Измерительные

Основное понятие теории вероятности. Законы теории вероятности

Основное понятие теории вероятности. Законы теории вероятности

Некоторые программисты после работы в области разработки обычных коммерческих приложений задумываются о том, чтобы освоить машинное обучение и стать аналитиком данных. Часто они не понимают, почему те или иные методы работают, и большинство методов машинного обучения кажутся магией. На самом деле, машинное обучение базируется на математической статистике, а та, в свою очередь, основана на теории вероятностей. Поэтому в этой статье мы уделим внимание базовым понятиям теории вероятностей: затронем определения вероятности, распределения и разберем несколько простых примеров.

Возможно, вам известно, что теория вероятностей условно делится на 2 части. Дискретная теория вероятностей изучает явления, которые можно описать распределением с конечным (или счетным) количеством возможных вариантов поведения (бросания игральных костей, монеток). Непрерывная теория вероятностей изучает явления, распределенные на каком-то плотном множестве, например на отрезке или в круге.

Можно рассмотреть предмет теории вероятностей на простом примере. Представьте себя разработчиком шутера. Неотъемлемой частью разработки игр этого жанра является механика стрельбы. Ясно, что шутер в котором всё оружие стреляет абсолютно точно, будет малоинтересен игрокам. Поэтому, обязательно нужно добавлять оружию разброс. Но простая рандомизация точек попадания оружия не позволит сделать его тонкую настройку, поэтому, корректировка игрового баланса будет сложна. В то же время, используя случайные величины и их распределения можно проанализировать то, как будет работать оружие с заданным разбросом, и поможет внести необходимые корректировки.

Пространство элементарных исходов

Допустим, из некоторого случайного эксперимента, который мы можем многократно повторять (например, бросание монеты), мы можем извлечь некоторую формализуемую информацию (выпал орел или решка). Эта информация называется элементарным исходом, при этом целесообразно рассматривать множество всех элементарных исходов, часто обозначаемое буквой Ω (Омега).

Структура этого пространства целиком зависит от природы эксперимента. Например, если рассматривать стрельбу по достаточно большой круговой мишени, - пространством элементарных исходов будет круг, для удобства размещенный с центром в нуле, а исходом - точка в этом круге.

Кроме того, рассматривают множества элементарных исходов - события (например, попадание в «десятку» - это концентрический круг маленького радиуса с мишенью). В дискретном случае всё достаточно просто: мы можем получить любое событие, включая или исключая элементарные исходы за конечное время. В непрерывном же случае всё гораздо сложнее: нам понадобится некоторое достаточно хорошее семейство множеств для рассмотрения, называемое алгеброй по аналогии с простыми вещественными числами, которые можно складывать, вычитать, делить и умножать. Множества в алгебре можно пересекать и объединять, при этом результат операции будет находиться в алгебре. Это очень важное свойство для математики, которая лежит за всеми этими понятиями. Минимальное семейство состоит всего из двух множеств - из пустого множества и пространства элементарных исходов.

Мера и вероятность

Вероятность - это способ делать выводы о поведении очень сложных объектов, не вникая в принцип их работы. Таким образом, вероятность определяется как функция от события (из того самого хорошего семейства множеств), которая возвращает число - некоторую характеристику того, насколько часто может происходить такое событие в реальности. Для определённости математики условились, что это число должно лежать между нулем и единицей. Кроме того, к этой функции предъявляются требования: вероятность невозможного события нулевая, вероятность всего множества исходов единичная, и вероятность объединения двух независимых событий (непересекающихся множеств) равна сумме вероятностей. Другое название вероятности - вероятностная мера. Чаще всего используется Лебегова мера , обобщающая понятия длина, площадь, объём на любые размерности (n -мерный объем), и таким образом она применима для широкого класса множеств.

Вместе совокупность множества элементарных исходов, семейства множеств и вероятностной меры называется вероятностным пространством . Рассмотрим, каким образом можно построить вероятностное пространство для примера со стрельбой в мишень.

Рассмотрим стрельбу в большую круглую мишень радиуса R , в которую невозможно промахнуться. Множеством элементарных событий положим круг с центром в начале координат радиуса R . Поскольку мы собираемся использовать площадь (меру Лебега для двумерных множеств) для описания вероятности события, то будем использовать семейство измеримых (для которых эта мера существует) множеств.

Примечание На самом деле, это технический момент и в простых задачах процесс определения меры и семейства множеств не играет особой роли. Но понимать, что эти два объекта существуют, необходимо, ведь во многих книгах по теории вероятности теоремы начинаются со слов: «Пусть (Ω,Σ,P) - вероятностное пространство … ».

Как уже сказано выше, вероятность всего пространства элементарных исходов должна равняться единице. Площадь (двумерная мера Лебега, которую мы обозначим λ 2 (A) , где А — событие) круга по хорошо известной со школы формуле равна π *R 2 . Тогда мы можем ввести вероятность P(A) = λ 2 (A) / (π *R 2) , и эта величина уже будет лежать между 0 и 1 для любого события А.

Если предположить, что попадание в любую точку мишени равновероятно, поиск вероятности попадания стрелком в какую-то то область мишени сводится к поиску площади этого множества (отсюда можно сделать вывод, что вероятность попадания в конкретную точку нулевая, ведь площадь точки равна нулю).

Например, мы хотим узнать, какова вероятность того, что стрелок попадёт в «десятку» (событие A — стрелок попал в нужное множество). В нашей модели, «десятка» представляется кругом с центром в нуле и радиусом r. Тогда вероятность попадания в этот круг P(A) = λ 2 /(A)π *R 2 = π * r 2 /(π R 2)= (r/R) 2 .

Это одна из самых простых разновидностей задач на «геометрическую вероятность», - большинство таких задач требуют поиска площади.

Случайные величины

Случайная величина — функция, переводящая элементарные исходы в вещественные числа. К примеру, в рассмотренной задаче мы можем ввести случайную величину ρ(ω) — расстояние от точки попадания до центра мишени. Простота нашей модели позволяет явно задать пространство элементарных исходов: Ω = {ω = (x,y) такие числа, что x 2 +y 2 ≤ R 2 } . Тогда случайная величина ρ(ω) = ρ(x,y) = x 2 +y 2 .

Средства абстракции от вероятностного пространства. Функция распределения и плотность

Хорошо, когда структура пространства хорошо известна, но на самом деле так бывает далеко не всегда. Даже если структура пространства известна, она может быть сложна. Для описания случайных величин, если их выражение неизвестно, существует понятие функции распределения, которую обозначают F ξ (x) = P(ξ < x) (нижний индекс ξ здесь означает случайную величину). Т.е. это вероятность множества всех таких элементарных исходов, для которых значение случайной величины ξ на этом событии меньше, чем заданный параметр x .

Функция распределения обладает несколькими свойствами:

  1. Во-первых, она находится между 0 и 1 .
  2. Во-вторых, она не убывает, когда ее аргумент x растёт.
  3. В третьих, когда число -x очень велико, функция распределения близка к 0 , а когда само х большое, функция распределения близка к 1 .

Вероятно, смысл этой конструкции при первом чтении не слишком понятен. Одно из полезных свойств — функция распределения позволяет искать вероятность того, что величина принимает значение из интервала. Итак, P (случайная величина ξ принимает значения из интервала ) = F ξ (b)-F ξ (a) . Исходя из этого равенства, можем исследовать, как изменяется эта величина, если границы a и b интервала близки.

Пусть d = b-a , тогда b = a+d . А следовательно, F ξ (b)-F ξ (a) = F ξ (a+d) - F ξ (a) . При малых значениях d , указанная выше разность так же мала (если распределение непрерывное). Имеет смысл рассматривать отношение p ξ (a,d)= (F ξ (a+d) - F ξ (a))/d . Если при достаточно малых значениях d это отношение мало отличается от некоторой константы p ξ (a) , не зависящей от d, то в этой точке случайная величина имеет плотность, равную p ξ (a) .

Примечание Читатели, которые ранее сталкивались понятием производной, могут заметить что p ξ (a) — производная функции F ξ (x) в точке a . Во всяком случае, можно изучить понятие производной в посвященной этой теме статье на сайте Mathprofi.

Теперь смысл функции распределения можно определить так: её производная (плотность p ξ , которую мы определили выше) в точке а описывает, насколько часто случайная величина будет попадать в небольшой интервал с центром в точке а (окрестность точки а) по сравнению с окрестностями других точек. Другими словами, чем быстрее растёт функция распределения, тем более вероятно появление такого значения при случайном эксперименте.

Вернемся к примеру. Мы можем вычислить функцию распределения для случайной величины, ρ(ω) = ρ(x,y) = x 2 +y 2 , которая обозначает расстояние от центра до точки случайного попадания в мишень. По определению F ρ (t) = P(ρ(x,y) < t) . т.е. множество {ρ(x,y) < t)} — состоит из таких точек (x,y) , расстояние от которых до нуля меньше, чем t . Мы уже считали вероятность такого события, когда вычисляли вероятность попадания в «десятку» - она равна t 2 /R 2 . Таким образом, Fρ(t) = P(ρ(x,y) < t) = t 2 /R 2 , для 0

Мы можем найти плотность p ρ этой случайной величины. Сразу заметим, что вне интервала она нулевая, т.к. функция распределения на этом промежутке неизменна. На концах этого интервала плотность не определена. Внутри интервала её можно найти, используя таблицу производных (например из на сайте Mathprofi) и элементарные правила дифференцирования. Производная от t 2 /R 2 равна 2t/R 2 . Значит, плотность мы нашли на всей оси вещественных чисел.

Ещё одно полезное свойство плотности — вероятность того, что функция принимает значение из промежутка, вычисляется при помощи интеграла от плотности по этому промежутку (ознакомиться с тем, что это такое, можно в статьях о собственном , несобственном , неопределенном интегралах на сайте Mathprofi).

При первом чтении, интеграл по промежутку от функции f(x) можно представлять себе как площадь криволинейной трапеции. Ее сторонами являются фрагмент оси Ох, промежуток (горизонтальной оси координат), вертикальные отрезки, соединяющие точки (a,f(a)), (b,f(b)) на кривой с точками (a,0), (b,0) на оси Ох. Последней стороной является фрагмент графика функции f от (a,f(a)) до (b,f(b)) . Можно говорить об интеграле по промежутку (-∞; b] , когда для достаточно больших отрицательных значений, a значение интеграла по промежутку будет меняться пренебрежимо мало по сравнению с изменением числа a. Аналогичным образом определяется и интеграл по промежуткам . Всего будет 2·2·2·2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2·0,8·0,8·0,8 = 0,1024; здесь 0,8 = 1-0,2 - вероятность промаха при отдельном выстреле. Событию «в цель попадают три раза» благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:

0,2·0,2·0,2·0,8 =...... =0,8·0,2·0,2·0,2 = 0,0064;

следовательно, искомая вероятность равна

4·0,0064 = 0,0256.

Обобщая рассуждения разобранного примера, можно вывести одну из основных формул теории вероятностей: если события A 1 , A 2 ,..., A n независимы и имеют каждое вероятностьр, то вероятность наступления ровноm из них равна

P n (m ) = C n m p m (1 - p ) n-m ; (4)

здесь C n m обозначает число сочетаний изn элементов поm. При большихn вычисления по формуле (4) становятся затруднительными.

К числу основных формул элементарной теории вероятностей относится также так называемая формула полной вероятности : если событияA 1 , A 2 ,..., A r попарно несовместны и их объединение есть достоверное событие, то для любого событияВ его вероятность равна их сумме.

Теорема умножения вероятностей оказывается особенно полезной при рассмотрении составных испытаний. Говорят, что испытание Т составлено из испытанийT 1 , T 2 ,..., T n-1 , T n , если каждый исход испытанияТ есть совмещение некоторых исходовA i , B j ,..., X k , Y l соответствующих испытанийT 1 , T 2 ,..., T n-1 , T n . Из тех или иных соображений часто бывают известны вероятности

P (A i ), P (B j /A i ), …,P (Y l /A i B j …X k ). (5)

По вероятностям (5) с помощью теоремы умножения могут быть определены вероятности Р (Е ) для всех исходовЕ составного испытания, а вместе с тем и вероятности всех событий, связанных с этим испытанием. Наиболее значительными с практической точки зрения представляются два типа составных испытаний:

а) составляющие испытания не зависимы, то есть вероятности (5) равны безусловным вероятностям P (A i ), P (B j ),..., P (Y l );

б) на вероятности исходов какого-либо испытания влияют результаты лишь непосредственно предшествующего испытания, то есть вероятности (5) равны соответственно: P (A i ), P (B j /A i ),..., P (Y i / X k ). В этом случае говорят об испытаниях, связанных в цепь Маркова. Вероятности всех событий, связанных с составным испытанием, вполне определяются здесь начальными вероятностямиР (А i ) и переходными вероятностямиP (B j / A i ),..., P (Y l / X k ).

Основные формулы по теории вероятности

Формулы теории вероятностей.

1. Основные формулы комбинаторики

а) перестановки.

\б) размещения

в) сочетания .

2. Классическое определение вероятности.

Где- число благоприятствующих событиюисходов,- число всех элементарных равновозможных исходов.

3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

Теорема сложения вероятностей совместных событий:

4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

Теорема умножения вероятностей зависимых событий:

,

    Условная вероятность события при условии, что произошло событие,

    Условная вероятность события при условии, что произошло событие.

Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Основы комбинаторики очень важны для оценки вероятностей случайных событий, т.к. именно они позволяют подсчитать принципиально возможное количество различных вариантов развития событий.

Основная формула комбинаторики

Пусть имеется k групп элементов, причем i-я группа состоит из ni элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n1*n2*n3*...*nk.

Пример 1. Поясним это правило на простом примере. Пусть имеется две группы элементов, причем первая группа состоит из n1 элементов, а вторая - из n2 элементов. Сколько различных пар элементов можно составить из этих двух групп, таким образом, чтобы в паре было по одному элементу от каждой группы? Допустим, мы взяли первый элемент из первой группы и, не меняя его, перебрали все возможные пары, меняя только элементы из второй группы. Таких пар для этого элемента можно составить n2. Затем мы берем второй элемент из первой группы и также составляем для него все возможные пары. Таких пар тоже будет n2. Так как в первой группе всего n1 элемент, всего возможных вариантов будет n1*n2.

Пример 2. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?

Решение: n1=6 (т.к. в качестве первой цифры можно взять любую цифру из 1, 2, 3, 4, 5, 6), n2=7 (т.к. в качестве второй цифры можно взять любую цифру из 0, 1, 2, 3, 4, 5, 6), n3=4 (т.к. в качестве третьей цифры можно взять любую цифру из 0, 2, 4, 6).

Итак, N=n1*n2*n3=6*7*4=168.

В том случае, когда все группы состоят из одинакового числа элементов, т.е. n1=n2=...nk=n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно nk.Такой способ выбора носит название выборки с возвращением.

Пример. Сколько всех четырехзначных чисел можно составить из цифр 1, 5, 6, 7, 8?

Решение. Для каждого разряда четырехзначного числа имеется пять возможностей, значит N=5*5*5*5=54=625.

Рассмотрим множество, состоящие из n элементов. Это множество будем называть генеральной совокупностью.

Определение 1. Размещением из n элементов по m называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),(3, 2). Размещения могут отличаться друг от друга как элементами, так и их порядком.

Число размещений обозначается А, м от nи вычисляется по формуле:

Замечание: n!=1*2*3*...*n (читается: "эн факториал"), кроме того полагают, что 0!=1.

Пример 5. Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различные и нечетные?

Решение: т.к. нечетных цифр пять, а именно 1, 3, 5, 7, 9, то эта задача сводится к выбору и размещению на две разные позиции двух из пяти различных цифр, т.е. указанных чисел будет:

Определение 2. Сочетанием из n элементов по m называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 6. Для множества {1, 2, 3}сочетаниями являются {1, 2}, {1, 3}, {2, 3}.

Число сочетаний обозначается Cnm и вычисляется по формуле:

Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.

Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).

Число различных перестановок из n элементов обозначается Pn и вычисляется по формуле Pn=n!.

Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Решение: эта задача о числе перестановок семи разных книг. Имеется P7=7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.

Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно.

Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов).

Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны.

И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.

Пример. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?

Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.

Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантов перестановок, которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.

Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением: , где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдетв том случае, если его центр попадет в полосу, т.е., или будет находится от края полосы на расстоянии меньшем чем радиус, т.е..

Для искомой вероятности получаем: .

Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

1. Классификация событий

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий.

Примеры событий:

– попадание в цель при выстреле из орудия (опыт - произведение выстрела; событие - попадание в цель);

– выпадение двух гербов при трёхкратном бросании монеты (опыт - трёхкратное бросание монеты; событие - выпадение двух гербов);

– появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т д.

Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие -выпадание трех очков на первой игральной кости, событие- выпадание трех очков на второй кости.и- совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие- наудачу взятая коробка окажется с обувью черного цвета, событие- коробка окажется с обувью коричневого цвета,и- несовместные события.

Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.

Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным.

Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.

События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.

Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении,- появление белого шара,- появление шара с номером. Событияобразуют полную группу совместных событий.

Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие, либо бракованным- событие.

2. Операции над событиями

При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.

Мама мыла раму


Под занавес продолжительных летних каникул пришло время потихоньку возвращаться к высшей математике и торжественно открыть пустой вёрдовский файл, чтобы приступить к созданию нового раздела – . Признаюсь, нелегко даются первые строчки, но первый шаг – это пол пути, поэтому я предлагаю всем внимательно проштудировать вводную статью, после чего осваивать тему будет в 2 раза проще! Ничуть не преувеличиваю. …Накануне очередного 1 сентября вспоминается первый класс и букварь…. Буквы складываются в слоги, слоги в слова, слова в короткие предложения – Мама мыла раму. Совладать с тервером и математической статистикой так же просто, как научиться читать! Однако для этого необходимо знать ключевые термины, понятия и обозначения, а также некоторые специфические правила, которым и посвящён данный урок.

Но сначала примите мои поздравления с началом (продолжением, завершением, нужное отметить) учебного года и примите подарок. Лучший подарок – это книга, и для самостоятельной работы я рекомендую следующую литературу:

1) Гмурман В.Е. Теория вероятностей и математическая статистика

Легендарное учебное пособие, выдержавшее более десяти переизданий. Отличается доходчивостью и предельной простой изложения материала, а первые главы так и вовсе доступны, думаю, уже для учащихся 6-7-х классов.

2) Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике

Решебник того же Владимира Ефимовича с подробно разобранными примерами и задачами.

ОБЯЗАТЕЛЬНО закачайте обе книги из Интернета или раздобудьте их бумажные оригиналы! Подойдёт и версия 60-70-х годов, что даже лучше для чайников. Хотя фраза «теория вероятностей для чайников» звучит довольно нелепо, поскольку почти всё ограничивается элементарными арифметическими действиями. Проскакивают, правда, местами производные и интегралы , но это только местами.

Я постараюсь достичь той же ясности изложения, но должен предупредить, что мой курс ориентирован на решение задач и теоретические выкладки сведены к минимуму. Таким образом, если вам нужна развёрнутая теория, доказательства теорем (теорем-теорем!), пожалуйста, обратитесь к учебнику. Ну, а кто хочет научиться решать задачи по теории вероятностей и математической статистике в самые короткие сроки , следуйте за мной!

Для начала хватит =)

По мере прочтения статей целесообразно знакомиться (хотя бы бегло) с дополнительными задачами рассмотренных видов. На странице Готовые решения по высшей математике будут размещаться соответствующие pdf-ки с примерами решений. Также значительную помощь окажут ИДЗ 18.1 Рябушко (попроще) и прорешанные ИДЗ по сборнику Чудесенко (посложнее).

1) Суммой двух событий и называется событие которое состоит в том, что наступит или событие или событие или оба события одновременно. В том случае, если события несовместны , последний вариант отпадает, то есть может наступить или событие или событие .

Правило распространяется и на бОльшее количество слагаемых, например, событие состоит в том, что произойдёт хотя бы одно из событий , а если события несовместны то одно и только одно событие из этой суммы: или событие , или событие , или событие , или событие , или событие .

Примеров масса:

События (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка .

Событие (будет чётное число очков) состоит в том, что выпадет или 2 или 4 или 6 очков.

Событие заключается в том, что из колоды будет извлечена карта красной масти (черва или бубна), а событие – в том, что будет извлечена «картинка» (валет или дама или король или туз).

Чуть занятнее дело с совместными событиями:

Событие состоит в том, что из колоды будет извлечена трефа или семёрка или семёрка треф. Согласно данному выше определению, хотя бы что-то – или любая трефа или любая семёрка или их «пересечение» – семёрка треф. Легко подсчитать, что данному событию соответствует 12 элементарных исходов (9 трефовых карт + 3 оставшиеся семёрки).

Событие состоит в том, что завтра в 12.00 наступит ХОТЯ БЫ ОДНО из суммируемых совместных событий , а именно:

– или будет только дождь / только гроза / только солнце;
– или наступит только какая-нибудь пара событий (дождь + гроза / дождь + солнце / гроза + солнце);
– или все три события появятся одновременно.

То есть, событие включает в себя 7 возможных исходов.

Второй столп алгебры событий:

2) Произведением двух событий и называют событие , которое состоит в совместном появлении этих событий, иными словами, умножение означает, что при некоторых обстоятельствах наступит и событие , и событие . Аналогичное утверждение справедливо и для бОльшего количества событий, так, например, произведение подразумевает, что при определённых условиях произойдёт и событие , и событие , и событие , …, и событие .

Рассмотрим испытание, в котором подбрасываются две монеты и следующие события:

– на 1-й монете выпадет орёл;
– на 1-й монете выпадет решка;
– на 2-й монете выпадет орёл;
– на 2-й монете выпадет решка.

Тогда:
и на 2-й) выпадет орёл;
– событие состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;
– событие состоит в том, что на 1-й монете выпадет орёл и на 2-й монете решка;
– событие состоит в том, что на 1-й монете выпадет решка и на 2-й монете орёл.

Нетрудно заметить, что события несовместны (т.к. не может, например, выпасть 2 орла и в то же самое время 2 решки) и образуют полную группу (поскольку учтены все возможные исходы броска двух монет) . Давайте просуммируем данные события: . Как интерпретировать эту запись? Очень просто – умножение означает логическую связку И , а сложение – ИЛИ . Таким образом, сумму легко прочитать понятным человеческим языком: «выпадут два орла или две решки или на 1-й монете выпадет орёл и на 2-й решка или на 1-й монете выпадет решка и на 2-й монете орёл »

Это был пример, когда в одном испытании задействовано несколько объектов, в данном случае – две монеты. Другая распространенная в практических задачах схема – это повторные испытания , когда, например, один и тот же игральный кубик бросается 3 раза подряд. В качестве демонстрации рассмотрим следующие события:

– в 1-м броске выпадет 4 очка;
– во 2-м броске выпадет 5 очков;
– в 3-м броске выпадет 6 очков.

Тогда событие состоит в том, что в 1-м броске выпадет 4 очка и во 2-м броске выпадет 5 очков и в 3-м броске выпадет 6 очков. Очевидно, что в случае с кубиком будет значительно больше комбинаций (исходов), чем, если бы мы подбрасывали монету.

…Понимаю, что, возможно, разбираются не очень интересные примеры, но это часто встречающиеся в задачах вещи и от них никуда не деться. Помимо монетки, кубика и колоды карт вас поджидают урны с разноцветными шарами, несколько анонимов, стреляющих по мишени, и неутомимый рабочий, который постоянно вытачивает какие-то детали =)

Вероятность события

Вероятность события – это центральное понятие теории вероятностей. …Убийственно логичная вещь, но с чего-то надо было начинать =) Существует несколько подходов к её определению:

;
Геометрическое определение вероятности ;
Статистическое определение вероятности .

В данной статье я остановлюсь на классическом определении вероятностей, которое находит наиболее широкое применение в учебных заданиях.

Обозначения . Вероятность некоторого события обозначается большой латинской буквой , а само событие берётся в скобки, выступая в роли своеобразного аргумента. Например:


Также для обозначения вероятности широко используется маленькая буква . В частности, можно отказаться от громоздких обозначений событий и их вероятностей в пользу следующей стилистики::

– вероятность того, что в результате броска монеты выпадет «орёл»;
– вероятность того, что в результате броска игральной кости выпадет 5 очков;
– вероятность того, что из колоды будет извлечена карта трефовой масти.

Данный вариант популярен при решении практических задач, поскольку позволяет заметно сократить запись решения. Как и в первом случае, здесь удобно использовать «говорящие» подстрочные/надстрочные индексы.

Все уже давно догадались о числах, которые я только что записал выше, и сейчас мы узнаем, как они получились:

Классическое определение вероятности :

Вероятностью наступления события в некотором испытании называют отношение , где:

– общее число всех равновозможных , элементарных исходов этого испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

При броске монеты может выпасть либо орёл, либо решка – данные события образуют полную группу , таким образом, общее число исходов ; при этом, каждый из них элементарен и равновозможен . Событию благоприятствует исход (выпадение орла). По классическому определению вероятностей: .

Аналогично – в результате броска кубика может появиться элементарных равновозможных исходов, образующих полную группу, а событию благоприятствует единственный исход (выпадение пятёрки). Поэтому: .ЭТОГО ДЕЛАТЬ НЕ ПРИНЯТО (хотя не возбраняется прикидывать проценты в уме).

Принято использовать доли единицы , и, очевидно, что вероятность может изменяться в пределах . При этом если , то событие является невозможным , если – достоверным , а если , то речь идёт о случайном событии.

! Если в ходе решения любой задачи у вас получилось какое-то другое значение вероятности – ищите ошибку!

При классическом подходе к определению вероятности крайние значения (ноль и единица) получаются посредством точно таких же рассуждений. Пусть из некой урны, в которой находятся 10 красных шаров, наугад извлекается 1 шар. Рассмотрим следующие события:

в единичном испытании маловозможное событие не произойдёт .

Именно поэтому Вы не сорвёте в лотерее Джек-пот, если вероятность этого события, скажем, равна 0,00000001. Да-да, именно Вы – с единственным билетом в каком-то конкретном тираже. Впрочем, бОльшее количество билетов и бОльшее количество розыгрышей Вам особо не помогут. ...Когда я рассказываю об этом окружающим, то почти всегда в ответ слышу: «но ведь кто-то выигрывает». Хорошо, тогда давайте проведём следующий эксперимент: пожалуйста, сегодня или завтра купите билет любой лотереи (не откладывайте!). И если выиграете... ну, хотя бы больше 10 килорублей, обязательно отпишитесь – я объясню, почему это произошло. За процент, разумеется =) =)

Но грустить не нужно, потому что есть противоположный принцип: если вероятность некоторого события очень близка к единице, то в отдельно взятом испытании оно практически достоверно произойдёт. Поэтому перед прыжком с парашютом не надо бояться, наоборот – улыбайтесь! Ведь должны сложиться совершенно немыслимые и фантастические обстоятельства, чтобы отказали оба парашюта.

Хотя всё это лирика, поскольку в зависимости от содержания события первый принцип может оказаться весёлым, а второй – грустным; или вообще оба параллельными.

Пожалуй, пока достаточно, на уроке Задачи на классическое определение вероятности мы выжмем максимум из формулы . В заключительной же части этой статьи рассмотрим одну важную теорему:

Сумма вероятностей событий, которые образуют полную группу, равна единице . Грубо говоря, если события образуют полную группу, то со 100%-й вероятностью какое-то из них произойдёт. В самом простом случае полную группу образуют противоположные события, например:

– в результате броска монеты выпадет орёл;
– в результате броска монеты выпадет решка.

По теореме:

Совершенно понятно, что данные события равновозможны и их вероятности одинаковы .

По причине равенства вероятностей равновозможные события часто называют равновероятными . А вот и скороговорка на определение степени опьянения получилась =)

Пример с кубиком: события противоположны, поэтому .

Рассматриваемая теорема удобна тем, что позволяет быстро найти вероятность противоположного события. Так, если известна вероятность того, что выпадет пятёрка, легко вычислить вероятность того, что она не выпадет:

Это гораздо проще, чем суммировать вероятности пяти элементарных исходов. Для элементарных исходов, к слову, данная теорема тоже справедлива:
. Например, если – вероятность того, что стрелок попадёт в цель, то – вероятность того, что он промахнётся.

! В теории вероятностей буквы и нежелательно использовать в каких-то других целях.

В честь Дня Знаний я не буду задавать домашнее задание =), но очень важно, чтобы вы могли ответить на следующие вопросы:

– Какие виды событий существуют?
– Что такое случайность и равновозможность события?
– Как вы понимаете термины совместность/несовместность событий?
– Что такое полная группа событий, противоположные события?
– Что означает сложение и умножение событий?
– В чём суть классического определения вероятности?
– Чем полезна теорема сложения вероятностей событий, образующих полную группу?

Нет, зубрить ничего не надо, это всего лишь азы теории вероятностей – своеобразный букварь, который довольно быстро уложится в голове. И чтобы это произошло как можно скорее, предлагаю ознакомиться с уроками

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. тему , ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!