Измерительные

Определение энергии гамма-квантов радионуклида по ослаблению узкого пучка излучения в веществе. Большая энциклопедия нефти и газа

Определение энергии гамма-квантов радионуклида по ослаблению узкого пучка излучения в веществе. Большая энциклопедия нефти и газа

Везде, где есть электрические разряды, встречается излучение того или иного спектра. Гамма-излучение – это один из видов электромагнитного излучения, которое отличается очень короткой длиной волны и состоит из потоков гамма-квантов (фотонов). Установлено, что это не самостоятельный вид радиоактивности, а сопровождение распадов альфа- и бета-излучений. Гамма-излучение может также возникнуть во время ядерной реакции, когда происходит торможение заряженных частиц, их распад и другие ядерные процессы.

Понятие о гамма-излучении

Радиоактивное излучение – это ионизирующее излучение, которое рождается при нестабильном поведении частиц различного спектра, когда те попросту распадаются на составные части атома – протоны, нейтроны, электроны и фотоны. Гамма-излучение, в том числе и рентгеновское, является тем же процессом. Радиация имеет различное биологическое действие на организм человека – его вред зависит от способности частиц проникать через различные препятствия.

В этом плане гамма-излучение обладает наиболее выраженной проницательной способностью, что позволяет ему проникать даже сквозь пятисантиметровую свинцовую стену. Поэтому гамма-излучение, или гамма-лучи – это радиоактивное излучение, обладающее высокой степенью радиоактивного влияния на живой организм. Во время излучения их скорость равна скорости света.

Частота гамма-излучения составляет > 3·10 18 , что является наиболее короткой волной и в классификации электромагнитных волн стоит в самом низу, сразу перед рентгеновским излучением, чье излучение немного длиннее и составляет 10 17 — 3·10 18

Альфа-, бета- и гамма-лучи крайне опасны для человека и их интенсивное воздействие ведет к лучевой болезни, которая проявляется характерными симптомами:

  • острый лейкоцитоз;
  • торможение пульса, снижение мышечного тонуса, замедление всех процессов жизнедеятельности;
  • выпадение волос;
  • поочередный отказ всех органов – сначала печени, почек, спинного мозга, а затем сердца.

Попадая в организм, лучи радиации уничтожают и подвергают мутации клетки таким образом, что, заразившись, те заражают другие. А те, что смогли выжить, перерождаются уже неспособными к делению и другим функциям жизнедеятельности. Альфа- и бета-лучи являются наиболее опасными, однако гамма-частица коварна тем, что за 1 секунду преодолевает расстояние в 300 000 километров и способна поражать значительные расстояния. При небольшой дозе радиации человек не чувствует ее воздействие, и свое разрушительное влияние она обнаруживает не сразу. Может пройти как несколько лет, так и несколько поколений – в зависимости от дозы и типа лучей – прежде чем проявятся нарушения. Однако при большой дозе облучения болезнь проявляется в течение нескольких часов и имеет ярковыраженную симптоматику с болями в животе, неудержимой рвотой, головными болями.

Истории наших читателей

Владимир
61 год

Опасность гамма-излучения

Гамма-лучи могут проникать из космоса, источники гамма-излучения могут быть также распадом некоторых радиоактивных пород – урана, гранита, радона и других.

Наиболее известный случай отравления гамма-лучами – это случай отравления Александра Литвиненко , которому подсыпали в чай полоний. Полоний – радиоактивный элемент, производный урана, который обладает высокой радиоактивностью.

Квантовая энергия гамма-излучения обладает огромной силой, которая увеличивает их проницаемость в живые клетки и разрушительное действие. Вызывая смерть и трансформацию клеток, гамма-кванты со временем накапливаются в организме, а поврежденные клетки одновременно с этим отравляют организм своими токсинами, которые появляются в процессе их разложения.

Гамма-квант – это ядерное излучение, частица без массы и заряда, которая испускается при ядерной реакции, когда ядро переходит из одного энергетического состояния в другое. Когда квант гамма-изучения проходит через определенное вещество и вступает с ним во взаимодействие, то происходит полное поглощение энергии гамма-кванта этому веществу с выбросом его электрона.

Опасность такого облучения наиболее губительна для человека, так как его проникающая способность практически не оставляет шансов – 5-сантиметровая свинцовая стена способна поглотить лишь половину гамма-излучения. В этом отношении альфа- и бета-лучи менее опасны – альфа-излучение может задержать обычный лист бумаги, бета-излучению не преодолеть деревянной стены, а от гамма-излучения практически не существует преграды. Поэтому крайне важно, чтобы не происходило длительного воздействия этих лучей на организм человека.

Как защититься от гамма-излучения

Попадая в организм при повышенном гамма-фоне, радиация начинает незаметно отравлять организм, и если не произошло потребление сверхвысоких доз за короткое время, то первые признаки могут проявиться нескоро. В первую очередь страдает система кроветворения, которая берет первый удар на себя . В ней резко сокращается количество лейкоцитов, вследствие чего очень быстро поражается и выходит из строя спинной мозг. Вместе со спинным мозгом страдают лимфатические узлы, которые в дальнейшем также выходят из строя. Человек теряет волосы, его ДНК повреждается. Наступает мутация генома, что ведет к нарушениям в наследственности. При сильных поражениях наступает смерть от рака или от выхода из строя одного или нескольких органов.

Необходимо измерять гамма-фон на земельных участках перед покупкой. Под действием некоторых подземных пород, в том числе в подземных реках, при тектонических процессах земной коры вполне возможно заражение гамма-излучением поверхности земли.

Защита от гамма-излучения может быть лишь частичной. Если допустить подобную катастрофу, то ближайшие 300 лет пораженная территория будет полностью отравлена, вплоть до нескольких десятков метров слоя почвы. Полной защиты не существует, однако можно воспользоваться подвалами жилых домов, подземными окопами и прочими убежищами, хотя следует помнить, что этот вид защиты действует лишь частично.

Таким образом, способы защиты от гамма-излучения заключаются главным образом в измерении гамма-фона специальным оборудованием и непосещение мест с повышенным уровнем радиации – например, Чернобыля или окрестностей Фукусимы.

Самый большой выброс в воду ядерной радиации в истории человечества произошел в 2011 году на Фукусиме, когда волна цунами привела к выходу из строя трех ядерных реакторов. Радиоактивные отходы смываются в море в количестве 300 тонн ежедневно вот уже седьмой год. Размеры этой катастрофы ужасают. Так как эту утечку невозможно устранить по причине высокой температуры в зоне поражения, неизвестно, сколько еще будет происходить этот процесс. А тем временем подводным течением радиация распространилась уже на значительную часть Тихого океана.

Область применения гамма-излучения

Если целенаправленно применять поток гамма-частиц, то можно выборочно уничтожать те клетки организма, которые в данный момент времени имеют активное размножение . Этот эффект от применения гамма-лучей используется в медицине при борьбе с онкологией. Как последнюю меру и только когда другие средства перестают работать, целенаправленно на злокачественную опухоль применяют метод облучения. Наиболее эффективно использование дистанционной гамма-лучевой терапии. Такой способ разработан для лучшего управления процессом с минимизацией рисков и повреждений здоровых тканей.

Гамма-кванты также используют в других сферах:

  1. С помощью этих лучей изменяют энергию. Прибор для этого, который используется в экспериментальной физике, называется гамма-спектрометром. Он бывает магнитным, сцинтилляционным, полупроводниковым и кристалл-дифракционным.
  2. Изучение спектра ядерного гамма-излучения дает информацию о ядерной структуре. Внешняя среда, влияя на гамма-излучение, производит различные эффекты, которые имеют большое значение для понимания процессов, происходящих при этом. Поэтому все эти процессы активно изучаются.
  3. Техника также применяет гамма-излучения, чтобы обнаружить дефекты металлов. Так как гамма-излучение обладает различного уровня поглощением в разной среде, но при одинаковом расстоянии распространения, то можно вычислить дефекты с помощью различного по интенсивности излучения.
  4. Радиационная химия также использует это излучение для возбуждения химического превращения в различных процессах с помощью естественных или искусственных радиоактивных изотопов и электронных ускорителей – источников этого рода радиации.
  5. Стерилизацию пищевых продуктов с помощью гамма-излучений использует в своих целях пищевая промышленность .
  6. В растениеводстве используются гамма-кванты для того, чтобы растение приобрело лучшие показатели путем мутации.
  7. С помощью гамма-лучей выращивают и обрабатывают некоторые микроорганизмы, делают лекарства, в том числе некоторые антибиотики. Ими обрабатывают семена, чтобы избавить их от мелких вредителей.

Еще около 100 лет назад свойства гамма-излучения не были достаточно изучены, и это приводило к незащищенному использованию радиоактивных элементов в качестве медицинского или измерительного оборудования. Гамма-излучение также использовали для покрытий различных ювелирных и керамических изделий, при изготовлении витражного стекла. Поэтому следует быть осторожным в хранении и приобретении предметов старины – безобидная с виду вещь может таить в себе радиоактивную угрозу.

Проникающая радиация представляет собой поток гамма-лучей и нейтронов, излучаемых из зоны ядерного взрыва.

Источниками проникающей радиации являются ядерная реакция и радиоактивный распад продуктов ядерного взрыва.

Время действия проникающей радиации не превышает 10-15 сек с момента взрыва. За это время заканчивается распад коротко живущих осколков деление, образовавшихся в результате ядерной реакции. Кроме того, радиоактивное облако поднимается на большую высоту и радиоактивные излучения поглощаются толщей воздуха, не достигая поверхности земли.

Проникающая радиация характеризуется дозой излучения , т. е. количеством энергии радиоактивных излучений, поглощенной единицей объема облучаемой среды. Доза излучения количественно характеризует ионизацию, которую потоки гамма-лучей и нейтронов могут произвести в воздушном объеме.

Процесс ионизации состоит в «выбивании» электронов из электронной оболочки атомов. Вследствие этого нейтральные в электрическом отношении атомы превращаются в разноименно заряженные частицы - ионы.

Проникающая радиация представляет собой сумму доз гамма-излучения и нейтронов.

Гамма-излучение , составляющее основную часть про­никающей радиации, возникает как непосредственно в момент взрыва в процессе взрывной ядерной реакции, так и после взрыва в результате радиоактивного захвата нейтронов ядрами атомов различных элементов. Действие гамма-излучения продолжается 10-15 сек.

За единицу измерения дозы излучений гамма-лучей принят рентген-специальная международная физиче­ская единица дозы (количество энергии).

Рентген - это такое количество гамма-излучения, которое при температуре 0° и давлении 760 мм создает в 1 см 3 сухого воздуха 2 млрд. пар ионов (точнее, 2,08-10 9). Обозначается рентген буквой р. Тысячная часть рентгена носит название миллирентгена и обозначается мр.

Поток нейтронов , возникающий при ядерном взрыве, содержит быстрые и медленные нейтроны, которые по-разному действуют на живые организмы. Доля нейтронов в общей дозе проникающей радиации меньше доли гамма-лучей. Она несколько увеличивается с уменьшением мощности ядерного взрыва.

Основным источником нейтронов при ядерном взрыве является цепная ядерная реакция. Поток нейтронов излучается в течение долей секунды после взрыва и может вызвать искусственную наведенную радиацию в металлических предметах и грунте. Наведенная радиоактивность наблюдается только в зоне, непосредственно прилегающей к месту взрыва.

Доза излучения потоком нейтронов измеряется специальной единицей - биологическим эквивалентом рентгена.

Биологический эквивалент рентгена (БЭР) - это доза нейтронов, биологическое воздействие которой эквива­лентно воздействию 1 р гамма-излучения.


Поражающее действие проникающей радиации на людей вызывается облучением , которое оказывает вредное биологическое действие на живые клетки организма. Сущность поражающего действия проникающей радиации на живые организмы заключается в том, что гамма-лучи и нейтроны ионизируют молекулы живых клеток. Эта ионизация нарушает нормальную жизнедеятельность клеток и при больших дозах приводит к их гибели. Клетки теряют способность к делению, в результате чего человек заболевает так называемой лучевой болезнью .

Поражение людей проникающей радиацией зависит от величины дозы облучения а времени, в течение которого эта доза получена.

Однократная доза облучения в течение четырех суток до 50 р, как и доза систематического облучения-до 100 р за десять дней, не вызывает внешних признаков заболевания и считается безопасной. Дозы облучения свыше 100 р вызывают заболевание лучевой болезнью.

В зависимости от дозы облучения различают три степени лучевой болезни: первую (легкую), вторую (среднюю) и третью (тяжелую).

Лучевая бcлeзнь первой степени возникает при общей дозе облучения 100 - 200р Скрытый период продолжается две-три недели, после чего появляется недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание белых кровяных шариков. Лучевая болезнь первой степени излечима.

Лучевая болезнь второй степени возникает при общей дозе обличения 200 - 300 р. Скрытый период длится около недели, после чего появляются такие же признаки заболевания, что и при лучевой болезни первой степени, по в более ярко выраженной форме. При активном лечении наступает выздоровление через1,5-2 месяца.

Лучевая болезнь третьей степени возникает при общей дозе облучения 300-500 р. Скрытый период сокращается до нескольких часов. Болезнь протекает более интенсивно. При активном лечении выздоровление наступает через несколько месяцев.

Доза облучения свыше 500 р для человека обычно считается смертельной.

Дозы проникающей радиации зависят от вида, мощности взрыва и расстояния от центра взрыва. Значения радиусов, на которых возможны различные дозы проникающей радиации при взрывах различной мощности, приводятся в табл 8.

Гамма излучение представляет собой довольно серьезную опасность для человеческого организма, да и для всего живого в общем.

Это электромагнитные волны с очень маленькой длиной и высокой скоростью распространения.

Чем же они так опасны, и каким образом можно защититься от их воздействия?

О гамме излучение

Все знают, что атомы всех веществ содержат в себе ядро и электроны, которые вращаются вокруг него. Как правило, ядро – это довольно стойкое образование, которому трудно нанести повреждения.

При этом существуют вещества, ядра которых неустойчивы, и при некотором воздействии на них происходит излучение их составляющих. Такой процесс называется радиоактивным, он имеет определенные составляющие, названные по первым буквам греческого алфавита:

  • гамма излучения.

Стоит отметить, что радиационный процесс подразделяется на два вида в зависимости от того, что именно в результате выделяется.

Виды:

  1. Поток лучей с выделением частиц – альфа, бета и нейтронное;
  2. Излучение энергии – рентгеновское и гамма.

Гамма излучение – это поток энергии в виде фотонов. Процесс разделения атомов под воздействием радиации сопровождается образованием новых веществ. При этом атомы вновь образовавшегося продукта имеют довольно нестабильное состояние. Постепенно при взаимодействии элементарных частиц возникает восстановление равновесия. В результате происходит выброс лишней энергии в виде гаммы.

Проникающая способность такого потока лучей очень высока. Оно способно проникать через кожные покровы, ткани, одежду. Более тяжелым будет проникновение через металл. Чтобы задержать такие лучи необходима довольно толстая стена из стали или бетона. Однако длина волныγ-излучения очень мала и составляет меньше 2·10 −10 м, а ее частота находится в диапазоне 3*1019 – 3*1021 Гц.

Гамма частицами являются фотоны с довольно высокой энергией. Исследователи утверждают, что энергия гаммы излучения может превышать показатель 10 5 эВ. При этом граница между рентгеновскими и γ-лучами далеко не резкая.

Источники:

  • Различные процессы в космическом пространстве,
  • Распад частиц в процессе опытов и исследований,
  • Переход ядра элемента из состояния с большой энергией в состояние покоя или с меньшей энергией,
  • Процесс торможения заряженных частиц в среде либо движение их в магнитном поле.

Открыл гамма излучение французский физик Поль Виллар в 1900 году, проводя исследование излучения радия.

Чем опасно гамма-излучение

Гамма излучение является наиболее опасным, нежели альфа и бета.

Механизм действия:

  • Гамма лучи способны проникать через кожные покровы внутрь живых клеток, в результате происходит их повреждение и дальнейшее разрушение.
  • Поврежденные молекулы провоцируют ионизацию новых таких же частиц.
  • В результате возникает изменение в структуре вещества. Пострадавшие частицы при этом начинают разлагаться и превращаться в токсические вещества.
  • В итоге происходит образование новых клеток, но они уже с определенным дефектом и поэтому не могут полноценно работать.

Гамма излучения опасно тем, что такое взаимодействие человека с лучами не ощущается им ни в коей мере. Дело в том, что каждый орган и система человеческого организма реагирует по-разному на γ-лучи. Прежде всего, страдают клетки, способные быстро делиться.

Системы:

  • Лимфатическая,
  • Сердечная,
  • Пищеварительная,
  • Кроветворная,
  • Половая.

Оказывается негативное влияние и на генетическом уровне. Кроме того, такое излучение имеет свойство накапливаться в человеческом организме. При этом в первое время оно практически не проявляется.

Где применяется гамма-излучение

Несмотря на негативное влияние, ученые нашли и положительные стороны. В настоящее время такие лучи применяются в различных сферах жизни.

Гамма излучение — применение:

  • В геологических исследованиях с их помощью определяют длину скважин.
  • Стерилизация различных медицинских инструментов.
  • Используется для контроля внутреннего состояния различных вещей.
  • Точное моделирование пути космических аппаратов.
  • В растениеводстве применяется для вывода новых сортов растений из тех, что мутируют под воздействием лучей.

Излучение гамма частиц нашло свое применение в медицине. Используется оно в терапии онкологических больных. Такой метод имеет название «лучевая терапия» и основывается на воздействии лучей на быстро делящиеся клетки. В результате при правильном использовании появляется возможность уменьшить развитие патологических клеток опухоли. Однако такой метод, как правило, применяется в том случае, когда другие уже бессильны.

Отдельно стоит сказать о влияние его на мозг человека

Современные исследования позволили установить, что мозг постоянно испускает электрические импульсы. Ученые считают, что гамма излучения возникает в те моменты, когда человеку приходится работать с разной информацией одновременно. При этом небольшое количество таких волн ведет к уменьшению запоминающей способности.

Как защититься от гамма-излучения

Какая же защита существует, и что сделать, чтобы уберечься от этих вредных лучей?

В современном мире человек окружен различными излучениями со всех сторон. Однако гамма частицы из космоса оказывают минимальное воздействие. А вот то, что находится вокруг представляет гораздо большую опасность. Особенно это относится к людям, работающим на различных атомных станциях. В таком случае защита от гамма излучения состоит в применении некоторых мер.

Меры:

  • Не находится длительное время в местах с таким излучением. Чем дольше времени человек находится под воздействием этих лучей, тем больше разрушений возникнет в организме.
  • Не стоит находиться там, где расположены источники излучения.
  • Необходимо использовать защитную одежду. В ее состав входит резина, пластик с наполнителями из свинца и его соединений.

Стоит отметить, что коэффициент ослабления гамма излучения зависит от того, из какого материала сделан защитный барьер. Так, например, лучшим металлом считается свинец в виду его свойства поглощать излучение в большом количестве. Однако он плавится при довольно низких температурах, поэтому в некоторых условиях используется более дорогой металл, например, вольфрам или тантал.

Еще один способ обезопасить себя – это измерить мощность гамма излучения в Вт. Кроме того, мощность измеряется также в зивертах и рентгенах.

Норма гамма излучения не должна превышать 0,5 микрозиверта в час. Однако лучше если этот показатель не будет выше 0,2 микрозиверта в час.

Чтобы измерить гамма излучение, применяется специальное устройство – дозиметр. Таких приборов существует довольно много. Часто используется такой аппарат, как «дозиметр гамма излучения дкг 07д дрозд». Он предназначен для оперативного и качественного измерения гамма и рентгеновского излучения.

У такого устройства есть два независимых канала, которые могут измерять МЭД и Эквивалент дозировки. МЭД гамма излучения это мощность эквивалентной дозировки, то есть количество энергии, которую поглощает вещество в единицу времени с учетом того, какое воздействие лучи оказывают на человеческий организм. Для этого показателя также существуют определенные нормы, которые обязательно должны быть учтены.

Излучение способно негативно влиять на организм человека, однако даже для него нашлось применение в некоторых сферах жизни.

Видео: Гамма-излучение

Проникающая радиация. Под проникающей радиацией понимают поток гамма-лучей и нейтронов, испускаемых из зоны ядерного взрыва во внешнюю среду

Под проникающей радиацией понимают поток гамма-лучей и нейтронов, испускаемых из зоны ядерного взрыва во внешнюю среду. По своим физическим свойствам эти виды излучения различаются между собой, однако общим для них является способность распространяться в воздухе во все стороны на расстояния до 2,5-3 км. Время действия проникающей радиации 15-20 сек и определяется временем подъема облака взрыва на такую высоту, при которой гамма-излучение полностью поглощается толщей воздуха и не достигает поверхности земли. Необходимо различать проникающую радиацию, действующую всего несколько секунд и радиоактивное заражение местности, поражающее действие которого сохраняется в течение длительного времени. Основным источником гамма-излучения являются осколки деления ядерного горючего, находящиеся в зоне взрыва и радиоактивном облаке нейтроны при ядерном взрыве образуются при реакциях деления (в процессе цепной реакции), при термоядерном синтезе, а также в результате распада осколков деления. Нейтроны, образующиеся при реакциях деления и синтеза испускаются в течение долей микросекунды и называются мгновенными , а нейтроны образующиеся при распаде осколков деления – запаздывающими . Под действием нейтронов некоторые нерадиоактивные вещества становятся радиоактивными. Этот процесс называется наведенной активностью .

Нейтроны и гамма-излучение действуют практически одновременно. Хотя нейтроны испускаются, главным образом, в первые секунды, а гамма-излучение длится еще несколько секунд, этот факт существенного значения не имеет. В связи с чем поражающее действие проникающей радиации определяется суммарной дозой, получаемой от сложения доз гамма-излучения и нейтронов. Так называемые нейтронные боеприпасы , представляют собой ядерные боеприпасы с термоядерным зарядом малой мощности, отличающимся повышенным выходом нейтронного излучения. В нейтронном боеприпасе такие поражающие факторы, как ударная волна, световое излучение, радиоактивное заражение местности имеют второстепенное значение, а основным поражающим фактором взрыва нейтронного боеприпаса является проникающая радиация. В составе проникающей радиации в таком боеприпасе нейтронный поток преобладает над гамма-излучением.

Поражающее действие проникающей радиации на людей зависит от полученной дозы радиации , т.е. от количества поглощенной организмом энергии и связанной с этим степенью ионизации тканей. Результатом воздействия различных доз радиации на человека является острая лучевая болезнь (ОЛБ) .

Для защиты от проникающей радиации используются различные материалы, ослабляющие действие гамма-излучения и нейтронов. Эта способность материалов характеризуется величиной слоя половинного ослабления . Под этим понимают толщину материала, проходя через, которую гамма-излучение и поток нейтронов ослабляется в 2 раза. При этом следует помнить, что гамма-излучение ослабляется тем больше, чем плотнее вещество, например, свинец, бетон, сталь. Нейтронный поток сильнее ослабляется легкими материалами (вода, полиэтилен, парафин, стеклопластик), содержащими ядра легких элементов, таких как водород, углерод и др. Считается, что слой воды, толщина которого 70 см или слой парафина 650 см ослабляет поток нейтронов в 100 раз (Табл. 1).