1000В.

· электроустановки с малым напряжением, не превышающим 42В.

7.2.Опасность прикосновения к токоведущим частям в сетях с изолированной и глухозаземленной нейтралью.

Степень поражения при прикосновении к токоведущим частям электрической сети зависит от схемы прикосновения человека, напряжения сети, режима нейтрали сети, качества изоляции токоведущих частей от земли и других факторов.

Наибольшую опасность представляет двухфазное (двухполюсное) прикосновение, при котором человек одновременно присоединяется к двум фазам электроустановки и оказывается под действием рабочего напряжения. Ток I ч, проходящий через тело человека, будет зависеть в этом случае только от напряжения сети и электрического сопротивления тела человека (рис. 7.1).

В сети постоянного тока или однофазной сети ток через тело человека, А:

I = U раб / R ч

где U раб – рабочее напряжение сети, В,

R ч – сопротивление тела человека, Ом.

В трёхфазной сети при касании двух линейных проводов:

I ч = U л / R ч = √3U ф / R ч

где U Л – линейное напряжение сети, В,

U Ф – фазное напряжение сети, В.

Такое включение человека встречается достаточно редко, чаще имеет место однофазное прикосновение. В этом случае на протекающий через человека ток оказывает влияние режим нейтрали источника тока (изолированная или глухозаземлённая), сопротивление изоляции и ёмкость фаз относительно земли.

В трёхфазной сети с изолированной нейтралью напряжением до 1000В (рис. 7.2а) при условии её малой протяжённости емкостным сопротивлением можно пренебречь, и тогда ток проходящий через человека:

I ч = 3U ф /(3R ч + r и)

Из приведённой формулы следует, что в неразветвлённых сетях небольшой протяжённости опасность поражения человека тем больше, чем ниже уровень изоляции (сопротивление изоляции проводов – r и). относительно земли.

В сетях с глухозаземлённой нейтралью (рис. 7.2б) ток, который пройдёт через человека при его прикосновении к фазе, будет:

I ч = U Ф / (R ч + R о)

В этом случае при прикосновении к одной из фаз трёхфазной четырёхпроводной сети с глухозаземлённой нейтралью человек оказывается практически под фазным напряжением.

7.3.Опаснсть напряжения прикосновения и шага.

При пробое или нарушении изоляции электроустановок (рис.7.3) их корпуса и соединённые с ними заземлители оказываются под напряжением. При прикосновении к любому корпусу электроустановки 1, 2, 3 возникает опасность поражения человека электрическим током. Ток, протекающий через корпус электроустановки и заземлитель, растекается по значительному объёму земли. В этом случае земля становится участком электрической цепи. Пространство вокруг заземлителя, где проходит растекание тока на землю, называют полем растекания.

Для выявления закономерности распределения потенциалов на поверхности земли в зоне растекания тока примем допущение что ток замыкания I з стекает в землю через полусферический заземлитель радиусом r , находящийся в однородном грунте с удельным сопротивлением ρ , Ом∙м. (Распределение потенциала на поверхности земли при растекании тока в грунте показан на рис. 7.4.).

Потенциал т.А, находящийся на расстоянии х А от заземлителя можно определить из выражения:

(7.1)

Из выражения (7.1) видно, что потенциал на поверхности земли вокруг полушарового заземлителя изменяется по закону гиперболы, уменьшаясь от максимального значения до нуля по мере удаления от заземлителя.

При попадании человека в зону растекания тока, он может оказаться под разностью потенциалов, которая существует между двумя точками земли, на которых стоит человек. Эту разность потенциалов между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек, называют напряжением шага .

Напряжение шага U ш можно определить как разность потенциалов между точками А и В на поверхности земли (рис.7.3).

Напряжение шага зависит от ширины шага α, и расстояния х А от места замыкания на землю. По мере удаления от места замыкания опасность шаговых напряжений уменьшается: U ш1 › U ш2 (рис. 7.3). На расстоянии около 20м от места замыкания шаговое напряжение практически не представляет опасности. При шаге равном 0,8м вблизи места растекания тока шаговое напряжение может достигать 100 – 150В. Такое напряжение при протекании тока по пути «нога – нога» может вызвать судороги мышц ног, и человек может упасть на землю.

Для уменьшения шагового напряжения в зоне растекания тока человек должен соединить ноги вместе, и не спеша выходить из опасной зоны так, чтобы при передвижении ступня одной ноги не выходила за пределы другой.

Напряжением прикосновения называют напряжение между двумя точками цепи тока, которых одновременно касается человек, или напряжение, приложенное к телу человека.

Корпуса электроустановок 1, 2, 3, которых может коснуться человек (рис.7.3), соединённых заземляющей шиной с заземлителем, при пробое изоляции окажутся под тем же потенциалом, что и сам заземлитель- j з

Потенциал другой точки – это потенциал основания (земли) в том месте где стоит человек – j осн

В этом случае напряжение прикосновения будет:

Где – коэффициент напряжения прикосновения, учитывающей форму потенциальной кривой при полусферическом заземлителе. При заземлителях другой формы коэффициент α 1 определяют из других выражений.

Таким образом, напряжение прикосновения для человека (рис.7.3.), касающегося заземлённого корпуса электроустановки и стоящего на земле, определяется отрезком ОС и зависит от формы потенциальной кривой и расстояния х между человеком и заземлителем: чем дальше от заземлителя находится человек, тем больше U пр и наоборот.

При наибольшем расстоянии х = ∞, а практически при х ≥ 20м напряжение прикосновения имеет наибольшее значение:

U ПР =U З ;

Это наиболее опасный случай прикосновения.

При наименьшем значении х , т.е. когда человек стоит непосредственно на заземлителе U ПР =0 , и .

Это безопасный случай, при котором человек не подвергается воздействию напряжения, хотя он и находится под потенциалом заземлителя.

При других значениях х в пределах 0…20м U пр плавно возрастает от 0 до з, а от 0 до 1 (пунктирная кривая на рис. 7.3.).

7.4. Организационные мероприятия и технические средства,

обеспечивающие безопасность работ в электроустановках.

Обслуживание электроустановок, производство монтажных, ремонтных и наладочных работ требуют выполнения организационных и технических мероприятий, применения технических средств по предупреждению поражения человека электрическим током.

Работы в действующих установках по мерам безопасности разбивают на 4 категории:

При полном снятии напряжения;

При частичном снятии напряжения;

Без снятия напряжения вблизи и на токоведущих частях, находящихся под напряжением;

Без снятия напряжения вдали от токоведущих частей, находящихся под напряжением

Правилами техники безопасности определены требования к персоналу, обслуживающему электроустановки.

7.5.Защита от поражения электрическим током при прикосновении к

нетоковедущим частям электроустановок.

Для устранения опасности поражения током в случае прикосновения к корпусу электроустановки и к другим нетоковедущим металлическим частям, оказавшимся под напряжением в результате нарушения изоляции, применяют защитное заземление, зануление и защитное отключение .

Защитным заземлением называют преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки, которые могут оказаться под напряжением, с заземляющим устройством.

Заземляющее устройство состоит из заземлителя и заземляющих проводников. Заземлителем является металлический проводник (электрод) или группа соединённых между собой проводников (электродов), находящихся в непосредственном соприкосновении с землёй. Заземляющим проводником называют металлический проводник, который соединяет заземляемые части электроустановки с заземлителем.

Принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения . Это достигается путём уменьшения потенциала заземлённого оборудования, за счёт уменьшения сопротивления заземлителя.

При замыкании токоведущих частей на заземлённый корпус электроустановки он окажется под напряжением U З =I З R З Человек при прикосновении к корпусу попадает под напряжение. Ток протекающий через тело человека будет

Из этого выражения видно, что ток через человека можно уменьшить путём уменьшения сопротивления заземления R з и коэффициента прикосновения или увеличения общего сопротивления человека R оч .

Защитное заземление применяют в трёхфазных сетях напряжением до 1000 В с изолированной нейтралью. (рис. 7.5-а) и сетях напряжением выше 1000 В с заземлённой нейтралью. (рис. 7.5-б).

Сопротивление заземляющего устройства Rз в таких случаях не должно быть больше нормированной величины. Эта величина зависит от напряжения электроустановки, мощности источника питания и является основным показателем, характеризующим пригодность защитного заземления для данных условий.

Согласно ПУЭ и ГОСТ 12.1.030-81 « ССБТ. Электробезопасность. Защитное заземление. Зануление » в электроустановках переменного тока напряжением до 1000 В в сети с изолированной нейтралью сопротивление заземляющего устройства не должно превышать 4 Ом. Если мощность источника питания (трансформатора, генератора) не превышает 100 кВ ·А, то сопротивление заземляющего устройства может достигать 10 Ом, но не более.

В электроустановках с напряжением выше 1000 В сопротивление заземляющего устройства должно быть не более 250/I з (где I з – ток замыкания на землю). При использовании заземляющего устройства одновременно и для электроустановок напряжением до 1000 В его сопротивление R з = 125/I з . Во всех случаях сопротивление R з не должно превышать 10 Ом.

Сопротивление заземления измеряют не реже одного раза в год в периоды наименьшей проводимости:один раз летом при наибольшем просыхании почвы, один раз зимой при наибольшем промерзании почвы. Контроль сопротивления заземления проводят при помощи измерителей защитного заземления типов МС-08, М-416 и др.

7.6 Расчёт защитного заземления .

Расчёт заключается в определении числа заземляющих проводников (труб, стержней), и длины соединяющей полосы, способа размещения в грунте.

Порядок расчёта заземлителей.

1. Зная напряжение, мощность и режим нейтрали электроустановки, определяют нормируемую величину сопротивления –R з.

2. Определяют расчётное удельное сопротивление грунта .

За расчётное удельное сопротивление грунта принимают наибольшее его значение в течении года

где – удельное сопротивление грунта, полученное при измерении, Ом*м

Ψ – коэффициент, учитывающий увеличение удельного сопротивления земли в течении года для разных климатических зон. По таблице 3.11 и 3.12 [ 7 ].

3.Рассчитывают сопротивление R В вертикальных одиночных заземлителей по эмпирическим формулам табл. 3.1 , табл. 11.4.[ 4 ].

4. Определяют число вертикальных заземлителей n с учетом коэффициента использования вертикальных электродов.

Сначала принимают =1. Затем уточняют количество электродов с учетом выбранного по табл. 3.2. значения , который зависит от числа заземлителей, способа их размещения и от отношения расстояния а между заземлителями к их длине l.

5. Находят длину соединяющей вертикальные электроды полосы. При размещении электродов в ряд длина полосы l n =1.05*a(n-1)

При размещении по контуру l n =1.05*a*n

6. По расчетным и выбранным параметрам полосы определяют ее сопротивление R г по эмпирическим формулам табл. 3.1[ 7 ] , табл. 11.4.[ 4 ].

7. Определяют результирующее сопротивление R общ растеканию тока сложного заземлителя с учетом экранирования между полосами и вертикальными электродами, учитываемого коэффициентом использования горизонтального полосового электрода.

Результирующее сопротивление заземлителей не должно превышать нормируемую величину, £

Зануление .

Этот способ защиты от поражения электрическим током заключается в преднамеренном электрическом соединении металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с нулевым защитным проводником.

Нулевым защитным проводником называют проводник, соединяющий зануляемые части с глухозаземлённой нейтральной точкой в трёхфазных сетях, с глухозаземлённым выводом обмотки источника тока в однофазных сетях и с глухозаземлённой средней точкой обмотки источника в сетях постоянного тока.

Принципиальная схема зануления в сети трёхфазного тока показана на рис. 7.6.

Защитный эффект зануления состоит в уменьшении длительности замыкания на корпус и, следовательно, в снижении времени воздействия электрического тока на человека.

Это достигается путём подключения корпусов электроустановок к нулевому проводу. При таком соединении любое замыкание на корпус превращается в однофазное, короткое замыкание. В этом случае в цепи возникает большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить повреждённую электроустановку от питающей сети.

Рис. 7.6 Схема зануления в трёхфазной сети.

1.Корпус электроустановки. 2. Аппараты защиты от к.з., r0 – сопротивление заземления нейтрали обмотки источника тока. r п – сопротивление повторного заземления нулевого защитного проводника. Iк – ток короткого замыкания. Iн – часть тока к.з., протекающего через нулевой защитный проводник. Iз – часть тока к.з., протекающего через землю.

Такой защитой являются: плавкие предохранители или автоматические выключатели максимального тока, магнитные пускатели со встроенной тепловой защитой и другие.

Нулевой защитный проводник соединяют с землёй с помощью повторного заземлителя r п (рис. 7.6). В этом случае с момента возникновения замыкания на корпус и до автоматического отключения электроустановки от сети, проявляется защитное свойство этого заземлителя, как при защитном заземлении, то есть заземление корпусов через нулевой проводник снижает в аварийный период их напряжение относительно земли.

Таким образом, зануление осуществляет два защитных действия – быстрое автоматическое отключение повреждённой электроустановки от питающей сети и снижение напряжения занулённых металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли.

При технической эксплуатации электрооборудования промышленных предприятий электротравмы могут возникать по следующим причинам:

Прикосновение непосредственной к токоведущим частям электроустановок, действующих под напряжением. Это может произойти из-за неисправности ограждающих устройств электроустановок, ошибочные действия персонала, когда работы выполняются вблизи или непосредственно на токопроводящих элементах, находящихся под напряжением, а также при появлении напряжения (в результате ошибочной подачи) на ранее отключенных электроустановках и участках сети;

Тяжелые и смертельные несчастные случаи (более 200), проанализированы В.Е.Манойловим, показали, что на случайное прикосновение, не вызываемый производственной необходимостью и ошибочной подачей напряжения, в процессе ремонтов и осмотров электроустановок, приходится около 53% всех электротравм;

Прикосновение к металлическим конструктивных частей электроустановок, которые не должны находиться под напряжением, но на корпусах, кожухах и ограждающих устройств может появиться напряжение в результате электрического пробоя или естественного старения изоляции электроустановок, а также при замыкании оголенных проводов из-за обрыва и падения на конструктивные части электроустановок и при отсутствии защитного заземления, эти причины составляют около 22% всех травм;

Прикосновение инструментом и предметами, имеющими малое сопротивление, к изоляции, к токоведущим частям, а также к неметаллических частей электроустановок, оказавшимся под напряжением из-за заводские дефекты в конструкции, при монтаже и изготовления. На эти причины приходится 14% электротравм;

Прикосновение к стенам, полам, строительных конструкций, оказались под шаговое напряжение. Шаговое напряжение возникает при растекании электрического тока от трубопроводов, строительных конструкций, рельсовых путей, на которые перешел электрический ток в результате падения проводов или ухудшения изоляции. Такие причины составляют 2-3%;

Действие дуги при операциях с видмикальнимы устройствами и другие причины. Они составляют около 6%.

Просмотр электротравм, проведенный В.Е.Манойловим, показал, что электротравмы из-за ошибочной подачи напряжения на электроустановки при их ремонтов и осмотров обусловлены неудовлетворительной организацией ремонтных работ, недостаточным знанием работниками правил по технике безопасности.

Очень большой процент электротравм при случайном прикосновении, не вызвано производственной необходимостью (до 30%), и небольшой -при соприкосновения в процессе работы (до 2%) позволяет сделать вывод, что работники, не связанные с эксплуатацией электроустановок, не знают, какую опасность представляет электрический ток для человека.

В ДСТУ 2843-94 "Электротехника. Основные понятия. Термины и определения" установлены термины и определения основных понятий электробезопасности.

Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Электротравма - травма, вызванная воздействием электрического тока или электрической дуги.

Электротравматизм - явление, характеризующееся совокупностью электротравм.

Электрическое замыкание на корпус - случайное электрическое соединение токопроводящей части с металлическими НЕ токоведущими частями электроустановок.

Электрическое замыкание на землю - случайное электрическое соединение токоведущей части непосредственно с землей или никак токопроводящими ведущими конструкциями, или предметами, не изолированы от земли.

Ток замыкания на землю - ток, проходящий через место замыкания на землю.

Зона растекания тока замыкания на землю - зона земли, за пределами которой электрический потенциал, обусловленный токами замыкания на землю, может быть условно принят равным нулю.

Напряжение относительно земли - напряжение относительно места земли, находящейся вне зоны растекания тока замыкания на землю.

Электрический ток не оказывается органами чувств человека. Поражение человека электрическим током опасно потому, что электрический ток может возникнуть неожиданно на металлических нетоковедущих частях электроустановок, аппаратов, механизмов, а также на поверхности земли, когда человек не применяет средств защиты.

Поражение электрическим током относятся к опасным факторам, отражаются на всем организме. Однако все электротравмы условно разделяют на два основных вида: местные электротравмы, когда возникает местное поражение организма, электрический ожог, электрические знаки, металлизация кожи, общие электротравмы, когда поражается весь организм человека из-за нарушения нервной системы, нормальной деятельности жизненно важных органов и систем - электрический удар.

Электрический ожог - наиболее распространенная электротравма. Это токовый ожог в сетях до 2 кВ и ожог дугой. Температура дуги может быть до 3500 ° С. Дуга может возникать при случайных коротких замыканиях в электроустановках до 6 кВ при проведении работ под напряжением, на щитах и сборках, измерения переносными приборами и др. В сетях с напряжением выше 10 кВ дуга может возникать при приближении человека к токоведущим частям, находящимся под напряжением.

Электрические знаки - это пятна серого или бледно-желтого цвета. Конфигурация электрического знака соответствует форме токопроводящей части, к которой прикоснулся человек. Такие поражения в большинстве случаев безболезненные.

Металлизация кожи является следствием проникновения вглубь кожи паров металла, когда участок тела находится вблизи от места образования электрической дуги. Такое поражение возможно при отключении открытых рубильников и при коротких замыканиях.

Болезненное ощущение ожога и присутствие инородного тела исчезает с отмиранием поврежденной кожи.

Электрический удар. Сущность его заключается в том, что ток, протекая по всему телу человека, раздражает многочисленные периферические нервные окончания, расположенные как на поверхности тела, так и на поверхности его внутренних органов, так сильно, что в организме наступает после этого торможения координированной работы нервной системы. Результатом этого раздражения и последующего торможения является паралич сердечной деятельности, дыхания и электрический шок

Паралич сердечной деятельности. Деятельность сердца может быть парализована как при непосредственном действии электрического тока, проходящего через область сердца - первичная фибрилляция, так и через рефлекторный спазм артерий - вторичная фибрилляция. Фибрилляция сердца вызывает нарушение кровообращения и если не принять соответствующие меры, восстанавливающие сердечную деятельность, то наступает смерть человека. Фибрилляция сердца - некоординированы хаотичные подергивания многочисленных волокон сердечной мышцы, при которых "насосная" функция его прекращается.

Паралич дыхания. Паралич дыхания является следствием воздействия электрического тока на мышцы грудной клетки, обеспечивающие процесс дыхания. Затруднение дыхания человек начинает ощущать уже при 20-25 мА переменного тока, усиливается с ростом значения тока. При длительном воздействии такого тока наступает асфиксия -удушення-за недостатка кислорода и избыток углекислоты в организме человека.

Электрический шок. Это нервно-рефлекторная реакция организма, сопровождающаяся расстройством дыхания, кровообращения, обмена веществ и ин.ш.

Степень опасности воздействия электрического тока зависит от:

Силы электрического тока, протекающего через человека;

Рода и частоты тока;

Пути протекания электрического тока через тело человека;

Длительности воздействия тока на человека;

Индивидуальных особенностей человека;

Условий внешней среды, в которой работает человек.

Сила электрического тока, протекающего через человека, является основным фактором, определяющим исход поражения электрическим током. Значение напряжения, под которой оказался человек, и сопротивление ее тела влияют на исход поражения человека только в той мере, в которой напряжение и сопротивление человека определяют значение электрического тока, протекающего через человека.

Если увеличивается сила электрического тока, опасность поражения человека тоже увеличивается. Различают несколько состояний человека, возникающих при определенных значениях тока.

Ощутимый ток - электрический ток силой от 0,6 до 1,5 мА, что вызывает при прохождении через организм ощутимое раздражение.

Ток, не отпускает - электрический ток, вызывает при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажата токопроводящая часть. При токе 3-5 мА (50 Гц) раздражается вся кисть руки, которая касается токоведущих частей, при 8-10 мА боль охватывает всю руку, а при 15 мА судороги мышц рук становятся непреодолимыми, а боль невыносимой. Человек при этом не может разжать руку, в которой зажата токопроводящая часть.

Предельный фибриляцийний ток - наименьшее значение фибриляцийного тока. Значение его лежит в пределах от 100 мА до 5 А для тока 50 Гц и от 300 мА до 5 А для постоянного тока.

Постоянный и переменный ток более 5 А обусловливают мгновенную остановку сердца, минуя состояние фибрилляции. Рядом с остановкой сердца происходит прекращение дыхания, даже после кратковременного воздействия следует восстанавливать путем искусственного дыхания. Длительное воздействие больших токов, кроме того, вызывает ожоги тела, разрушение внутренней структуры ткани организма, поражение отдельных органов, приводящие к смертельному исходу.

Сопротивление тела человека состоит из электрического сопротивления различных тканей тела, которые имеют разные значения. Удельное объемное сопротивление (Ом-м), например, при переменном токе 50 Гц составляет:

Сухой кожи - от 3-10 3 до 2-10 4;

Костей от 1-10 4 до 2 10 шесть;

Жировой ткани - от 30 до 60;

Мышечной ткани - от 1,5 до 3;

Крови - от 1 до 2;

Спинномозговой жидкости - от 0,5 до 0,6.

Кожа имеет наибольший удельный сопротивление, что, главным образом, и определяет электрическое сопротивление тела человека. Кожа человека имеет два основных слоя: наружный - эпидермис и внутренний - дерма. Внешний слой кожи состоит из рогового и росткового слоев. Роговой слой кожи представляет собой несколько десятков слоев ороговевших клеток, имеющих чешуйчатую строение и плотно прилегают друг к другу. В этом слое форуме кровеносных сосудов и нервов. Толщина рогового слоя на отдельных участках тела может достигать 0,2 мм и более. На ладонях и подошвах, подвергающихся механическим воздействиям, толщина этого слоя наибольшая. Роговой слой наиболее прочный в сухом состоянии его удельное электрическое сопротивление 10 пять -10 6 Ом-м.

Измерен между двумя электродами, наложенными на поверхность тела при напряжении до 15-20 В, сопротивление тела человека может составлять 3-10 3 1-10 5 Ом. Если на этом участке удалить (соскрести) только роговой слой кожи, то сопротивление уменьшится до 1-10 3 -5-10 3 Ом, а если весь внешний слой кожи (эпидермис) - то до 500-700 Ом. Электрическое сопротивление тканей под кожей человека при вполне удаленной коже примерно 300-500 Ом.

Таким образом, из этого можно сделать вывод, что электрическое сопротивление тела человека при включении ее в цепь тока состоит из трех последовательно включенных сопротивлений (рис.12.1), два из которых - сопротивление наружного слоя кожи (эпидермиса) Z е и внутреннего сопротивления тканей тела и? . В свою очередь, сопротивление эпидермиса Z е состоит из активной и? Е и емкостной составляющих С является, включенных параллельно. Обкладками конденсатора С является является электрод прикасается к поверхности кожи, с одной стороны, и хорошо проводящие ткани, лежащие под наружным слоем кожи, с другой, а диэлектриком между ними есть слой эпидермиса.

Если кожа увлажнена, то она в полтора-два раза меньшее сопротивление, чем сухая, так как влага растворяет на поверхности кожи соли и кислоты, выделяемых из организма с потом и тогда сопротивление кожи будет меньше. Длительное увлажнение делает роговой слой кожи, в результате его насыщения влагой, почти целиком ведущим. Таким образом, потоотделение и загрязнения кожи делают кожу человека электропроводной, и, следовательно, защитная функция рогового слоя кожи, как диэлектрика, в таких условиях теряется. Поражение электрическим током в таких условиях увеличивается, так как при прочих равных условиях электрический ток, протекающий через человека, растет и растет опасность человека.

Сопротивление тела человека может резко изменяться и зависит от места соприкосновения электрического провода к телу, величины тока, протекающего по телу, приложенного напряжения, рода и частоты тока, площади прикосновения к токопроводящей части, длительности протекания электрического тока.

Электрическое сопротивление тела человека зависит от прикосновения к токопроводящей части, потому что, во-первых, меняется длина пути прохождения электрического тока, во-вторых, из-за разной толщины рогового слоя кожи, в-третьих, из-за неравномерности распределения потовых желез по поверхности тела.

Наименьшее сопротивление имеет кожа лица, шея, паховые впадины, руки на участке выше ладоней с внутренней стороны и тыльной стороны кисти руки. Больше электрический ток у человека вызывает быструю рефлекторную реакцию организма, что проявляется в повышенном потоотделении в месте соприкосновения токопроводящей части, что, в свою очередь, способствует снижению сопротивления кожи в месте соприкосновения, росту тока и опасности человека.

Более повышенное напряжение, в цепи которой оказывается человек, вызывает уменьшение сопротивления в десятки раз, что в сети может составлять 300 Ом. Объясняется это пробоем рогового слоя может возникать даже при напряжении около 50 В.

Постоянному току сопротивление тела человека больше, чем переменном электрическом тока любой частоты. С ростом частоты полное сопротивление тела человека уменьшается, так как уменьшается емкостная составляющая полного сопротивления. В принципе, если частота возрастает до бесконечности, то полное сопротивление тела человека стремится к внутреннему сопротивлению тела. Большая площадь токоведущей части, к которой прикасается человек, уменьшает полное сопротивление тела человека.

Если протекание тока через человека длительное, то оно способствует снижению полного сопротивления тела человека, вследствие повышенного кровоснабжения и, следовательно, повышенного потоотделения. При напряжениях 2 030 В за 1-2 мин. сопротивление может снижаться в среднем на 25%.

Сопротивление тела человека (электрический) зависит от физиологических факторов и окружающей среды. Сопротивление тела у женщин меньше, чем у мужчин, у детей меньше, чем у взрослых. Неожиданные звуковые и световые раздражители, а также болезненные уколы и удары способны вызвать снижение сопротивления тела человека на 20-50% в течение нескольких минут. В закрытых помещениях, где парциальное давление кислорода меньше, сопротивление тела человека уменьшается, а, следовательно, опасность поражения увеличивается.

Род и частота электрического тока влияют на исход поражения человека. Опыт показывает, что переменный ток 50 Гц в большей степени раздражает организм человека, чем равный ему постоянный. Однако это имеет место лишь при напряжениях до 300 В. Считается, что при напряжениях выше 300 В опасность постоянного тока преобладает над переменным током 50 Гц.

Если частота электрического тока увеличивается от 0 до 50 Гц опасность поражения увеличивается, поскольку растет ток через человека через емкостную составляющую сопротивления тела человека. Однако при дальнейшем увеличении частоты тока, действует на человека, наблюдается снижение опасного воздействия электрического тока, в частности электрического удара, опасность которого полностью отсутствует при частоте близкой к 10 кГц.

При частотах 10 кГц и выше существует только опасность ожога при прикосновении к токоведущим частям.

Путь электрическому току, протекающего через человека, играет значительную роль при поражении, так как на его пути могут оказаться жизненно важные органы тела человека - сердце, легкие, головной мозг и др.

Наиболее опасными путями, именуемых петлями тока, являются петли голова - руки и голова - ноги, когда ток может проходить через головной и спинной мозг. Эти петли в практике эксплуатации электроустановок встречаются редко.

Большую опасность представляет прикосновение человека к токоведущим частям электроустановок уязвимыми рефлексогенными зонами - виски, шея, грудь, который может привести к поражению электрическим током.

Продолжительность воздействия электрического тока в значительной степени определяет результат поражения, так как с увеличением времени воздействия величина тока через тело человека растет, затем снижается защитная функция организма, а также повышается вероятность воздействия тока на мышцу сердца, когда он находится в наиболее уязвимом состоянии.

Мышцу сердца в различные фазы его деятельности 1-1,5 с неодинаково чувствителен к электрическому току. Считается, что наиболее уязвимой является фаза, которая длится порядка 0,2 с - период, когда заканчивается сокращения желудочков сердца, и мышца его переходит в расслабленное состояние.

Если во время этой фазы через сердце проходит электрический ток, то при некоторых его значениях может возникать фибрилляция сердца.

Поэтому, чем меньше длительность протекания тока через организм человека, тем меньше вероятность его влияния на мышцу сердца в трудной фазе. Иными словами, при продолжительности воздействия тока на человека, равный продолжительности кардиоциклах 0,75-1 с, опасность возникновения фибрилляции сердца велика. При длительности воздействия электрического тока 0,2 с и менее, опасность возникновения фибрилляции мала, а, следовательно, опасность поражения током человека резко уменьшается.

Индивидуальные особенности организма. Человек, страдающий заболеваниями сердечно-сосудистой системы или органов внутренней секреции и нервной системы, больше подвержена воздействию электрического тока, чем здоровые.

В то время как человек в сосредоточенном состоянии, например, подготовлена к возможности воздействия электрического тока, то она меньше подвергается опасности воздействия тока, при прочих равных условиях.

Условия внешней среды определяют результат поражения в той мере, в какой они способствуют снижению значение электрического тока, протекающего через человека, и ограничивающие факторы, которые снижают электрическое сопротивление организма.

Электротравма – этотравма, полученная вследствие поражения человека электрическим током или молнией .

Опасными для человека и приводящими к электротравме считаются сила тока превышающая 0,15Ампер, а также переменное и постоянное напряжение больше 36 Вольт. Последствия электротравмы могут быть самыми разными: удар током может вызвать остановку сердца, кровообращения, дыхания, потерю сознания. Почти всегда электротравма сопровождается повреждениями кожных покровов, слизистых оболочек и костей на месте входа и выхода электрического разряда, приводит к нарушению деятельности центральной и периферической нервной системы.

Знак тока – (син. электрометка) изменения эпидермиса или эпителия при поражении электрическим током. Повреждение тканей (кожи или слизистых оболочек) в месте контакта с проводником электрического тока значительной силы и (или) напряжения характеризуется сухим некрозом тканей (вплоть до обугливания) и импрегнацией их металлом проводника. Впервые описаны австрийским ученым St. Jellinek’ом. Форма чаще всего круглая или овальная, но может быть и линейной; цвет – светлее окружающей кожи, иногда серовато-белый или просто белый, по консистенции напоминают мозоли. Иногда по краям имеется валикообразное возвышение, вследствие чего середина углубленна. Знаки тока безболезненны, отсутствует воспалительная реакция. Иногда знаки тока могут повторять форму проводника. Атипичные знаки тока могут иметь вид ран с обожженными краями, ссадин, ожогов.

В окружности знаков тока наблюдается явление эпидермиолиза, чаще на месте вхождения тока, реже – на месте выхода тока.

Знаки тока устойчивы к действию внешних факторов, гниения. Длительное пребывание типичных знаков тока в водной среде почти не изменяло их вид. Макроскопически знаки тока можно обнаруживать при гнилостных изменениях тканей в сроки до 7-10 месяцев.

Микроскопическая знаков тока зависит от локализации их на теле. Происходят изменения рогового слоя. Он приобретает спонгиозный вид или может быть «вспученным» с образованием полостей различной величины (от 10 до 100 мкм) и формы (округлые, овальные, угловатые). Они часто объединены в группы, разделенные между собой тонкими перемычками.

Гребешковые выступы эпидермиса утрачивают свою округлость. Рельеф зернистого слоя выражен отчетливо. Ядра зернистых клеток несколько уплощаются и располагаются параллельно поверхности кожи. Ядра клеток базального и частично шиповатого слоев становятся гиперхромными, располагаются перпендикулярно или под углом к поверхности кожи, образуя фигуры «завихрения», напоминающие метелки, рыбьи хвосты, частокол.

Петля тока-

В зависимости от характера развивающихся нарушений принято разделять поражения электрическим током на местные (электроожоги) и общие (электротравма) симптомы. Эти нарушения очень часто сочетаются.

Местные симптомы

Возникающие при поражении током знаки тока характеризуются следующими признаками.

1. Отмечаются обычно небольшие (диаметром до 2-3 см) участки сухого некроза округлой или линейной формы, а иногда в виде отпечатка проводника. В центре - втяжение, края приподняты. Волосы скручены.

2. Гиперемия вокруг практически отсутствует.

3. Нет болевых ощущений.

4. Может иметь место металлизация пораженных участков из-за разбрызгивания мелких частиц проводника.

Электроожоги почти всегда глубокие. Отторжение продолжается долго как из-за глубины поражения, так и вследствие нарушения кровоснабжения в результате спазма и тромбоза кровеносных сосудов.

Осложнением электроожогов является вторичный некроз тканей из-за тромбоза магистральных сосудов вплоть до развития гангрены.

При поражении молнией образуются знаки молнии - древовидные разветвления и полосы гиперемии на коже (следствие поражения стенок кожных сосудов - паралич и стаз). Они исчезают через несколько дней.

Общие симптомы

Клиническая картина обусловлена тяжестью электротравмы. Превалируют изменения со стороны сердечно-сосудистой, дыхательной и центральной нервной системы.

Частота сердечных сокращений обычно уменьшена (брадикардия), пульс напряжен, тоны сердца глухие, возможна аритмия. В тяжелых случаях развивается фибрилляция сердца с прекращением кровообращения.

Спастическое поражение мышц гортани и дыхательной мускулатуры приводит к нарушению ритмичности и глубины дыхания и к развитию асфиксии.

Нарушения центральной нервной системы проявляются в разбитости, головокружении, нарушении зрения, усталости, а иногда и в возбуждении. Характерно наличие парезов, параличей и невритов. При судорожном сокращении мышц возможны их разрывы, а также компрессионные и отрывные переломы костей. При тяжелых поражениях отмечается потеря сознания. В позднем периоде возможно развитие недостаточности функции печени и почек.

Причиной внезапной смерти при поражении электрическим током являются фибрилляция желудочков и остановка дыхания. Смерть может наступить не сразу, а через несколько часов после травмы.

В некоторых случаях развивается так называемая «мнимая смерть» - состояние, при котором отсутствует сознание, сокращения сердца редкие и определяются с трудом, дыхание поверхностное, редкое, - то есть наблюдается крайнее угнетение основных жизненно важных функций. Несмотря на внешнее сходство, такое состояние не является клинической смертью, а наблюдаемые симптомы могут подвергнуться обратному развитию даже через довольно длительный промежуток времени. Поэтому при электротравме принято оказывать помощь (в том числе и реанимационные мероприятия) вплоть до появления трупных пятен и трупного окоченения.

Осложнения электротравмы

Электрический ожог может повредить нервную систему, сердце, кровеносные сосуды и почки. Повреждение органа может быть вызвано непосредственно током или, если разрушены клетки, прерыванием кровотока. Более того, отеки тканей еще больше нарушают кровоток.

При поражении сердца, мозга, спинного мозга нарушается сердечный ритм, что может повлечь за собой остановку сердца.

При поражении центральной нервной системы возникают спазмы, кома, остановка дыхания.

При повреждении спинного мозга человек испытывает крайнюю слабость, у него даже может развиться паралич.

Массивное нарушение притока крови к мышцам высвобождает большие количества гемоглобина и миоглобина. Они блокируют тончайшие протоки в почках, разрушая их. Это может вызвать отказ почек.

У пострадавшего возможны массированные кровотечения, камни в печени и катаракта.

Электротравма. Дать определение понятиям: прямое и непрямое поражение током, диэлектрики. Правила приближения к пострадавшему находящегося под воздействием электрического тока. Последовательность действий при оказании медицинской помощи.

Под прямым поражением электрическим током понимается полное прикосновение к оголенным проводам находящимся под рабочим напряжением. В свою очередь прямое прикосновение бывает нескольких видов:

Одновременное касание фазы провода и нулевой жилы.

Соприкосновение с двумя различными фазами, двумя руками.

В 2-х проводной электросети касание только одного провода.

Под косвенным поражением электрическим током понимается несознательное прикосновение к электроприбору находящимся под напряжением. Такая ситуация может произойти, если кабели люстры с торчащими с потолка кабелями прикрутили хорошо, а изолировали абы как. Вполне возможен смертельный удар электрическим током, когда кто-то будет протирать люстру от пыли.

Диэлектрик (изолятор) - вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 10 8 см −3 . Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле

Прикосновение к токоведущим частям, находящимся под напряжением, вызывает в большинстве случаев непроизвольное судорожное сокращение мышц и общее возбуждение, которое может привести к потере сознания, нарушению или полному прекращению деятельности органов дыхания и кровообращения. Если пострадавший держит провод руками, его пальцы так сильно сжимаются, что высвободить провод становится невозможно. Поэтому первым действием оказывающего помощь должно быть немедленное отключение участка электросети, которого касается пострадавший, выключателем, рубильником, путем вывертывания пробок на щитке. Если невозможно быстро отключить электроустановку из-за удаленности отключающих аппаратов, то можно перерубить провода (каждый в отдельности) любым режущим инструментов с рукояткой из изолирующего материала. Можно воспользоваться инструментом и с металлической рукояткой, предварительно обернув ее сухой тканью.

В случае если пострадавший находится на высоте, отключение установки может вызвать его падение; нужно принять меры, предупреждающие падение.

При отключении электроустановки может погаснуть свет. В связи с этим нужно позаботиться об освещении из другого источника (фонарь, факел, свечи и т.п.).

Оказывающий помощь не должен прикасаться к пострадавшему без надлежащих мер предосторожности, так как последний в данном случае является проводником электрического тока.

Для отделения пострадавшего от токоведущих частей или провода напряжением до 1000 В следует воспользоваться сухой одеждой, канатом, палкой, доской или каким-либо другим сухим предметом, не проводящим электрический ток. Для этих целей нельзя использовать металлические и мокрые предметы. Можно также взяться за одежду пострадавшего (если она сухая), например за полы пиджака или пальто, стараясь при этом не прикасаться к окружающим металлическим предметам и частям тела, не прикрытым одеждой. Оттаскивая пострадавшего за ноги, не следует касаться его обуви, не изолировав свои руки, так как обувь может быть сырой и проводить электрический ток.

Для того чтобы изолировать себя, оказывающий помощь (особенно если необходимо коснуться тела, пораженного током, не прикрытого одеждой) должен надеть диэлектрические перчатки или обмотать себе руки шарфом, использовать прорезиненную или просто сухую ткань; можно встать на сухую доску или другую не проводящую электрический ток подстилку, сверток одежды и т.п.

При отделении пострадавшего от токоведущих элементов рекомендуется действовать по возможности одной рукой. Для изолирования пострадавшего от земли или токоведущих частей напряжением выше 1000 В необходимо обратиться к специалистам, так как перечисленных мер безопасности в данном случае недостаточно.

Поражение человека электрическим током опасно для здоровья и жизни любого живого существа. Для защиты от поражений электрическим током в схемы электропроводки включают специальные устройства защиты. Это дифференциальные автоматы защиты, устройства защитного отключения, электрические расцепители и т.п. Каждый из них разработан для защиты человека от определенных прикосновений к токоведущим частям электропроводки.

В электротехнике касание человеком проводов и конструкций, находящихся под напряжением разделяют на прямое и косвенное прикосновение.

Под прямым прикосновением принимается контакт человеком с частью электропроводки, которая в рабочем режиме находится под напряжением. Иначе говоря, качание человека открытых проводов, контактов, клем по которым в нормальном (не аварийном) режимах протекает электрический ток это и есть прямое прикосновение.

Различаются несколько видов прямого прикосновения

  • Касание двумя руками двух различных фаз;
  • Одновременное касание фазы и нуля;
  • Касание только одного провода в 2-х проводной сети.

При касании двух фаз тело человека оказывается включенным в полное линейное напряжение сети. Это самое опасное из всех прикосновений. При нем ток протекает по жизненно важным органам. Например, при касании двумя руками, то ток протекает через сердце и легкие.

Ток через тело человека при двойном прикосновении к фазным проводникам практически не зависит от режима нейтрали сети. При любой нейтрали ток через тело человека определяется по простому закону Ома. Ток через тело прямо пропорционален линейному напряжению и обратно пропорционален сопротивлению человека.

Если принять во внимание сопротивление человека 1000 Ом, а напряжение сети 380 Вольт, то ток через тело человека равен 380 mA(миллиампер), что является смертельным порогом тока поражения.

Примечание: Допустимый интервал времени прохождения тока через тело человека равен 0,01 – 2сек. При этом величины токов, проходящие через тело человека, подразделяются на пять пунктов по типу последствий воздействия.

Таблица значений тока поражения и его последствий по воздействию на человека.

При прямом прикосновении к фазному и нулевому проводу и касании одного провода значение тока через тело человека снижаются, за счет увеличения сопротивления, но все равно остаются смертельно опасными для человека.

Для защиты человека от прямого прикосновения нормативными документами определены меры защиты от прямого прикосновения.

Примечание: По международному электрическому кодексу (МЭК) защита от прямого прикосновения называется базовой защитой.

class="eliadunit">

Базовую защиту от прямого соприкосновения разделяют на физическую защиту от прикосновения (изоляция проводов, огорождения, выделение отдельных помещений для электроустановок) и дополнительную защиту.

Физическая защита это предупредительные меры защиты человека от поражения электрическим током. В большинстве случаях, отдельно без дополнительной защиты, ее нельзя рассматривать как надежную.

Дополнительная защита от прямого прикосновения служит для защиты человека при отсутствии или повреждении первой защиты. Для дополнительной защиты от прямого соприкосновения используется устройство защитного отключения (УЗО) с высокой чувствительностью (I≤30 mA) и минимальным временем срабатывания.

Повторюсь. Прямое прикосновение это непосредственный контакт с частями проводки, по которому протекает ток в нормальном, рабочем режиме. Прямое прикосновение это, скорее всего случайность, вызванная с невнимательностью, оплошностью. Вряд ли кто либо самостоятельно схватится за провод находящейся под напряжением.

Другое дело если прикосновение к токоведущим частям происходит не преднамеренно, а при аварийных режимах. При аварийном режиме человек не предполагает, что токопроводная конструкция оказалась под напряжением. Такое прикосновение называется косвенным, а защита от косвенного прикосновение называется защита от короткого замыкания.

Косвенное прикосновение по своей сути более опасно, по сравнению с прямым прикосновением. Если прямое прикосновение это скорее случайность вызванная оплошностью, то косвенное прикосновение происходит при аварийной ситуации и человек заранее не знает, что та или иная конструкция находится под напряжением.

Для защиты от косвенного прикосновения, она же защита от короткого замыкания, применяются более разнообразные способы. Можно выделить несколько основных из них.

Основная защита:

  • Автоматическое отключение подачи электропитания;

Специальная защита:

  • Применение схем уравнивания потенциалов;
  • Разделение электрических цепей помещения с помощью разделительных трансформаторов;
  • Применение системы безопасного сверхнизкого напряжения (БСНН);
  • Использование заземленной системы безопасного сверхнизкого напряжения (ЗСНН).

Нужно помнить: Максимальное значение напряжения прикосновения Uc, которое человек может выдержать бесконечно долго составляет 50 Вольт переменного тока.

Каждый способ защиты от короткого замыкания различается по своей организации для различных электросетей. Для систем электропитания с глухозаземленной нейтралью (системаTN), с изолированной нейтралью (система IT),с независимым от нейтрали заземлением корпусов электроустановок (система TT) защита от короткого замыкания делается по своим схемам и принципам.

В конце статьи хочу отметить. Нужно помнить что, несмотря на отсутствие запаха, и внешних проявлений электрический ток это жизненно опасен для человека при любом взаимодействии. Только комплексная защита электросети может служить гарантом от любого прикосновения человека к токоведущим частям и поражения человека электрическим током. На этом все!

Непосредственно соприкосновение с токоведущими частями установок, находящимися под напряжением, связано с опасностью поражения током. При этом степень опасности и возможность поражения электрическим током зависят от того, каким образом произошло прикосновение человека к проводникам, находящимся под напряжением.

Возможны два случая прикосновений:

1) к двум линейным проводам одновременно;

2) к одному линейному проводу.

Двухфазное прикосновение. Прикосновение к двум линейным проводам (двум фазам) одновременно (рис. 6, а) является чрезвычайно опасным, поскольку к телу человека в этом случае прикладывается наибольшее возможное в данной сети напряжение — линейное. Ток, протекающий через тело человека, равен

где I ч — ток, протекающий через тело человека, в А;

U л — линейное напряжение установки в В;

U ф — фазовое напряжение в В;

R ч — сопротивление человека в Ом.

В сети с линейным напряжением 380 В и при сопротивлении тела человека 1000 Ом через человека будет проходить ток, равный I ч =380/1000= 0,38 А

Такой ток является, безусловно, опасным для жизни человека.

Рис. 6. Схема пути электрического тока :

а— при двухфазном прикосновении; б — при однофазном прикосновении в системе с заземленной нейтралью; в — при однофазном прикосновении в системе с изолированной нейтралью; г — при однофазном прикосновении в системе при наличии емкости

Случаи двухфазного прикосновения человека происходят очень редко. Достаточно сказать, что из всех случаев электропоражений с тяжелым исходом на долю одновременных прикосновений к двум фазам приходится от 3 до 10%.

Однофазное прикосновение. В 90—97% случаев, повлекших тяжелые электропоражения, имело место прикосновение к одной фазе,. Однако прикосновение к одной фазе является значительно менее опасным, чем двухфазное прикосновение. Объясняется это тем, что при однофазном прикосновении напряжение, под которым оказывается человек, не превышает фазного, т. е. меньше линейного в =1,73 раза. Соответственно меньше оказывается и ток, протекающий через тело человека. Кроме того, на величину этого тока влияет также режим нейтрали источника тока, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Нейтрали генераторов и трансформаторов могут быть выполнены либо глухозаземленными, либо изолированными от земли. Глухозаземленной называется нейтраль генератора или трансформатора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, трансформаторы тока и т. д.). Изолированной называется нейтраль, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (например, компенсационные катушки, трансформаторы напряжения и т. д.).

На рис. 6, б и в показаны схемы электрических сетей с заземленной и изолированной нейтралью.

Однофазное прикосновение в сети с глухозаземленной нейтралью. При таком прикосновении (рис. 6, б) ток, протекающий через тело человека, определяется фазовым напряжением сети , сопротивлением тела R ч, сопротивлением R п пола и почвы на участке от ступней ног до заземляющего устройства, сопротивлением обуви R o б и сопротивлением заземления нейтрали источника тока R 0:

Рассмотрим наиболее неблагоприятный случай. Предположим, что человек, прикоснувшийся к одной фазе, стоит на сыром грунте или на проводящем (металлическом или земляном) полу; его обувь также проводящая — сырая или имеет металлические гвозди. Следовательно, можно принять R п = 0 и R об = 0.

Поскольку сопротивление заземления нейтрали R 0 , как правило, равно 4 Ом, им без ущерба для точности подсчета можно пренебречь. В результате формула примет вид .

При линейном напряжении U л = 380 В через тело человека будет протекать ток, равный

Такой ток опасен для жизни.

Если же человек стоит на изолирующем полу (например, из метлахской плитки) в непроводящей обуви (например, резиновой), то, принимая R п = 120 000 Ом и R об = 100 000 Ом, получим

Такой ток безопасен для человека.

В действительности незагрязненные полы из метлахской плитки и резиновая обувь обладают значительно большим сопротивлением по сравнению с принятыми нами, т. е. ток, протекающий через человека, будет еще меньше.

Однофазное прикосновение в сети с изолированной нейтралью. При однофазном прикосновении человека в сети, имеющей изолированную нейтральную точку (рис. 6, б), ток проходит от места контакта через тело человека, затем через обувь, пол, землю и несовершенную изоляцию проводов к двум другим фазам и далее к источнику электроэнергии. Величина тока, проходящего через тело человека, в этом случае равна

где R из — сопротивление изоляции одной фазы сети относительно земли в Ом.

В наиболее неблагоприятном случае, когда человек стоит на проводящем полу и имеет проводящую обувь, т. е. при R п = 0 и R об = 0, формула значительно упростится:

При U л = 380 В и R из = 500 000 Ом получим

Этот ток значительно меньше тока (0,22 А), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Если же принять R п = 120 000 Ом и R = 100 000 Ом, то ток будет еще меньше:

Следовательно, в сети с изолированной нейтралью условия безопасности находятся в прямой зависимости не только от сопротивления пола и обуви, но и от сопротивления изоляции проводов относительно земли: чем лучше изоляция, тем меньше сила тока, протекающего через человека. В сети с заземленной нейтралью положительная роль изоляции проводов практически полностью утрачена.

Таким образом, при прочих равных условиях однофазное прикосновение человека в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью, и, следовательно, система с изолированной нейтралью при нормальном состоянии изоляции менее опасна для человека, чем система с глухим заземлением нейтрали. Однако в линии такой системы может длительное время существовать незамеченное персоналом замыкание одной из фаз на землю. Если в это время человек прикоснется к проводу одной из двух других фаз, то окажется под полным линейным напряжением сети, что равносильно двухфазному прикосновению.

Общие требования обустройстве электросетей. Согласно Правилам устройства электроустановок в четырехпроводных сетях переменного тока и трехпроводных сетях постоянного тока выполняют глухое заземление нейтрали. Сети с изолированной нейтралью применяют при повышенных требованиях безопасности с обязательным устройством контроля изоляции сети и целости пробивных предохранителей силовых трансформаторов, позволяющих персоналу быстро обнаружить замыкание на землю, либо с устройством автоматического отключения участков, получивших замыкание на землю.

Опасность воздействия емкостного тока. В связи с тем, что каждая электрическая установка имеет емкость, необходимо учитывать также ее опасное влияние и возможное поражение током. Выше было сказано, что наименьшую опасность представляет однофазное прикосновение в системе с изолированной нейтралью при наличии качественной изоляции фаз. Однако даже в случае идеальной изоляции поражение током возможно и зависит от величины емкостного тока.

Емкость тока зависит от конструкции сети (воздушная или кабельная), напряжения и сечения проводов. При равных условиях (одинаково высоком напряжении, например, в 10 кВ) емкость жилы подземного кабеля среднего сечения относительно земли значительно больше емкости одной фазы относительно земли воздушной линии (соответственно, 0,2*10 -6 Ф/км и 0,0045*10 -6 ÷ 0,005 X 10 -6 Ф/км).

Предположим, что изоляция сети находится в таком хорошем состоянии, что токами утечки через изоляцию можно пренебречь, но сеть имеет некоторую емкость по отношению к земле. Для рассматриваемого случая схема прикосновения человека к одной фазе и образования цепи движения токов утечки через емкость показана на рис. 6, г.

Общее выражение для емкостного тока, протекающего через тело человека, будет

где jχ c — емкостное сопротивление одной фазы, выраженное в символической форме (здесь χ c = 1/(ω*C)—реактивное сопротивление емкости, где ω = 2πf— угловая частота переменного тока; f — частота тока в Гц; С—емкость фазы по отношению к земле в Ф).

Если взять модуль полного сопротивления, то ток, протекающий через тело человека:

При значительной емкости сети, которая имеет место в разветвленных и протяженных кабельных сетях, величина тока, протекающего через тело человека, может оказаться опасной для жизни. В таких случаях электрические системы с изолированной нейтралью в отношении безопасности полностью теряют преимущества перед системами с заземленной нейтралью и их следует рассматривать как равноценные. Но для сетей малой и средней протяженности однофазное прикосновение менее опасно для систем с изолированной нейтралью.

Опасность шаговых напряжений. Опасность поражения током может возникнуть вблизи места перехода тока

Рис. 7.

в землю с упавшего фазного провода. В зоне растекания токов (рис. 7) человек подвергается воздействию шаговых напряжений, т. е. напряжений, обусловленных, током замыкания на землю между точками почвы, отстоящими друг от друга в зоне растекания токов на расстоянии шага. Опасность поражения в этом случае увеличивается при сокращении расстояния между человеком и местом замыкания на землю и увеличении ширины шага.

Сила тока однофазного замыкания на землю I з может быть определена по формуле величина шагового напряжения U ш по формуле

где R 0 — сопротивление рабочего заземления нейтрали в Ом;

R p — сопротивление растеканию тока в месте замыкания фазного провода на землю в Ом;

ρ - удельное сопротивление грунта в Ом*см;

а — длина шага в см;

х — расстояние от места замыкания фазного провода до места измерения напряжения в см.

Определим величину шагового напряжения, воздействию которого подвергается стоящий на земле человек, если произошло замыкание на землю в сети напряжением 330/220 В с заземленной нейтралью. Сопротивление рабочего заземления R 0 = 4 Ом. Сопротивление растеканию тока в месте замыкания R р = 12 Ом (это соответствует наименьшему значению сопротивления, за исключением случая замыкания на металлическую конструкцию большой протяженности). Человек находится на расстоянии х = 4 м от точки замыкания. Величина шага а = 0,8 м. Удельное сопротивление, грунта растеканию тока ρ = 3*10 4 Ом*см.

Первоначально определим силу тока замыкания на землю а затем величину шагового напряжения

Параметры тока, проходящего через человека при воздействии шагового напряжения, зависят, кроме того, от сопротивлений опорной поверхности ног и обуви. Защитное действие оказывает обувь, обладающая хорошими изоляционными свойствами, например, резиновая.