Инструменты

Внешняя проводка в стиле ретро. Ретро проводка в деревянном доме – функциональные особенности, а также секреты ее создания

Внешняя проводка в стиле ретро. Ретро проводка в деревянном доме – функциональные особенности, а также секреты ее создания

Знакомое ощущение – антенна бьёт током. Такие негативные эффекты возникают из-за отсутствия системы уравнивания потенциалов. Атмосфера характеризуется собственным потенциалом. Но эти занятные вопросы обсудим позже. Сейчас вспомним Николу Тесла, гром и молнии и смелых лётчиков, исследующих облака.

Зачем нужно уравнивать потенциал

Гении творцы черпали идеи из снов. Леонардо да Винчи, спавшему полтора часа в сутки, урывками, но равномерно – каждые 240 мин, этого хватало.Но сны он перестал видеть, а без этого творить сложно. Нет сведений, что снилось Николе Тесла, хотя его авторству принадлежит море идей. Недаром единица магнитной индукции названа его именем. Он изучал атмосферное электричество и понял, что вещь это прелюбопытная.

Согласно научной литературе, Земной шар несёт заряд отрицательного знака, равный 500 кК. За счёт атмосферных токов утечки каждые полчаса заряд теоретически обнуляется. На практике этого не происходит. Учёными установлено, что колебания атмосферного тока согласованы по времени, максимум заряда приходится на 19.00 по Гринвичу. Мистика? Нет, пульс Земли.

Заряд, постоянно утекающий в небо, восполняет энергия Солнца и космических излучений, правда, пока тематика изучена мало. Ясно одно: при ударе молний Земля не теряет заряд, а обретает. По периметру циклона образуется избыток отрицательных носителей, а в центре – островок положительных. При определённом значении напряжённости поля отрицательное кольцо пробивается на земную поверхность, и потенциал планеты восполняется.

Если бы схема уравнивания потенциалов охватывала планету, непогода протекала бы в тихой манере. Физика процесса пока не определена, учёные предполагают присутствие неучтённого, неизвестного фактора, помогающего управлять погодой. В ближайшее время он останется за кадром. Нам важен факт, что облака таят потенциал относительно Земли, напряжённость поля 100 В/м. Разность потенциалов между кончиком носа и стопами составляет 150 В/м.

Электрический удар мы не получаем потому, что стоим на Земле. Потенциал уравнивается, электрическое поле отклоняется вверх (изгибаются силовые линии). Но висящий в воздухе кусок металла постепенно накапливает заряд, приводящий к неожиданным эффектам. Благо, атмосферный ток характеризуется единицами мкА на квадратный метр, и процесс протекает медленно. Но постепенно поверхность металла набирает потенциал.

Если экран не заземлён в щитке, разряд статического электричества неизбежен. Удар не сильный, лёгкое покусывание. Но шина уравнивания потенциалов непременно подключена к экранирующей оплетке телевизионного кабеля для исключения описанного эффекта. Другая мера касается антенного контура. Антенный вибратор представляет замкнутый контур, часть которого присоединяется на оплётку, дополнительное уравнивание потенциалов не требуется. Для конструкций иных типов задачку выравнивания потенциалов каждого плеча решают отдельно, но все элементы заземляют.

В противном случае изучаем в сети жалобы:

  • Полез менять конвертер на спутниковую тарелку, и вломило по полной программе. Помогите.
  • Ставлю жене писать КВН на видеомагнитофон, подсоединяю ТВ кабель, получаю разряд.
  • Гудит плазменная панель после заземления по европейским стандартам. А было нормально. Что делать?
  • Антенный кабель кусается.

Список легко продолжат читатели. Ответ даём в вопросительной форме: коробка уравнивания потенциалов установлена правильно? Монтаж выполнен по нормативам? Оплётка кабеля – металлический проводящий материал, по нормам её зануляют на щитках каждого этажа. Согласно правилам (РД 34.21.122) металлические части здания заводят на шину молниезащиты – контур заземления, куда по правилам TN-C-S приходит нулевой провод. В пределах квартиры потенциал уравнивают в ванной комнате.

Как выполнять выравнивание потенциалов

Согласно РД 34.21.122 уравнивание и выравнивание потенциалов ведётся в наземной части арматурой круглого сечения площадью от 6 и кв.мм. Требованиям соответствует стальная арматура зданий, соединенная между собой. Наружный контур прокладывают под землей.

Учитывая требования стандартов, чугунную ванну следует тоже подключить к устройству уравнивания потенциалов, она проводит ток и может стать причиной неприятностей. Обратите внимание, шины уравнивания потенциалов прокладываются отдельно от заземляющих и нулевых.

Уравнивание потенциалов

В распределительном щитке предусматривают шину (часть главной заземляющей шины) для уравнивания потенциалов либо покупают КУП. Внутри коробки уравнивания потенциалов присутствует общая шина для объединения проводников, которую допускается завести на нулевой провод. Согласно стандарту получается единое целое с системой молниезащиты, заноса напряжения. При этом конструкция снабжается контуром заземления минимум из двух штырей (диаметр от 10 мм согласно РД 34.21.122, но преимущественно от 18 мм), врытых на глубину не менее 3 метров (дистанция между зубьями 5 метров). Система молниезащиты объединяется арматурой фундамента, надёжно заземлённой. Это позволяет не закладывать искусственный контур. Получается, в масштабах жилого массива создание средства для уравнивания потенциалов -искусство, непосильное одному человеку (жильцу). В масштабах квартиры заводят все клеммы на корпус подъездного щитка, убедившись, что на него не замкнута фаза.В этих целях не используют газовые трубы, водопровод.

Зануление

Клемма зануления приборов расположена на корпусе. Не путайте с заземлением! Последнее работает, пока вилка включена в розетку. Для снятия статического электричества важно постоянство работы устройства выравнивания потенциалов. Этому помогает лепесток на ванной, куда прикручивают ушко провода. Бытовые приборы снабжены отверстиями на корпусе, куда крепится провод для зануления.

Уравнивание при пластиковых трубах

По правилам на входе в здание уравнивают потенциалы между заземлением, нулевым проводником и трубами. Современный водопровод – пластиковый, и эта мера утратила эффективность. Уравнять потенциалы негде.

Обустройство системы

Иногда требуется обустройство системы выравнивания потенциалов. Под этим подразумевается снятие шагового напряжения с пола, поверхности земли. Защита нужна при вероятности пробоя фазы на почву. Земля – хороший проводник, токи распространяются вглубь и по поверхности. При высоких напряжениях (220 В не считаем) возникают ситуации, когда на длине шага падает опасное для жизни напряжение. Выравнивание потенциалов достигается укладкой в грунт, толщу пола заземляющей арматуры.

  1. Набираем в Яндексе «пуэ 7», нажимаем «Поиск».
  2. Выбираем сайт, где документ приведён текстом непосредственно на странице.
  3. Нажимаем Ctrl+F, вводим в поисковое окошко браузера слово «уравниван» — без окончания. Так получим максимальное количество вхождений.
  4. Листаем документ кнопками вверх и вниз (возле окошечка), подбираем подходящую методику.

Полезно изучить виды и способы заземления. Мы говорили выше, в распределительном щитке систему уравнивания потенциалов допустимо посадить на нулевой провод. Согласно ПУЭ 7 для защиты от поражения током заземление и выравнивание потенциалов применяют и вместе, и в отдельности. Принцип ясно продемонстрирован советской бытовой техникой: сетевой шнур не оборудован клеммой заземления:

  1. Как защитится от поражения током через корпус камина? Подключить к системе выравнивания потенциалов.
  2. Как уменьшить излучение старенького телевизора? Подключить корпус (металлическое шасси) к системе уравнивания потенциалов.
  3. Как обезопасится от ударов током со стороны старенькой духовки? Подключить корпус к системе уравнивания потенциалов.

Строго говоря, речь идёт, скорее, о заземлении, но это вопрос второстепенный. Главное — потенциал корпуса приборов в доме должен быть одинаков, желательно нулевой относительно земли. При правильно обустроенной системе уравнивания потенциалов не наводят защиту от прямого прикосновения (при напряжении питания до 25 В переменного или 60 В постоянного тока). Подробная информация приводится в разделе ПУЭ «Меры защиты от прямого прикосновения».

Подбор кабелей системы уравнивания потенциалов аналогичен заземляющим: 6 миллиметров квадратных сечения по меди или 10 по алюминию. Встречаются рекомендации по стали – 50 квадратных миллиметров. Но основная система уравнивания потенциалов работает с катанкой диаметром 6 мм, и площадь сечения близка к 30 кв. мм, а проводимость железа в 5 раз меньше проводимости меди. Монтаж внутреннего уравнивания потенциалов выполняется на клеммы с проверкой сопротивления, снаружи преимущественно сталью и на сварные швы длиной не менее 10 см.

Устройство уравнивания потенциалов делят на основную и дополнительную. Первую можно назвать глобальной, она объединяет все нулевые и защитные проводники, металлическую арматуру, молниезащиту и др. Дополнительная (ШДУП) подразумевает распространение мер безопасности на локальную площадь. Допустим, объединяют чугунную ванну, корпус стиральной машины, смеситель, присоединяют к нулевым жилам или защитным. Напоследок подчёркиваем, что заземление и уравнивание потенциалов не идентичны друг другу.

Об основной и дополнительных системах уравнивания потенциалов и об их функциональном назначении.

Жилое здание. Множество этажей и квартир. Целые километры коммуникаций: проводов, металлических труб, коробов вентиляции, металлорукавов и тому подобного. В наших квартирах есть различные металлические ванны, мойки, и мало ли чего еще. Иными словами, весь дом просто полон элементов и конструкций, способных проводить электрический ток, но зачастую не предназначенных для этого.

Однако каждый проводник обладает электрическим потенциалом . Это просто закон физики. Потенциал же - величина относительная. Это означает, что электрический потенциал, например, металлической поверхности холодильника сам по себе не имеет вообще никакого значения. Важно только то, насколько он выше или ниже потенциала водопроводной трубы, проходящей от него (холодильника) в относительной близости.

Если между потенциалом холодильника и потенциалом трубы есть разница, то эту разницу можно считать напряжением. Кто-то может предположить, что такое напряжение не может быть существенной величины: ведь и корпус электроприбора, и водопроводная труба не должны быть «под фазой». Но торопиться с выводами не стоит. В действительности есть очень много причин, по которым даже безобидный металлический короб вентиляции может приобрести опасно высокий относительный электрический потенциал.

Среди этих причин, к примеру, не только выход из строя изоляции фазных жил кабелей системы электроснабжения, а еще и атмосферные перенапряжения, блуждающие и циркулирующие токи систем заземления и многое другое.

И что же делать? Как уберечься от всех этих напастей и жить спокойно, не опасаясь, что однажды нас ударит током собственная ванна?

Вопрос этот решается созданием системы уравнивания потенциалов . Идея ее довольно проста. Если токоведущие части имеют непосредственное электрическое соединение, то потенциал их всегда одинаков, и напряжение между ними не возникнет ни при каких обстоятельствах.

Поэтому система уравнивания потенциалов включает в себя все, что может стать опасным: именно металлические трубы, металлоконструкции здания, устройства молниезащиты, короба, лотки. Все это подключается к главной заземляющей шине (ГЗШ) на вводе здания. Такая система получает название основной системы уравнивания потенциалов .

Но пока инженерные коммуникации дойдут до отдельно взятой квартиры, расположенной на каком-нибудь высоком этаже, расстояние от ГЗШ может стать внушительным. В силу вступят законы электротехники, характерные для так называемых «длинных линий».

В соответствии с этими законами сопротивлением проводников большой протяженности пренебрегать нельзя. То есть, электрический потенциал одной и той же металлической трубы на вводе в здание и на пятнадцатом этаже может отличаться, и очень сильно. Таким образом, основная система уравнивания потенциалов становится все менее эффективной по мере удаления от ГЗШ.

Поэтому в каждой квартире создается своя, дополнительная система уравнивания потенциалов . Элементы, которые входят в нее, подключаются к шине РЕ (или PEN) в квартирном или домовом щитке. Это снова водопроводные трубы, короба вентиляции, а кроме этого, ванны, мойки и прочие объемные металлические предметы.

Дополнительная система уравнивания потенциалов в ванной комнате

Не каждый электрик, берущийся за ремонт или , знает про системы уравнивания потенциалов и придает им должное значение. Поэтому следить за состоянием и качеством выполнения такой системы в своей квартире каждому домовладельцу лучше самостоятельно, не надеясь ни на кого другого. Ведь это вопрос, прежде всего, личной безопасности.

Александр Молоков,

Уравнивание потенциалов — электрическое соединение проводящих частей для достижения равенства их потенциалов. ПУЭ, п. 1.7.32. Защита от косвенного прикосновения.

Так как защитное заземление (ЗУ) имеет сопротивление, и в случае протекания через него тока оказывается под напряжением, его одного недостаточно для защиты людей от поражения током.

Правильная защита создается путём организации системы уравнивания потенциалов (СУП), то есть электрического соединения и PE проводки, и всех доступных для прикосновения металлических частей здания (в первую очередь водопроводы и отопительные трубопроводы).

В этом случае, даже если ЗУ окажется под напряжением, под ним же оказывается всё металлическое и доступное для прикосновения,т.е. происходит растекание тока по значительной поверхности, что снижает напряжение, и как следствие - риск поражения током.

В кирпичных домах советского периода, как правило, СУП не организовывалась, в панельных же (1970-е и позже) — организовывалась путем соединения в подвале дома и рамы электрощитков (PEN ) и водопроводов.

Определения:

Защитное заземление -заземление, выполняемое в целях электробезопасности - ПУЭ п.1.7.29.

Рабочее (функциональное) заземление - заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) - ПУЭ п. 1.7.30.

Определение FE для сетей питания информационного оборудования и систем связи дано в следующих пунктах:

«Функциональное заземление: заземление для обеспечения нормального функционирования аппарата, на корпусе которого по требованию разработчика не должен присутствовать даже малейший электрический потенциал (иногда для этого требуется наличие отдельного электрически независимого заземлителя)» - ГОСТ Р 50571.22-2000 п. 3.14.

«Функциональное заземление может выполняться путём использования защитного проводника (РЕ-проводника) цепи питания оборудования информационных технологий в системе заземления TN-S.

«Допускается функциональный заземляющий проводник (FE-проводник) и защитный проводник (РЕ-проводник) объединять в один специальный проводник и присоединять его к главной заземляющей шине (ГЗШ)» - ГОСТ Р 50571.21-2000 п. 548.3.1

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2) заземляющий проводник, присоединённый к заземляющему устройству электроустановки, в системах IT и TT;

3) заземляющий проводник, присоединённый к заземлителю повторного заземления на вводе в здание;

4)металлические трубы коммуникаций, входящих в здание…

5) металлические части каркаса здания;

6) металлические части централизованных систем вентиляции и кондиционирования….

7) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8) заземляющий проводник функционального (рабочего) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9) металлические оболочки телекоммуникационных кабелей.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов - ПУЭ п. 1.7.82.

Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток - ПУЭ п. 1.7.83. ГОСТ Р 50571.3-94.

Система местного уравнивания потенциалов.

Незаземлённая система местного уравнивания потенциалов предназначена для предотвращения появления опасного напряжения прикосновения.

Все открытые проводящие части и сторонние проводящие части, одновременно доступные для прикосновения, должны быть объединены.

Система местного уравнивания потенциалов не должна иметь связи с землёй ни непосредственно, ни посредством открытых или сторонних проводящих частей.

Обозначения:

РЕ - защитное заземление

FE - рабочее (функциональное, технологическое) заземление

Функциональное заземление применительно к учреждениям ЛПУ - для обеспечения нормальной, без помех работы высокочувствительной электроаппаратуры при питании от разделительного трансформатора или согласно техническим требованиям на некоторые виды оборудования

(электрокардиограф, электроэнцефалограф, реограф, рентгеновский компьютерный томограф и тп.) в помещениях операционных, реанимационных, родовых, палатах интенсивной терапии, кабинетах функциональной диагностики и других помещениях при установке в них указанной аппаратуры.

При отсутствии особых требований изготовителей аппаратуры общее сопротивление растеканию тока заземляющего устройства не должно превышать 2 Ом.

Где ГЗШ - главная заземляющая шина защитного заземления.

ГШФЗ - главная шина функционального (рабочего) заземления.

Вариант «А» , с точки зрения электробезопасности, допустим только при условии, что аппаратура питается от разделительного трансформатора (IT - сеть).

Использовать данный вариант для сетей типа TNS категорически не рекомендуется!


Рис.2. Схема протекания тока замыкания на корпус аппарата при использовании независимого функциональног заземления в сети типа TN.

Так как функциональное заземление в отличие от защитного не имеет точки соединения с ГЗШ, а соответственно с нейтралью, то токи короткого замыкания составят не сотни и тысячи ампер, как это происходит при защитном заземлении, а всего лишь десятки ампер. Ситуация усугубится при условии, что FE по заданию выполнено 10 Ом, а в цепи отсутствует УЗО (вычислительная техника, томографы, рентгеновское оборудование и тд.).

Максимальный ток короткого замыкания составит 15,7А.

I кз = 220(В) / (4 + 10)(Ом) = 15,7(А)

При данной схеме питания лучше воспользоваться вариантом «В» или «С», особенно если речь идет о мощном стационарном оборудовании (рентгенаппараты, МРТ и тд.).

Помимо сказанного выше, ситуация (с точки зрения электробезопасности) осложняется вероятностью возникновения разности потенциалов на раздельных системах заземления, тем более если эти системы заземления находятся в пределах одного помещения см. рис.3.

  1. Шаговое напряжение при срабатывании системы молниезащиты.
  2. КЗ на корпус в сети ТN-S до срабатывания системы защиты
  3. Внешние электромагнитные поля.

Вариант «В» удобен при реконструкции уже действующих объектов. Функциональное заземление при этом нередко выполняют с использованием составного, глубинного заземлителя. Второй положительный момент - функциональные заземлители и заземлители защитного заземления связанные между собой проводником уравнивания потенциала взаимно дублируют друг друга увеличивая надежность системы заземления.