Измерительные

Лабораторный практикум по безопасной эксплуатации ректификационных колонн. Методические указания к лабораторной работе "изучение процесса ректификации"

Лабораторный практикум по безопасной эксплуатации ректификационных колонн. Методические указания к лабораторной работе

2.1. Устройство системы чпу 2р22

Система ЧПУ 2Р22 предназначена для выдачи управляющей программы (УП) на исполнительные органы токарных станков. Эта система выполняет следующие функции: ввод управляющей программы с клавиатуры пульта управления или программоносителя; отработку и редактирование управляющей программы непосредственно на станке; составление управляющей программы по образцу, когда обработка первой детали ведется в ручном, а обработка последующих деталей – в автоматическом режиме; ввод постоянных циклов в диалоговом режиме; использование сложных циклов многопроходной обработки; вывод управляющей программы на программоноситель и выполнение ряда других функций.

Более развитое по сравнению с системой ЧПУ «Электроника НЦ-31» функциональное программное обеспечение, хранящееся в постоянной памяти устройства, включение в него сложных циклов многопроходной обработки позволяют уменьшить объем вводимой информации и упростить составление управляющей программы.

Техническая характеристика системы ЧПУ 2Р22 приведена в табл. 2.

Таблица 2

Техническая характеристика устройства ЧПУ 2Р22

Продолжение табл. 2

Способ задания размеров в программе

В абсолютной и относительной системе

Максимальное программируемое перемещение, мм

Режим работы

Автоматический, ручной, ввод данных, поиск кадра, редактирование, режим диалога при формировании УП по кадрам, выход в исходную точку и др.

Тип устройства для ввода данных

Фотосчитывающее устройство (ФСУ), клавиатура пульта управления (ПУ), кассетный накопитель на магнитной ленте

Тип устройства для хранения УП и управления ЧПУ, программы электроавтоматики и программы привязки системы к станку

Постоянное программируемое запоминающее устройство (ППЗУ)

Время хранения информация в оперативном запоминающем устройстве (ОЗУ), час.

Коррекция:

частоты вращения шпинделя

14–40 % с шагом 10%

рабочих подач

0–12 % с шагом 1 %

Индикация данных

На блоке отображения символьной информации (БОСИ)

Типы управляемых приводов:

главного движения

Регулируемый

Следящий

Предельные значения скоростей рабочего органа (РО), мм/мин:

рабочих подач

До 5000 (при нарезании резьбы до 10000)

холостых перемещений

Окончание табл. 2

Соседние файлы в папке Учебники

studfiles.net

Разработка управляющих программ для станков с ЧПУ, страница 5

Разработка управляющих программ для оборудования с ЧПУ заключается не только в определении геометрии обрабатываемого профиля детали и расчёта траектории движения инструмента относительно детали. Этот процесс требует знаний и опыта в выборе режущих инструментов (особенно для многоцелевых станков, где часто необходимо автоматически менять большое число режущих инструментов), методов размещения, базирования и закрепления заготовки на станке, определения скоростей вращения шпинделя и величин подач, назначения глубины резания для каждого прохода и т.п. И, конечно же, требуется хорошее знание оборудования, для которого разрабатывается УП. Каждый станок имеет свои особенности, как в конструкции его механических узлов, так и в системе управления. Поэтому перед тем, как приступить к разработке управляющей программы, необходимо тщательно проработать инструкции по программированию и обслуживанию, предоставляемые производителем данного станка. Хорошо изучить подготовительные функции G и вспомогательные команды М, реализуемые системой управления данного станка, какие функции работают по умолчанию, то есть активизируются в момент включения системы управления, а какие функции требуют особого вызова.

(В конце данной главы представлена некоторая информация по стандартным подготовительным функциям G и вспомогательным командам М, используемым на подавляющем числе современных станков с ЧПУ).

Ранее уже описывались методы выбора системы координат и нулевой точки на детали, так же как и представление размерной информации на чертеже детали (например, необходимость пересчёта координат опорных точек, представление их в абсолютной или относительной системе отсчёта, переработка информации в табличную форму и т.п.).

Рассмотрим теперь, какую ещё информацию необходимо иметь для программирования обработки детали на станке с ЧПУ. Относительно детали это:

· Размер заготовки;

· Закрепление детали на станке.

· Материал детали;

· Припуск на обработку;

· Заданная шероховатость поверхности;

· Заданный допуск на обработку различных элементов детали;

· Жёсткость детали;

Размер заготовки должен быть в пределах допуска, предусмотренного для данного случая. Если это не так, необходимо предусмотреть предварительную операцию, может быть с применением какого-либо универсального оборудования, для удаления излишнего припуска.

Перед установкой и закреплением детали на станке с ЧПУ желательно подготовить её базовые поверхности, например, торец и две кромки, которые могли бы быть использованы для точного базирования детали в приспособлении или непосредственно на столе станка. Некоторые современные станки, особенно многоцелевые станки, имеющие автоматическую смену инструмента с инструментальным магазином, позволяют осуществлять автоматический контроль качества базирования детали на станке путём ощупывания по программе определённых определяющих поверхностей на детали щупом измерительной головки, которая в нужный момент перед обработкой автоматически устанавливается в шпиндель станка. После ощупывания, специальная программа системы управления определяет фактическую систему координат детали и её расположение относительно системы координат станка. В результате рассчитываются необходимые смещения по координатным осям станка используемые для введения коррекций в управляющую программу.

Материал обрабатываемой детали определяет эффективную скорость резания, выбор и тип охлаждающей жидкости, скорость подачи о геометрию инструмента. При программировании необходимо использовать соответствующие вспомогательные команды (например, включение или отключение охлаждающей жидкости и т.п.)

Для удаления припуска, с точки зрения экономики, желательно назначать как можно меньшее число проходов. В идеальном случае это два прохода – один черновой, а второй чистовой. Однако число проходов зависит от прочности режущего инструмента, материала и конфигурации детали, а также от мощности привода станка. 26

Заданная шероховатость поверхности и допуск на обработку отдельных элементов детали в большой степени определяют технологический процесс. Кроме того, они влияют на параметры интерполяции заданного контура.

Жёсткость детали оказывает большое влияние на способ закрепления детали, выбор конструкции и места расположения зажимных устройств. Определяя место расположения зажимных устройств надо учитывать траекторию движения инструмента в процессе обработки различных поверхностей детали.

2.2.3. Адресная система записи управляющих программ.

Составление программ для систем, предназначенных для работы со станками типа “обрабатывающие центры”, проводится в соответствии с рекомендациями, выработанными Международной организацией по стандартизации (IS0) и принятыми в нашей стране.

Подготовка управляющих программ может осуществляться или в ручном режиме, или с помощью систем автоматизации программирования (САП), или в диалоговом режиме непосредственно на станке, или с применением систем CAD/CAM. Однако в любом случае управляющая программа в конечном виде представляется в коде ISO.

Данный код основан на двоично-десятичной системе счисления, где каждый десятичный разряд выражается какими-либо двоичными знаками (в одной строке перфоленты), а отдельные разряды располагаются последовательно (по строкам), как в десятичной системе счисления.

Кроме того, стандарт предполагает использование по кадровой записи информации, когда в одном блоке на участке перфоленты (называемом кадром) записывается вся информация, относящаяся к перемещению из одной опорной точки до другой. Иногда кадр несёт только технологическую информацию для выполнения каких-либо команд без перемещения.

vunivere.ru

Разработка управляющих программ для станков с ЧПУ, страница 2

Операционная карта содержит описание переходов с указанием оборудования, оснастки и режимов резания. В ней же указываются взаимное расположение базовых поверхностей детали, зажимного приспособления и инструмента при описании различных установок и переходов.

Карта наладки станка содержит: номер чертежа и наименование детали; модель станка с ЧПУ; номер управляющей программы; тип и материал заготовки; шифр приспособлений для зажима заготовки и силу её зажима; координаты исходных положений рабочих органов станка; диапазон частот вращения шпинделя; указания о включении охлаждения; шифр инструментов с указанием номеров их позиций и блоков коррекций. В карте наладки приводится эскиз, поясняющий схему крепления заготовки для данной установки на станке.

Карта наладки инструмента используется при настройке инструментальных блоков вне станка и установки их на станке в соответствии с выбранной наладкой /в соответствующие гнёзда инструментального магазина при его наличии на станке/. 14

Имея все необходимые элементы, приступают к наладке станка, которая включает в себя следующие процедуры:

1. Установка зажимного приспособления на станке и закрепление в нём детали.

2. Подбор, согласно карте наладки, режущего инструмента и вспомогательной оснастки для крепления инструмента. Проверка состояния инструмента и монтаж инструментальных блоков.

3. Совмещение координат детали, приспособления, инструмента и станка. Выставка нулевых точек.

4. Размерная настройка режущего инструмента, если она не была выполнена на специальном устройстве вне станка. Ввод необходимых коррекций на размер инструмента с помощью специальных корректоров, расположенных на пульте управления.

5. Ввод управляющей программы. Если устройство оснащено оперативной системой ЧПУ на микропроцессоре, то программу вводят с пульта управления без промежуточного программоносителя.

После завершения всех наладочных операций приступают к проверке УП на станке. Сначала программу прогоняют в «Холостом режиме» без обработки детали. Некоторые системы ЧПУ позволяют осуществить прогон программы на ускоренном ходу, значительно сокращая общее время проверки УП. При этом проверяется правильность выбора нулевых точек, выполнения технологических команд, правильность выполнения вспомогательных движений, отсутствие ошибок в перфоленте.

После устранения всех обнаруженных ошибок приступают к пробной обработке детали. Сначала обработку проводят в покадровом режиме, т.е. после выполнения всех движений и команд, заданных в кадре, автоматический режим прерывается и станок останавливается. Вызов следующего кадра осуществляется оператором с пульта управления только после проверки правильности отработки предыдущего кадра и введения необходимых коррекций. При такой проверке выявляются все возможные ошибки, включая ошибки в задании технологических режимов резания, величины скорости подачи, частоты вращения шпинделя, глубины резания и т.п.

В случае обработки сложной и дорогостоящей заготовки, отработку программы проводят на деревянной или пластмассовой модели. Первую обработанную деталь тщательно замеряют и по результатам контроля в программу вносят необходимые коррекции.

Завершается последовательность подготовки программы и подготовки производства запуском в обработку всей партии деталей.

Наиболее важным этапом во всей данной функциональной схеме является этап «Расчёт программы», который включает в себя следующие процедуры:

1. Выбор системы координат. Выбранная система координат служит для пересчёта всех размеров заданных на чертеже детали, в координаты опорных точек её контура. При выборе системы координат детали для упрощения вычислений предпочтительно координатные плоскости совмещать с поверхностями технологических баз или располагать их параллельно. Координатные оси лучше совмещать с размерными линиями, относительно которых проставлено наибольшее число размеров или с осями симметрии. Если деталь симметрична, рационально использовать ось симметрии в качестве одной из осей системы координат. Направление координатных осей желательно выбирать таким же, как и в системе координат станка.

2. Расчёт опорных точек на контуре детали (рис. 2.2 а, 2.2 б). Опорными точками являются точки, где меняется математический закон, описывающий заданный контур. Это точки пересечения, начала или конца геометрических элементов. Как правило, расчёт контура детали выполняется по середине поля допуска на размер или по номинальному размеру, с последующим вводом коррекции на этот программируемый размер с пульта управления системы в зависимости от результатов замера обработанной детали.

3. Расчет эквидистанты (рис.2.2в.). Траектория инструмента рассчитывается для определенной его точки: для концевой фрезы это центр основания, а для резцов - центр закругления при вершине. Траектория центра инструмента в плоскости обработки представляет собой эквидистанту, т.е. геометрическое место точек, равноудалённых от контура детали на расстояние, равное радиусу инструмента. Опорные точки на эквидистанте определяются по уже рассчитанным координатам опорных точек на профиле детали.

В некоторых случаях эквидистанта может рассчитываться непосредственно по размерам на чертеже детали, без предварительного расчёта опорных точек на профиле детали.

Рис. 2.2 а. Чертёж детали

Рис. 2.2.б Определение опорных точек на контуре детали и расчёт их координат.

Рис. 2.2. в. Построение эквидистанты и пересчёт координат опорных точек на эквидистанте.

vunivere.ru

Лекция - Основные принципы разработки управляющих программ для оборудования с ЧПУ - файл 1.doc

Лекция - Основные принципы разработки управляющих программ для оборудования с ЧПУ (534.5 kb.)Доступные файлы (1):
1.doc 535kb. 16.11.2011 08:22
содержаниеАвтор: Гаик Рафаэлович Сагателян (МГТУ им. Баумана) Электр. Версия черчение в Компас: Коренчук ИванОсновные принципы разработки управляющих программдля оборудования с ЧПУ Под ЧПУ оборудования понимают управление при помощи программ, заданных в алфавитно-числовом коде.При обработке на станках с ЧПУ инструмент перемещается по задаваемым в программе траекториям.При этом, например, для токарных станков программируется перемещение вершины резца, а для фрезерных – перемещение оси фрезы.Ось фрезы перемещается по эквидистанте, т. е. линии или поверхности, отстоящей от обрабатываемой поверхности на постоянную величину, равную радиусу фрезы.

  1. требуемый контур детали;
  2. эквидистанта;
  3. фреза.
Программируются две подачи. На обрабатываемом контуре выделяются опорные точки, которые представляют собой те точки контура, в которых он изменяет свой характер (точки 4, 5, 6, 7).ЭВМ, встроенная в систему ЧПУ производит аппроксимацию перемещений рабочих органов оборудования. В частности аппроксимирует окружность ломаной линией (между точками 6 и 7). Поэтому существует погрешность .Оборудование с ЧПУ снабжено либо шаговыми двигателями, либо двигателями постоянного тока (тиристорными).

Пусть Nx и Ny – количество импульсов по осям X и Y соответственно, тогда

,
,

где х и у – цены импульсов (дискреты), лежащие обычно в пределах 0,0050,01 мм.

Шаговые двигатели являются низкомоментными и в станках не используются. В станках используются двигатели постоянного тока, для которых необходимо вычислить скорость перемещения вдоль осей координат:

,
,

где
– время перемещения по прямой в данной точке аппроксимации, [с], ^ – скорость подачи, [мм/мин], l – длина участка аппроксимации в данной точке, причем

Структура систем ЧПУ

Структура СЧПУ без обратной связи выглядит следующим образом:

  1. программоноситель;
  2. дешифратор (устройство считывания);
  3. промежуточное устройство (запоминающее);
  4. силовой привод.
Структура СЧПУ с обратной связью: 1, 2, 3- аналогично устройству без обратной связи (см. предыдущий рисунок);
  1. сравнивающее устройство;
  2. усилитель;
  3. привод;
  4. датчик обратной связи.
Поскольку управление в СЧПУ происходит по нескольким каналам, в целом структура СЧПУ имеет следующий вид: БТК - блок технологических команд
  1. программоноситель;
  2. магнитная головка;
  3. электронный блок;
  4. каналы (управляющие перемещением технологического оборудования и канал для команд);
  5. привод главного движения;
  6. двигатель подачи СОЖ;
  7. двигатель насоса гидросистемы станка;
  8. усилители;
  9. силовые приводы (двигатели постоянного тока);
  10. датчики обратной связи;
  11. рабочие органы станка;
  12. ходовые винты.

Разновидности СЧПУ

Различают позиционные и контурные СЧПУ. Позиционные СЧПУ управляют только перемещением рабочих органов в те или иные точки. Например, при сверлении отверстий в печатных платах необходимо задавать только координаты отверстий. Контурные СЧПУ обеспечивают требуемую скорость в процессе перемещения от одной позиции к другой. Эта скорость является скоростью подачи. В обозначениях металлорежущих станков предусмотрена возможность указания на тип применяемого СЧПУ. В конце обозначения указывается:…Ц – цикловое программное управление, управляющими элементами яв-ляются концевые переключатели, упоры и т. д.…Ф1 – станок снабжен цифровой индикацией положения инструмента.…Ф2 – позиционная СЧПУ.…Ф3 – контурная СЧПУ.…Ф4, …Ф5 – обрабатывающие центры (ОЦ) – многооперационные станки с позиционным и контурным СЧПУ соответственно. Также в обозначении станков присутствуют буквы Р и М. Р – револьверная головка (например, РФ3).М – оборудование снабжено магазином элементов, что характерно для ОЦ.

Номенклатуру инструмента для станков c ЧПУ (см. табл. 1 – 5) составляют на базе статистического анализа форм и размеров изготовляемых деталей и технологических возможностей станков. В конкретных условиях обработки можно применять и другие инструменты (инструментальные материалы). Для обработки отверстий используют сверла и расточные резцы ограниченной номенклатуры. Зенкеры и развертки в большинстве случаев не применяют. 7-й и 8-й квалитеты для отверстий получают растачиванием (употребление разверток целесообразно только в случае обработки больших партий деталей).

Наружные основные поверхности с образованием прямых уступов формируют проходным подрезным резцом с углами  =95° 1 =5° для черновой обработки и контурными резцами с углами  =93° и 1 =32° для чистовой обработки (см. табл. 1).

При обработке внутренних основных поверхностей используют центровочные и спиральные сверла, а также расточные проходные резцы с углами  =95°, 1 =5° для черновой обработки и расточные контурные резцы с углами  =93°, 1 =32 для чистовой обработки. Размеры расточного инструмента устанавливают соответственно размерам обрабатываемых отверстий: диаметру и длине.

Для обработки глухих отверстий используют перовые или спиральные донные сверла диаметром 25, 30, 35, 40, 45 и 50 мм. Для образования наружных и внутренних дополнительных поверхностей необходимы прорезные резцы, резцы для угловых канавок, резьбовые резцы с углом  =60, 55 (для метрических и дюймовых резьб). Конструкция инструмента и резцедержателей должна обеспечивать возможность предварительной настройки инструмента на размер вне станка, быструю и точную установку инструмента в рабочую позицию на суппорте или в револьверной головке, формирование и отвод стружки в условиях автоматической работы станка с ЧПУ.Примечание. Резец контурный правый (левый) применяется также для обработки дополнительных поверхностей.^ ^

Резец Форма рабочей части Размеры, мм Материал режущей части
b l L d
Для угловых канавок 2 - 60 До 10 Р18
3 100 10-50
5 150 50 – 100 Т5К10, ВК8
8
200 Св. 100
Прорезной До 60 От 10 Р18
3 10 100 От 16
6 15 150 От 20 Т5К10, ВК6
10 25 200 От 50
Резьбовой - - - - Т15К6, ВК6
^ Примечание. Для станков с вращением шпинделя только в одну сторону следует использовать сверла левого вращения.

УП записывается на программоноситель в виде последователь­ности кадров, представляющих собой законченные по смыслу фразы на языке кодирования технологической, геометрический и вспомога­тельной информации. Информация на носителе хранится в 7-ми битном ИСО-коде, который обеспечивает запись команд в виде букв и цифр. Отдельные последовательности кадров для обработки участков заготовки объединяются в главы УП, каждая из которых начинается с главного кадра. Главный кадр содержит начальную информацию об условиях обработки, и с него можно начинать или возобновлять работу станка по УП. Остальные кадры главы УП несут только измененную по отношению к предыдущим кадрам часть информации и называются дополнительными кадрами. Кадры состоят из слов, расположенных в определенном порядке, а слова - из символов. Первый символ слова является буквой, обозначающей адрес, а остальные символы образуют число со знаком или целочисленный код (табл. 6).

6. Обозначение адресов.

Символы адресов ^
А, В и С Угловые перемещения соответственно вокруг осей X, Y и Z.
D Угловое перемещение вокруг специальной оси или третья функция подачи, или функция коррекции инструмента.
Е Угловое перемещение вокруг специальной оси или вторая функция подачи.
F Функция подачи.
G Подготовительная функция.
Н Не определен.
I, J и К Параметры интерполяции или шаги резьбы соответственно вдоль осей X, Y и Z.
L Не определен.
М Вспомогательная функция.
N Номер кадра.
Р и Q Третьи функции перемещений, параллельных соответственно осям Х и Y, или параметры коррекции инструмента.
R Перемещение на быстром ходу по оси Z или третья функция перемещения, параллельного оси Z, или параметр коррекции инструмента.
S ^
Т Функция инструмента.
U, V и W Вторые функции перемещений, параллельных соответственно осям X, Y и Z.
X, У и Z Перемещения соответственно по осям X, Y и Z.
Примечание. Если символы D, F, Р, Q, R, U, V, W не используются в УЧПУ в указанных в таблице значениях, они могут быть применены в качестве других специальных значений. Кадр УП содержит слово «Номер кадра» и одно или несколько информационных слов. К информационным относятся слова «Подготовительная функция», «Размерное перемещение», «Функция подачи», «Скорость главного движения», «Функция инструмента» и «Вспомогательная функция». В кадре эти слова имеют ту же последовательность.

Слово «Номер кадра» служит для обозначения элементарного участка УП и является вспомогательной информацией. Номер кадра задается адресом N и целым десятичным числом. Рациональна последовательная нумерация кадров, однако допускаются любые переходы номеров и оговаривается только их неповторяемость в пределах одной УП. При нумерации вставляемых в процессе редактирования новых кадров во избежание изменения ранее установленной последовательности их номеров практикуется запись новых номеров с использованием более высоких разрядов десятичных чисел. Например, если после кадра N107 необходимо вставить несколько новых кадров, их можно нумеровать N10701, N10702, N10703 и т. д. В главном кадре вместо адреса N предусмотрена запись сим­вола «:», который может быть использован для останова при обратной перемотке перфоленты.

Слово «Подготовительная функция» определяет режим работы УЧПУ. Эти слова задаются адресом G и двухзначным десятичным числом (табл. 7,8).

Подготовительная функция
G00 1 Позиционирование. Перемещение на быстром ходу в заданную точку. Ранее заданная рабочая подача не отменяется. Пере­мещения по осям могут быть некоординированы.
G01 1 Линейная интерполяция. Перемещение с запрограммирован­ной подачей по прямой к точке.
G02 и G03 1 Круговая интерполяция. Движение по дуге соответственно в отрицательном и положительном направлении с запрограм­мированной подачей.
G04 - Пауза. Выдержка в отработке на определенное время, уста­новленное на пульте или заданное в кадре.
G06 1 Параболическая интерполяция. Движение по параболе с за­программированной подачей.
G08 - Разгон. Плавное увеличение скорости подачи до запрограмми­рованного ее значения в начале движения.
G09 - Торможение в конце кадра. Плавное уменьшение скорости подачи до фиксированного значения при приближении к за­данной точке.
G17,G18,G19 2 Плоскость обработки. Задание соответственно плоскостей XY, ZX и YZ для таких функций, как круговая интерполяция, коррекция режущего инструмента и др.
G33,G34,G35 1 Резьба. Нарезание резьбы соответственно с постоянным, увеличивающимся и уменьшающимся шагами.
G40 3 Отмена коррекции инструмента, заданной одной из функций G41-G52.
G41 и G42 3 Коррекция диаметра или радиуса инструмента при контурном управлении. Режущий инструмент расположен соответственно слева или справа от обрабатываемой поверхности, если смо­треть в направлении движения инструмента.
G43 и G44 3 Коррекция диаметра или радиуса инструмента соответственно положительная или отрицательная. Указание соответственно о сложении (или вычитании) значения смещения инструмента, установленного на пульте, с заданными в кадрах координатами.
G45-G52 3 Коррекция диаметра или радиуса инструмента при прямо­линейном формообразовании G45 / , G46 /-, G47-/-, G48-/ , G49 0/ , G50 0/-, G51 /0, G52-/0.Значения « », «-» и «0» соответственно указывают, что к заданным в кадрах координатам будут добавлены, вычтены установленные на пульте величины или эти величины не будут учтены.
G53 4 Отмена линейного сдвига, заданного одной из функций G54-G59.
G54-G59 4 Линейный сдвиг соответственно по X, У, Z, XY, ZX и YZ. Коррекция длины или положения инструмента на величину, установленную на пульте.
^ .
Подготовительная функция
G60 и G61 5 Точное позиционирование. Позиционирование в пределах одной или двух из зон допуска, а также выбор стороны под­хода при позиционировании.
G62 5 Быстрое позиционирование. Позиционирование с большой зоной допуска для экономии времени.
G63 - Нарезание резьбы метчиком. Позиционирование с остановом шпинделя по достижении заданного положения.
G80 6 Отмена постоянного цикла, заданного одной из функций G81-G89.
G81-G89 6 Постоянные циклы. Часто применяемые при обработке отвер­стий последовательности команд. Состав постоянных циклов приведен в дополнительной таблице.
G90 7 Абсолютный размер. Отсчет перемещений в абсолютной системе координат с началом в нулевой точке системы ЧПУ.
G91 7 Размер в приращениях. Отсчет перемещений относительно предыдущей запрограммированной точки.
G92 - Установка абсолютных накопителей положения.
G94 и 095 8 Единица измерения соответственно мм/мин и мм/об.
G96 9 Единица измерения скорости резания м/мин. Запрограммиро­ванное значение скорости резания поддерживается автомати­чески регулированием частоты вращения шпинделя.
G97 9 Единица измерения главного движения об/мин

8. Таблица для постоянных циклов.

8. Таблица для постоянных циклов (продолжение).Неуказанные коды подготовительных функций предназначены для индивидуального использования по усмотрению разработчиков УЧПУ. Номер группы, расположенный во второй колонке, указывает, что функция G действует до тех пор, пока она не будет заменена или отменена другой функцией из той же группы. Прочерк в этой колонке означает, что функция действует только в том кадре, в котором она указана. Подготовительные функции записываются в кадре последовательно друг за другом в порядке возрастания их кодовых номеров. В кадре не может быть записано более одной подготовительной функции из каждой группы.

^ Слово «Вспомогательная функция» определяет команду исполнительному органу станка или УЧПУ. Вспомогательные функции задаются словами с адресом М и двузначным десятичным кодовым числом (табл. 9).^ .

М02 П Конец УП. Останов шпинделя и выключение охлаждения. Приведение в исходное состояние управляющего устрой­ства и возврат рабочих органов станка в исходное положе­ние, а также протягивание перфоленты, склеенной в коль­цо, или обратная ее перемотка.
М03 и М04 * Вращение шпинделя по часовой стрелке или против нее. Включение шпинделя соответственно в отрицательном и положительном направлении вращения.
М05 П Останов шпинделя. Останов наиболее эффективным спо­собом, например торможением.
М06 Смена инструмента. Команда на смену инструмента вруч­ную или автоматически. Не осуществляется поиск инстру­мента. Может автоматически отключать шпиндель и охлаждение.
М07 и М08 * Включение охлаждения. Включает охлаждение соответ­ственно № 2 и № 1.
М09 П Отключение охлаждения. Отменяет команды, заданные функциями М07, M08, M50 и М51.
М10 и МП * Зажим и разжим. Относятся к зажимным приспособле­ниям подвижных органов станка, например стола, патрона и т. п.
М13 и М14 * Вращение шпинделя по часовой стрелке и против нее, а также включение охлаждения. То же, что и М03 и М04, но с включением охлаждения.
М15иМ16 Перемещение « » и «-». Используются для задания соответственно положительного и отрицательного направления перемещения, запрограммированного в данном кадре.
М17 П Конец подпрограммы для УЧПУ со встроенной памятью. Передача управления основной программе после выпол­нения всех прогонов подпрограммы.
М19 П Останов шпинделя в заданной позиции. Команда на оста­нов шпинделя в определенном угловом положении.
П Конец подпрограммы, в качестве которой используется многократно считываемая глава программы.
М30 П Конец ленты. То же, что и М02, но с возможностью обра­щения ко второму считывателю информации с перфоленты.
М31 Обход блокировки. Команда на временную отмену бло­кировки. Действует только в том кадре, в котором записана.
М36 и М37 * Диапазон подачи. Задает диапазон подач соответственно №1 и №2 путем переключения кинематической связи.
М38 и М39 * Диапазон частот вращения шпинделя. Задает диапазон частот вращения соответственно шпинделя №1 и №2.
М50 и М51 * Включение охлаждения. Включение охлаждения соответ­ственно №3 и №4.
М55 и М56 * Линейное смещение инструмента. Линейное смещение инструмента соответственно в положения №1 и №2.
М61 и М62 * Линейное смещение заготовки. Линейное смещение заго­товки соответственно в положения № 1 и № 2.
М71 и М72 * Угловое смещение заготовки. Угловое смещение заготовки соответственно в положении № 1 и № 2.
Неуказанные коды не определены и могут использоваться по усмотрению разработчиков конкретных УЧПУ.Большинство вспомогательных функций (отмечены звездочкой во второй колонке) выполняется до начала перемещений, запрограмми­рованных в том же кадре, и действует до отмены или замены их командами аналогичного назначения. Функции М, выполняемые после заданных в кадре перемещений, обозначены буквой П в той же колонке. В одном кадре в порядке возрастания кодовых номеров может быть записано несколько команд различным исполнительным органам станка с ЧПУ.

% N001 S03 T01 M03 – третья скорость шпинделя, первый инструмент, вращение шпинделя против часовой стрелки N002 M06 – пауза для проверки инструмента N003 G60 – точное позиционирование N004 G91 – отсчет размера в приращениях N005 G00 X-030045 – перемещение в точку 1 N006 G61 Z-015000 – ускоренное перемещение в точку 2 N007 G01 Z-045000 F32 M07 – перемещение в точку 3 на рабочей подаче и включение масляного тумана N008 G01 X 004960 Z-035000 – перемещение в точку 4 с линейной интерполяцией N009 Z-025000 – перемещение в точку 5 N010 G60 – точное позиционированиеN011 G00 X 025085 М09 – ускоренное перемещение в точку 6, отключение системы охлажденияN012 G00 Z 120000 M02 – ускоренное перемещение в точку 0, конец программы

Государственное образовательное учреждение

высшего профессионального образования

Московский государственный индустриальный университет

ГОУ ВПО МГИУ

Научно-образовательный материал

Круглый стол на тему «Разработка управляющих программ для станков с ЧПУ с использованием современных CAD/CAM – систем»

Состав научно-образовательного коллектива:

Бурдина Е.А., к.п.н., доцент

Егоркина Е.Б., ведущий инженер

Чичекин И.В., к.т.н.

Москва 2010 г.

Разработка управляющих программ для станков с ЧПУ с использованием современных CAD / CAM – систем.

Целью настоящего курса является повышение квалификации преподавателей высшей школы, связанных с эксплуатацией и обучением на станках с ЧПУ.

Процесс подготовки управляющей программы, проверки её на ЧПУ и окончательной отработки на станке, требует специальной подготовки в данной области.

Программой предусмотрен теоретический курс, а также практические занятия с использованием трех координатного вертикально фрезерного многоцелевого станка MIKRON 600 Рro c системой ЧПУ Heidenhain TNC530, токарно-фрезерного обрабатывающего центра INDEX ABC с системой ЧПУ Sinumeric.

"Подготовка и контроль управляющих программ для станков с ЧПУ фрезерной группы "

Тема 1. Введение. Вертикальный фрезерный многоцелевой станок с ЧПУ модели MIKRON 600 Pro. Назначение и область использования станка. Основные узлы и технические характеристики станка. Режимы резания.

Тема 2. Pro ENGINEER . Построение геометрической модели, используя элемент Эскизирование. Создание твердого тела, формирующего типовую корпусную деталь.

Тема 3.

Тема 4. GPost .

Тема 5. Heidenhain TNC 530. Устройство имитационной панели управления. Управление файлами. Работа с таблицами инструментов. Данные инструмента. Коррекция инструмента.

Тема 6. Heidenhain . Движение инструмента. Функции траектории. Программирование контуров. Работа с применением циклов.

Тема 7. Ручное программирование контуров в кодах ISO .

Тема 8. Визуальный контроль траектории движения инструмента. Проверка программ оператором. Непосредственная обработка детали на станке.

"Подготовка и контроль управляюих программ для станков с ЧПУ токарной группы "

1. Тематическое содержание курса

Тема 1. Введение. Токарно-фрезерный обрабатывающий центр с ЧПУ модели INDEX ABC. Назначение и область использования станка. Основные узлы и технические характеристики станка. Режимы резания.

Тема 2. Основы геометрического моделирования в среде Pro ENGINEER . Построение геометрической модели, используя элемент Эскизирование. Создание твердого тела, формирующего типовую деталь для токарной обработки.

Тема 3. Разработка управляющих программ. Проектирование заготовки. Расчет технологических параметров производства. Создание таблицы инструментов. Построение траектории обработки. Получение управляющей программы.

Тема 4. Генерирование управляющих программ с помощью постпроцессора, используя встроенное приложение GPost . Основные функции. Выбор постпроцессора.

Тема 5. Основы ручного программирования SINUMERIC . Управление файлами. Работа с таблицами инструментов. Данные инструмента. Коррекция инструмента. Синхронизация инструментальых головок.

Тема 6. Ручное программирование контуров используя стандартные циклы. Токарные циклы. Циклы сверления. Функции траектории. Программирование контуров. Работа с применением циклов.

Тема 7. Ручное программирование контуров в кодах ISO . Основные функции. Вспомогательные функции. Формат кадра. Программирование контуров.

Тема 8. Визуальный контроль траектории движения инструмента используя вертуальную машину. Принцип работы, основные функции. Проверка программ оператором.

Тема 9. Обучение работе на оборудовании. Составление управляющих программ. Работа на оборудовании. Непосредственная обработка детали на станке.

Токарная обработка.

Токарный многоцелевой станок фирмы INDEX модели АВС предназначен для обработки широкой номенклатуры деталей тел вращения сравнительно простых геометрических форм, как на автомате (прутковый вариант заготовки), так и как на станке с ЧПУ для деталей сложной геометрической формы (обработка индивидуальных заготовок). Таким образом, станок INDEX модели АВС объединил преимущества автомата для обработки прутков с кулачковым управлением и универсального токарного станка с ЧПУ.

Необходимость совмещения на одном станке двух принципов обработки деталей определяется развивающейся в настоящее время технологии обработки мелких деталей, высокая эффективность обработки которых достигается использованием принципа продольного точения с подающей цангой.

Автоматы с подающей цангой могут работать с прутками диаметром до 22 мм. Большинство таких станков управляются от ЧПУ. Практически всегда станок комплектуется специальным устройством, автоматически подающим пруток в зону обработки через цанговый патрон.

Расширенные технологические возможности станка обеспечиваются широкой номенклатурой режущего инструмента и соответствующее этому количество инструментальных головок. Наличие, например, на станке 19 инструментов обеспечивает полную обработку подавляющей номенклатуры деталей изготавливаемых из прутка.

Для рассматриваемого варианта станка сегодня комплект режущего инструмента представляет собой оптимизированный набор, обеспечивающего следующие операции обработки деталей: токарные, резьбовые, отрезные, канавочные, а также расточные.. В этих инструментах используются все преимущества современных твердосплавных материалов с износостойкими покрытиями и сменных пластин, которые полностью используют возможности станка.

Требования к инструменту для мелкоразмерной обработки несколько отличаются от обычных требований. Эти требования должны обеспечивать следующие особенности мелкоразмерной обработки: более высокую точность и качество обработки; возможность обработки любых материалов; более внимательный контроль над процессом образования стружки; производить обработку с высокой производительностью.

Рис. 1 . Разновидности многогранных пластин, рекомендуемые к использованию мелкоразмерной обработки: 1 – для отрезки и обточки канавок; 2 – для нарезания резьбы; 3 – для отрезки труб и деталей небольшого диаметра; 4 – для наружного точения; 5 – для растачивания внутренних диаметров; 6 – для отрезки, обработки канавок, нарезания резьбы; 7 – обработка канавок; 8 – наружная резьба; 9 – наружное точение; 10 – внутренняя резьба; 11 – для внутреннего точения, обработки канавок и нарезания резьбы

Компоновка и основные узлы станка

Основание станка представляет собой сварную стальную конструкцию, на которой установлена наклонная станина с двумя независимыми револьверными головками. Такая конструкция обладает хорошей демпфирующей способностью, а также создает оптимальные условия для выполнения точной обработки, поскольку структура несущей части станка обладает высокой устойчивостью к изгибу и кручению, возникающим в результате процесса резания.

Все линейные перемещения по координатам происходят по направляющим качения, которые изготовлены с высокой точностью и обладают особой чувствительностью к малым перемещениям. Соединения с силовым замыканием между шпиндельной коробкой и станиной, а также предохранительные муфты на всех шариковых ходовых винтах защищают работоспособность станка от возможных непредвиденных столкновений и иных нестандартных ситуаций.

Благоприятные термодинамические условия работы станка обеспечиваются симметричной конструкцией шпиндельной коробки и контролем изменяющейся в процессе резания температуры, а также перпендикулярным расположением шпиндельной коробки к инструментальной плоскости.

Основные преимущества станка следующие:

Компактная конструкция станка, занимающая сравнительно небольшую площадь;

Сокращение штучного времени за счет обработки заготовки с двух сторон и с использованием до 3-х инструментов, работающих одновременно;

Возможность работы приводных (вращающихся) инструментов на всех суппортах станка;

Возможность обработки стальных многогранных прутков;

Удобное и доступное для наладки рабочее пространство станка.

На рис. 2 показаны основные узлы, входящие в состав станка,. Для наглядности станок представлен в виде открытом от защитных устройств и внешнего ограждения.


Рис.2 . Узлы токарного многоцелевого станка с ЧПУ Index серии ABC: 1 – основание; 2 – второй револьверный суппорт; 3 – мотор-шпиндель; 4 – главный привод; 5 – суппорт для обработки тыльной стороны детали; 6 – первый револьверный суппорт; 7 – наклонная станина; 8 – привод подачи

Эта пошаговая инструкция – лишь один из методов перегонки на ректификационной (РК) или бражной (БК) колонне, освоив который можно получить продукт высокой очистки. Однако для фруктовых, ягодных и зерновых дистиллятов есть технологические нюансы, без знания которых вместо ароматного напитка будет чистый спирт. У каждого типа насадок свои особенности. Используйте предложенную методику как старт по изучению работы колонн, тренируясь на сахарной браге, или заведомо понимая, что в итоге получится спирт-ректификат или близкий к нему напиток.

Начальные условия. В наличии имеется спирт-сырец – перегнанная на обычном дистилляторе (самогонном аппарате) сахарная брага и – РК или БК. В данном случае методика работы на разных типах колонн почти идентична, а отличия описаны в подходящих местах инструкции.

Схема ректификации
Пример ректификационной колонны в собранном виде с описание основных конструктивных элементов

Технология домашней ректификации на РК и дистилляции на БК

1. Заполнить куб спиртом-сырцом не более чем на 3/4 высоты, обязательно оставив минимум 10-12 см паровой зоны. Однако слишком мало заливать тоже нельзя, чтобы в конце процесса перегонки, когда жидкости в кубе почти не останется, ТЭНы не вынырнули (не оголились).

Крепость кубовой навалки должна быть около 40%. Эта величина связана с минимальным флегмовым числом, необходимым для достижения отбора заданной крепости. При повышении крепости кубовой навалки минимальное флегмовое число уменьшается нелинейно, достигая минимума при крепости около 45%. Поэтому если начать процесс с крепости 60%, то придется уменьшать флегмовое число вплоть до 45% крепости, а потом увеличивать его по мере дальнейшего истощения кубового остатка по спирту. То есть вначале увеличивать отбор с 60 до 45% кубовой крепости, а потом его снижать. В результате ректификация не только будет сложнее в управлении, но и займет больше времени.

2 Включить ТЭН на максимальную мощность и довести спирт-сырец до кипения. Оптимальная мощность ТЭНа для разгона – 1 кВт на 10 литров навалки, тогда время до закипания – 15 минут на каждые 10 литров навалки.

3. Незадолго до начала кипения, при температуре 75-80 °C в кубе, включить подачу воды. После начала кипения уменьшить нагрев до рабочей мощности. Если рабочая мощность пока неизвестна – снижать до уровня ниже номинальной мощности на 200-300 Вт. Отрегулировать подачу воды так, чтобы пар полностью конденсировался в дефлегматоре. Вода на выходе должна быть теплой или горячей. Колонна начала работать на себя.

4. Контролировать значения на термометрах в колонне, подождать стабилизации показаний.

5. Определить рабочую мощность колонны. Для этого после стабилизации температур проверить давление в кубе. Понадобится манометр до 6000 Па (0,06 кг/ кв. см, 400 мм. вод. ст.), или U-образный дифманометр, подойдет и манометр от тонометра (если ничего другого не найдется).

Если давление стабильно и не растет, добавить мощность нагрева на 50-100 Вт. Давление в кубе должно подняться и через 5-10 минут стабилизироваться на новой величине. Повторять эту операцию до тех пор, пока давление не перестанет стабилизироваться и будет постоянно расти, например, по прошествии 20 минут рост продолжается. Запомнить текущие показания – это мощность захлеба.

Если имеется 50 мм колонна и насадка СПН 3,5, то последнее не растущее давление (в мм. водяного столба) будет примерно равно 20% высоты колонны в миллиметрах. Если же давление составит 30-40% от высоты колонны – это значит, что флегма зависла, и дальше идет процесс захлеба. При менее плотной насадке с меньшей удерживающей способностью мощность захлеба будет выше.

Если манометра нет, ориентируются на звуки колонны – при захлебе колонна может начать раскачиваться, слышится бульканье, повышенный шум, также возможны спонтанные выбросы спирта через трубку связи с атмосферой или в холодильник при отборе по пару. В первый раз без опыта определить захлеб колонны сложно, но возможно.

После определения мощности захлеба выключить нагрев и подождать несколько минут, чтобы флегма стекла в куб. Включить нагрев на мощности на 10% меньшей, чем захлебная. Дождаться стабилизации температур и давления в кубе. Если все в порядке, то это и будет рабочая мощность колонны.

Если рабочая мощность намного ниже номинальной, это значит, что насадка или опорные элементы насадки неправильно упакованы в колонну: слишком переуплотнена насадка, возможно путанка, есть очаги концентрации флегмы, где пар ее останавливает, затапливая колонну. В таком случае нужно разобрать колонну, пересыпать насадку, расправить путанку, затем собирать заново и повторить процесс настройки.

Рабочую мощность колонны определяют один раз. В дальнейшем полученное значение используют постоянно, изредка внося коррективы.

При правильно подобранной рабочей мощности давление в кубе будет каждый раз одинаковым. Оно не зависит от диаметра колонны и обычно составляет для насадки СПН 3,5 – 150-200 мм вод. ст. на каждый метр высоты насадки, для СПН 4 – 250-300 мм вод. ст., для других насадок значение будет иным.

При поиске рабочей мощности также можно ориентироваться на следующие практические данные: для травленной семигранной СПН 3,5 рабочая мощность в Ватт ориентировочно равна 0,85-0,9 от площади поперечного сечения трубы в миллиметрах. Если используется СПН 4, коэффициент возрастает до 1,05-1,1. Для менее плотных насадок коэффициент будет больше.

6. После стабилизации на рабочей мощности дать колонне поработать на себя в течении 40-60 минут.

7. Установить отбор «голов» на скорости 50 мл/час для 40 мм колонны, для 50 мм – 70 мл/час, для 60 мм – 100 мл/час, для 63 мм – 120 мл/час. При условии, что используется СПН.

Время отбора «голов» определяют, исходя из объема навалки: 12 минут (0.2 часа) на каждый литр 40% спирта-сырца. Нужно помнить, что это не дистилляция на обычном аппарате со змеевиком – в колоннах происходит разделение на фракции и последовательный их вывод в отбор в концентрированном виде.

Рекомендации типа 3-5% от абсолютного спирта – усредненные значения, но их никто не отменял, а точный контроль окончания отбора «голов» делают, ориентируясь по запаху выхода. Следует помнить, что время и скорость отбора «голов» — величины не связанные. Если отбирать «головы» со скоростью вдвое большей, они просто получатся в менее концентрированном виде.

Общий принцип: при отборе любой фракции нельзя забирать из колонны больше, чем поступает в зону отбора. Это предотвратит нарушение разделения фракций по высоте колонны.

8. Изменение скорости отбора осуществляется только с помощью регулировки подачи воды в дефлегматор для колонн с отбором по пару выше дефлегматора. Если колонна с жидкостным отбором, то просто краном отбора.

Мощность нагрева всегда должна быть неизменной, это обеспечивает стабильность количества подаваемого в колонну пара и работы колонны в целом.

9. Отобрать подголовники – это спирт второго сорта, слегка загрязненный головными фракциями. Его количество равно 1-2 объемам спирта, удерживаемых насадкой в колонне (150-500 мл). По сути делается промывка насадки от остатков «голов» и накопившихся в колонне промежуточных фракций. Для этого отбор устанавливают на уровне 1/3 от номинального (порядка 500 мл/час). Спирт второго сорта годится для повторной перегонки.

10. Перейти к отбору «тела»: установить начальную скорость отбора равную номинальной или немного выше. Номинальная скорость (мл/час) численно примерно равна рабочей мощности нагрева (в Вт). Например, если рабочая мощность 1800 Вт, то и начальная скорость отбора «тела» 1800 мл в час. К концу отбора мощность снижают до 600 мл/час,

11. Контролировать процесс по показаниям термометров и давлению в кубе. Существует несколько методов. Простейший – ориентироваться по разнице температур между нижним (20 см от низа насадки) и средним (на половине или 2/3 высоты колонны) термометрами. После начала отбора «тела» разница этих показаний не должна изменяться больше чем на 0,3 градуса. Как только разница увеличится более чем на принятую величину – нужно снизить скорость отбора на 70-100 мл.

Особые случаи: если есть только один термометр, действовать точно так же, ориентируясь на изменение его показаний. Для нижнего – изменение на 0,3 градуса, для верхнего – 0,1 градус. Это менее точный метод, так как он чувствителен к перепадам атмосферного давления.

Если термометров в колонне нет вообще, ориентируются на изменение температуры в кубе – снижают отбор на 6-10% после повышения температуры в кубе на каждый градус. Это неплохой метод, который позволяет идти на опережение залетов в колонне по температуре.

12. После отбора половины «тела» все чаще и чаще приходится уменьшать скорость отбора. Когда температура в кубе поднимается выше 90 °C, сивуха и другие промежуточные примеси покидают куб и накапливаются в насадке. Для более четкого их отсечения можно перед уменьшением отбора дать колонне поработать на себя в течении нескольких минут, затем возобновить отбор после того как разница температур вернется на прежний уровень, естественно, уменьшив скорость отбора. Это позволит более четко отсечь «хвосты» за счет создания спиртового буфера в зоне отбора.

13. Когда отбор снижается в 2-2,5 раза по отношению к начальному, температура регулярно покидает рабочий диапазон, при этом температура в кубе составляет 92-93 °C. Это сигналы для БК о том, что пора переходить к отбору «хвостов». На РК за счет большей удерживающей способности, при навалке меньше 20 объемов насадки, отбор можно продолжать до 94-95 °C, но зачастую процесс прекращают, сохранив время и нервы.

Поменять тару, установить скорость отбора примерно в половину или 2/3 от номинальной. Хоть это и «хвосты», но нужно постараться взять минимум примесей. Отбирать до 98 °C в кубе. «Хвосты» подходят для второй перегонки.

14. Промыть колонну. После отбора «хвостов» дать колонне поработать на себя 20-30 минут, за это время вверху соберутся остатки спирта, затем отключить нагрев. Спирт, стекая вниз, промоет насадку.

Также периодически нужно пропаривать насадку, убирая остатки сивушных масел. Это можно сделать, выгнав спирт-сырец «досуха», затем на приличной скорости продолжать отбор, пока не пойдет дистиллят без запаха. Второй метод – залить в куб чистую воду и пропарить колонну.

Пример по ректификации 1

Исходная смесь этанол - вода

Расход смеси GF = 5000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 34% масс.
Концентрация легколетучего компонента в дистилляте, xD = 76% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 3% масс.

(607.11 Кб) скачиваний202 раз(а)

Пример по ректификации 2

Исходная смесь этанол - вода
Расход смеси GF = 8000 т/ч.

Концентрация легколетучего компонента в дистилляте, xD = 80% масс.

Греющий пар под давлением – 4 атм.

(610.42 Кб) скачиваний195 раз(а)

Введение

2. Технологический расчет

3. КОНСТРУКТИВНЫЙ РАСЧЕТ

4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
5. Механический расчёт
5.2 Расчёт толщины обечайки
5.2 Расчёт толщины днища

5.4 Расчёт опор аппаратов
Заключение
Техника безопасности

Заключение





коррозия и эрозия корпуса,
механические повреждения.


Хлороформ-бензол

Цена за курсовой проект по ректифкации от 2000р

Пример по ректификации 3

Расход смеси GF = 6000 т/ч.


Концентрация легколетучего компонента в кубовом остатке, xW = 4,5% масс.
Греющий пар под давлением – 4 атм.

(935.21 Кб) скачиваний246 раз(а)

Пример по ректификации 4

Исходная смесь хлороформ-бензол
Расход смеси GF = 5000 т/ч.

Концентрация легколетучего компонента в дистилляте, xD = 95% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 5,5% масс.
Греющий пар под давлением – 4 атм.

(604.31 Кб) скачиваний178 раз(а)

Пример по ректификации 5

Исходная смесь хлороформ-бензол
Расход смеси GF = 12000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 45% масс.
Концентрация легколетучего компонента в дистилляте, xD = 88% масс.

Греющий пар под давлением – 4 атм.

(992.92 Кб) скачиваний305 раз(а)

Введение
1. Описание технологической схемы
2. Технологический расчет
2.1 Расчет ректификационной колонны
3. КОНСТРУКТИВНЫЙ РАСЧЕТ
3.1 Расчёт оптимальных диаметров трубопроводов
4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
5. Механический расчёт
5.2 Расчёт толщины обечайки
5.2 Расчёт толщины днища
5.3 Расчёт фланцевых соединений и крышки
5.4 Расчёт опор аппаратов
Заключение
Техника безопасности
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Заключение

В данном курсовом проекте в результате проведённых инженерных расчетов была подобрана ректификационная установка для разделения бинарной смеси этанол – вода, с ректификационной колонной диаметром D, высотой H, в которой применяется ситчатые тарелки, расстояние между которыми h = 0,5 (м). Колонна работает в нормальном режиме.
Одно из основных условий безопасной эксплуатации ректификационных колонн – обеспечение их герметичности. Причинами нарушения герметичности могут быть:
повышение давления в аппарате сверх допустимого,
недостаточная компенсация увеличения линейных размеров при температурных нагрузках,
коррозия и эрозия корпуса,
механические повреждения.
Наиболее опасной причиной резкого повышения давления в колонне может быть попадание в нее воды. Мгновенное испарение воды вызывает столь быстрое порообразование и повышение давления, что предохранительные клапаны, в силу своей инерционности, не успевают сработать, и может произойти разрыв стенок аппарата. Для исключения попадания воды в колонну необходимо следить, чтобы сырье и орошения не содержали воду, периодически проверять целостность трубок в подогревателе куба, в оросительных холодильниках. Повышение давления в колонне может произойти также вследствие нарушения температурного режима процесса ректификации и превышения пропускной способности колонны по сырью.
На случай недопустимого повышения давления колонны оборудуются предохранительными клапанами, сбрасывающими часть продукта в факельную линию. Если число тарелок более 40, то по правила ПБВХП – 74, учитывая возможность резкого сопротивления, предохранительные клапаны рекомендуется устанавливать в кубовой части колонны.
При входе в колонны парожидкостная струя продукта имеет большие скорости, что может вызвать эрозию стенок аппарата. Для защиты корпуса аппарата сырье вводят в полость специального устройства – улиты, которая снабжена отбойным местом, принимающим удар струи и защитной гильзой, заменяемой по мере износа

Толуол-четыреххлористый углерод

Пример по ректификации 6

Исходная смесь толуол-четыреххлористый углерод
Расход смеси GF = 9000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 30% масс.
Концентрация легколетучего компонента в дистилляте, xD = 90% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 3,5% масс.

(703.25 Кб) скачиваний261 раз(а)

Введение
1. Описание технологической схемы
2. Технологический расчет
2.1 Расчет ректификационной колонны
3. КОНСТРУКТИВНЫЙ РАСЧЕТ
3.1 Расчёт оптимальных диаметров трубопроводов
4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
5. Механический расчёт
5.2 Расчёт толщины обечайки
5.2 Расчёт толщины днища
5.3 Расчёт фланцевых соединений и крышки
5.4 Расчёт опор аппаратов
Заключение
Техника безопасности
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Заключение

В данном курсовом проекте в результате проведённых инженерных расчетов была подобрана ректификационная установка для разделения бинарной смеси этанол – вода, с ректификационной колонной диаметром D, высотой H, в которой применяется ситчатые тарелки, расстояние между которыми h = 0,5 (м). Колонна работает в нормальном режиме.
Одно из основных условий безопасной эксплуатации ректификационных колонн – обеспечение их герметичности. Причинами нарушения герметичности могут быть:
повышение давления в аппарате сверх допустимого,
недостаточная компенсация увеличения линейных размеров при температурных нагрузках,
коррозия и эрозия корпуса,
механические повреждения.
Наиболее опасной причиной резкого повышения давления в колонне может быть попадание в нее воды. Мгновенное испарение воды вызывает столь быстрое порообразование и повышение давления, что предохранительные клапаны, в силу своей инерционности, не успевают сработать, и может произойти разрыв стенок аппарата. Для исключения попадания воды в колонну необходимо следить, чтобы сырье и орошения не содержали воду, периодически проверять целостность трубок в подогревателе куба, в оросительных холодильниках. Повышение давления в колонне может произойти также вследствие нарушения температурного режима процесса ректификации и превышения пропускной способности колонны по сырью.
На случай недопустимого повышения давления колонны оборудуются предохранительными клапанами, сбрасывающими часть продукта в факельную линию. Если число тарелок более 40, то по правила ПБВХП – 74, учитывая возможность резкого сопротивления, предохранительные клапаны рекомендуется устанавливать в кубовой части колонны.
При входе в колонны парожидкостная струя продукта имеет большие скорости, что может вызвать эрозию стенок аппарата. Для защиты корпуса аппарата сырье вводят в полость специального устройства – улиты, которая снабжена отбойным местом, принимающим удар струи и защитной гильзой, заменяемой по мере износа

Сероуглерод-четыреххлористый углерод

Цена за курсовой проект по ректифкации от 2000р

Пример по ректификации 7

Исходная смесь сероуглерод-четыреххлористый углерод
Расход смеси GF = 7000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 20% масс.
Концентрация легколетучего компонента в дистилляте, xD = 85% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 1,4% масс.
Греющий пар под давлением – 1 атм.

(994.3 Кб) скачиваний193 раз(а)

Метанол-вода

Цена за курсовой проект по ректифкации от 2000р

Пример по ректификации 8

Исходная смесь метанол-вода колпачки
Расход смеси GF = 3000 кг/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 22% масс.
Концентрация легколетучего компонента в дистилляте, xD = 82% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 0,5% масс.
Греющий пар под давлением – 4 атм.

(315.89 Кб) скачиваний285 раз(а)

Пример по ректификации 9

Исходная смесь метанол-вода
Расход смеси GF = 13000 т/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 24% масс.
Концентрация легколетучего компонента в дистилляте, xD = 97% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 0,8% масс.
Греющий пар под давлением – 4 атм.

(945.76 Кб) скачиваний329 раз(а)

Пример по ректификации 10

Исходная смесь метанол-вода
Расход смеси GF = 3700 кг/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 25% масс.
Концентрация легколетучего компонента в дистилляте, xD = 96% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 1% масс.
Греющий пар под давлением – 4 атм.

(926.64 Кб) скачиваний215 раз(а)

Пример по ректификации 11

Исходная смесь метанол-вода
Расход смеси GF = 6500 кг/ч.
Концентрация легколетучего компонента в исходной смеси, xF = 27% масс.
Концентрация легколетучего компонента в дистилляте, xD = 98% масс.
Концентрация легколетучего компонента в кубовом остатке, xW = 2% масс.
Греющий пар под давлением – 4 атм.

(948.82 Кб) скачиваний241 раз(а)

Введение
1. Описание технологической схемы
2. Технологический расчет
2.1 Расчет ректификационной колонны
3. КОНСТРУКТИВНЫЙ РАСЧЕТ
3.1 Расчёт оптимальных диаметров трубопроводов
4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ
5. Механический расчёт
5.2 Расчёт толщины обечайки
5.2 Расчёт толщины днища
5.3 Расчёт фланцевых соединений и крышки
5.4 Расчёт опор аппаратов
Заключение
Техника безопасности
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Заключение

В данном курсовом проекте в результате проведённых инженерных расчетов была подобрана ректификационная установка для разделения бинарной смеси этанол – вода, с ректификационной колонной диаметром D, высотой H, в которой применяется ситчатые тарелки, расстояние между которыми h = 0,5 (м). Колонна работает в нормальном режиме.
Одно из основных условий безопасной эксплуатации ректификационных колонн – обеспечение их герметичности. Причинами нарушения герметичности могут быть:
повышение давления в аппарате сверх допустимого,
недостаточная компенсация увеличения линейных размеров при температурных нагрузках,
коррозия и эрозия корпуса,
механические повреждения.
Наиболее опасной причиной резкого повышения давления в колонне может быть попадание в нее воды. Мгновенное испарение воды вызывает столь быстрое порообразование и повышение давления, что предохранительные клапаны, в силу своей инерционности, не успевают сработать, и может произойти разрыв стенок аппарата. Для исключения попадания воды в колонну необходимо следить, чтобы сырье и орошения не содержали воду, периодически проверять целостность трубок в подогревателе куба, в оросительных холодильниках. Повышение давления в колонне может произойти также вследствие нарушения температурного режима процесса ректификации и превышения пропускной способности колонны по сырью.
На случай недопустимого повышения давления колонны оборудуются предохранительными клапанами, сбрасывающими часть продукта в факельную линию. Если число тарелок более 40, то по правила ПБВХП – 74, учитывая возможность резкого сопротивления, предохранительные клапаны рекомендуется устанавливать в кубовой части колонны.
При входе в колонны парожидкостная струя продукта имеет большие скорости, что может вызвать эрозию стенок аппарата. Для защиты корпуса аппарата сырье вводят в полость специального устройства – улиты, которая снабжена отбойным местом, принимающим удар струи и защитной гильзой, заменяемой по мере износа

Сложные ректификационные колонны.

Если исходную сырьевую смесь нужно разделить на несколько компонентов или фракций, то нужно использовать несколько последовательно соединенных простых колонн.

Технологическая схема получается достаточно громоздкой, а установка – металлоемкой. Поэтому для разделения многокомпонентной смеси целесообразно использовать сложные ректификационные колонны. Они представляют собой тарельчатые аппараты, работающие совместно с отпарной колонной (стриппингами). Стриппинговая секция представляет собой колонны малого диаметра, установленные одна на другую и объединенные в общем, корпусе. Стриппинговые, также как и основные колонны, снабжены тарелками. Помимо верхнего и нижнего продукта, по высоте колонны, отбирают ряд боковых фракций (погонов). Эти фракции отправляются в соответствующую секцию стриппинговой колонны, где делятся на две части. Верхний продукт, при этом, возвращается в основную колонну в качестве бокового орошения, нижний продукт является целевой боковой фракцией. Использование стриппингов позволяет отбирать несколько фракций по высоте колонны, которые являются целевыми наряду с верхним и нижним продуктом, уходящим из ректификационной колонны. Колонны данного типа широко используют в нефтепереработке для получения из нефти топливных фракций. Конструктивное оформление может быть различно, в зависимости от целевых продуктов.

Основными эксплуатационными параметрами являются давление и температура. Давление прямо пропорционально температуре и рост давления будет связан с повышением температуры в колонне. Для предотвращения аварийной основной ситуации для колонных аппаратов

(Разгерметизация с взрывом) необходимо поддерживать температурный режим в колонне, чтобы избежать роста давления. Температурный режим поддерживается в соответствии с нормами технологического режима, которые отмечены в технологическом регламенте. Поддержание необходимого температурного режима обеспечивается путем подогрева куба колонны и снятием тепла верхней части колонны. Варьировать температуру верха и низа можно путем изменения количества и температуры соответствующих потоков. Для поддержания необходимой температуры в колонне аппарат покрывают слоем тепло изоляции. Тепло изоляционный материал должен обладать малой теплопроводностью, должен быть стойким к высоким температурам среды и стойким к колебаниям окружающей среды и не должен разрушаться в процессе эксплуатации. Материал не должен быть гигроскопичным, чтобы предотвратить возможность коррозии стенки корпуса. Толщина слоя изоляции рассчитывается в зависимости от температуры среды и свойств изоляционного материала. При проведении ремонта тепловая изоляция осматривается для обнаружения повреждений. Это могут быть трещины, сколы, разрывы элементов изоляции и т.д. Наиболее часто повреждение изоляции происходит в месте установки штуцеров, люков, кронштейнов, площадок. Обнаруженные дефекты во время ремонта должны быть устранены. Не реже одного раза в квартал необходимо производить температурные замеры на внешней поверхности изоляции. Если температура ниже допустимой, то необходимо провести капитальный ремонт изоляции.