Инструменты

Кремниевый стабилитрон. Характеристики диодов, конструкции и особенности применения

Кремниевый стабилитрон. Характеристики диодов, конструкции и особенности применения

В выпрямительных диодах используется вентельное свойство электронно-дырочного перехода, т.е. при прямом напряжении сопротивление р-n-перехода мало, а при обратном напряжении – велико.

Широко распространены низкочастот­ные выпрямительные диоды , предназна­ченные для выпрямления переменного тока с частотой до единиц килогерц (иногда до 50 кГц). Эти диоды приме­няются в выпрямительных устройствах для питания различной аппаратуры. Низкочастотные диоды являются плоскостными и изготовляются из гер­мания или кремния.Они предназначены для выпрямления переменного тока с постоянным или сред­ним значением не более 10А.

Все параметры диодов обычно указываются для работы при температу­ре окружающей среды 20±5°С.

Германиевые диоды изготовляются, как правило, вплавлением индия в гер­маний n-типа. Они могут допускать плотность тока до 100 А/см 2 при пря­мом напряжении до 0,8 В. Предельное обратное напряжение у них не превы­шает 400 В, а обратный ток обычно бывает не более единиц миллиампер. Рабочая температура этих диодов от – 60 до + 75 о С. Если диоды работают при температуре окру­жающей среды выше 20 °С, то необхо­димо снижать обратное напряжение. При пониженном атмосферном давлении или неудовлетворительном охлаждении воз­можен перегрев диодов. Чтобы не до­пускать его, следует снижать выпрямлен­ный ток.

Мощные германиевые диоды рабо­тают с естественным охлаждением. Они изготовляются на выпрямленный ток до 1000 А и обратное напряжение до 150 В.

Выпрямительные кремниевые диоды в последнее время получили особенно большое распространение. Они изготов­ляются вплавлением алюминия в крем­ний n-типа, а также сплава олова с фос­фором или золота с сурьмой в кремний р-типа. Применяется и диффузионный метод. По сравнению с германиевыми кремниевые диоды имеют ряд преи­муществ. Предельная плотность прямого тока у них до 200 А/см 2 , а предельное обратное напряжение может быть до 1000 В. Рабочая температура от –60 до +125 °С (для некоторых типов даже до +150 °С). Прямое напряжение у крем­ниевых диодов доходит до 1,5 В, т. е. несколько больше, чем у германиевых диодов. Обратный ток у кремниевых диодов значительно меньше, чем у гер­маниевых.

Для выпрямления высоких напряже­ний выпускаются кремниевые столбы в прямоугольных пластмассовых корпу­сах, залитых изолирующей смолой. Они бывают рассчитаны на ток до сотен миллиампер и обратное напряжение до нескольких киловольт. Для более удоб­ной сборки различных выпрямительных схем, например мостовых или удвоительных, служат кремниевые выпрями­тельные блоки. В них имеется несколь­ко столбов, от которых сделаны отдель­ные выводы. Мощные кремниевые дио­ды выпускаются на выпрямленный ток от 10 до 500 А и обратное напряжение от 50 до 1000 В.

В выпрямительных диодах применяются также и p-i-перехо­ды, использование которых позволяет снизить напряженность электрического поля в p-n-переходе и повысить значение обратного напряжения, при котором начинается пробой (p-i-n диоды). Для этой же цели иногда используют р + –р или n + – n переходы. Для их получения методом эпитаксии на поверхности исходного полупроводника наращивают тонкую высокоомную пленку. На ней методом вплавления или диффузии создают p-n переходы, в результате чего получается структура гипа р + –р – n или n + – n – р. В таких диодах успешно разрешаются противоречивые требова­ния, состоящие в том, что, во-первых, для получения малых обратных токов, малого падения напряжения в открытом состоянии и температурной стабильности характеристик необ­ходимо применять материал с возможно малым удельным сопротивлением; во-вторых, для получения высокого напряже­ния пробоя и малой емкости p-n перехода необходимо приме­нять полупроводник с высоким удельным сопротивлением.

Эпитаксиальные диоды обычно имеют малое падение напряжения в открытом состоянии и высокое пробивное напряжение.

Для выпрямительных диодов характерно, что они имеют малые сопротивления в проводящем состоянии и позволяют пропускать большие токи. Барьерная емкость их из-за большой площади p-n-переходов велика и достигает значений десятков пикофарад.

На рисунке 2.13 приведена вольт-амперная характеристики германиевого (а) и кремниевого (б) выпрямительных диодов малой мощности.

Здесь показано условное графическое обозначение выпрямительного диода (в). Вершина треугольника «стрелка» показывает направление прямого тока протекающего от большого потенциала «+» (анода) к меньшему потенциалу «–» (катоду).

Рисунок 2.13 - Вольт-амперная характеристики германиевого (а) и кремниевого (б) диодов

Из приведенных ВАХ видно, что для кремниевых диодов по сравнению с германиевым прямые ветви характеристик, построенных при одних и тех же температурах, смещены в право. Т.е для получения одинаковых прямых токов необходимо к кремниевым диодам прикладывать большее прямое напряжение, чем к германиевым.

При увеличении температуры прямая ветвь характеристик становится более крутой. Обратный ток в кремниевых диодах меньше, чем у германиевых.

Основными параметрами выпрямительных диодов являются:

1. Максимально допустимое обратное напряжение диода U обр max - значение напряжения, приложенного в обратном на­правлении, которое диод может выдержать в течение длитель­ного времени без нарушения его работоспособности (десятки - тысячи В).

2. Средний выпрямленный ток диода I вп ср - среднее за период значение выпрямленного постоянного тока, протека­ющего через диод (сотни мА - десятки А).

3. Импульсный прямой ток диода I при - пиковое значение импульса тока при заданной максимальной длительности, скважности и формы импульса.

4. Средний обратный ток диода I o бр ср - среднее за период значение обратного тока (доли мкА - несколько мА).

5. Среднее прямое напряжение диода при заданном среднем значении прямого тока U пр ср (доли В).

6. Средняя рассеиваемая мощность диода Р срд - средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях (сотни мВт-десятки и более Вт).

7. Дифференциальное сопротивление диода r диф - отношение приращения напряжения на диоде к вызвавшему его малому приращению тока (единицы - сотни Ом).

Система параметров не допускает работу выпрямительных диодов в области электрического пробоя. Разновидностью выпрямительных диодов, допускающих в течение длительного интервала времени работу в области электрического лавинного пробоя на обратной ветви ВАХ,являются лавинные диоды . Эта особенность лавинных диодов позволяет эффективно применять их в качестве элементов цепей аппаратуры от импульсных перегрузок по напряжению.

На рисунке 2.14 показана конструкция кремниевых диффузионных выпрямительных диодов 2Д204А,Б,В, КД204А,Б,В. Диоды предназначены для преобразования переменного напряжения частотой до 50кГц. Выпускаются в металлостеклянном корпусе с жёсткими выводами. Тип диода и схема соединения диодов с выводами приводятся на корпусе. Масса диодов не более 6г.

На рисунке 2.15 показана конструкция кремниевых эпитаксиально-диффузионных диодов 2Д245А, 2Д245Б,В. Диоды предназначены для преобразования переменного напряжения частотой до 200 кГц во вторичных источниках электропитания. Выпускаются в металлопластмассовом корпусе с гибкими выводами. Положительный электрод соединён с металлическим основанием корпуса. Тип диода приводится на корпусе. Масса диода не более 4г.


Рисунок 2.14 - Конструкция кремниевых диффузионных выпрямительных диодов 2Д204А,Б,В, КД204А,Б,В


Рисунок 2.15 - Конструкция кремниевых, эпитаксиально-диффузионных диодов 2Д245А,Б,В

Выпрямительные диоды широко применяются на высоких частотах (диапазон частот от 30 МГц до 300 МГц) для детектирования колебаний высокой частоты и используются в радиотехнической, телевизионной и другой аппаратуре.

По технологии изготовления они могут быть точечными, диффузионными или иметь мезаструктуру. В качестве высокочастотных выпрямительных диодов используется диод Шотки .

Диоды Шотки характеризуются наибольшим быстродей­ствием (единицы нс) и малыми значениями прямого падения напряжения (обычно при номинальном токе составляют 0,5... 0,6 В). Основной недостаток диодов Шотки заключается в малой величине обратного напряжения (до 70 В). Увеличение обратного напряжения сопровождается ростом тока утечки и прямого падения напряжения.

Быстродействие высокочастотных диодов характеризуется временем обратного восстановления диода (τ вост обр). Это время переключения диода с заданного прямого тока на заданное обратное напряжение от момента прохождения тока через нулевое значение до момента достижения обратным током заданного значения.

Эпитаксиальная технология позволяет создавать быстро­действующие диоды на большие обратные напряжения (200... 1200 В), но с повышенным значениями прямого падения на­пряжения до 1,2 В и времени обратного восстановления до 20...100 нс. Пониженные значения токов утечки и емкости переходов обеспечивают их преимущества перед диодами Шотки при работе в высокочастотных схемах.

Диффузионная технология позволяет повысить обратные напряжения быстродействующих диодов до значений выше 1200 В, но приводит к еще большим значениям прямого паде­ния напряжения до 1,4...1,5 В и времени обратного восстано­вления до 200...500 нс.

Основу конструкции высокочастотных диодов составляет стеклянный или металлокерамический патрон, в торцах которого установлены металлические контакты, имеющие выводы.

На рисунке 2.16 показана конструкция германиевых микросплавных высокочастотных диодов ГД403А, ГД403Б, ГД403В, предназначенные для применения в качестве детекторов амплитудно-модулированных сигналов в радиовещательных приёмниках. Они выпускаются в металлостеклянном корпусе с гибкими выводами. Тип диода и схема соединения электродов с выводами приводится в корпусе. Масса диода не более 0,6г.


Рисунок 2.16 - Конструкция германиевых микросплавных высокочастотных диодов ГД403А, ГД403Б, ГД403В


Рисунок 2.17 – Конструкция кремниевых высокочастотных диодов

Основой полупроводникового диода является р -n -переход, определяющий его свойства, характеристики и параметры. В зависимости от конструктивных особенностей р -n -перехода и диода в целом полупроводниковые диоды изготовляются как в дискретном, так и в интегральном исполнении. По своему назначению полупроводниковые диоды подразделяются на выпрямительные (как разновидность выпрямительных – силовые), импульсные, высокочастотные и сверхвысокочастотные, стабилитроны, трехслойные переключающие, туннельные, варикапы, фото- и светодиоды. Условные графические обозначения диодов показаны на рис. 1.10.

Рис. 1.10 Условные графические обозначения: а – выпрямительные и универсальные;
б – стабилитроны; в – двухсторонний стабилитрон; г – туннельный диод;
д – обращенные диоды; е – варикап; ж – фотодиодов; з – светодиод

В зависимости от исходного полупроводникового материала диоды подразделяются на германиевые и кремниевые. Туннельные диоды изготовляются также на основе арсенида галия GaAs и антимонида индия InSb . Германиевые диоды работают при температурах не выше +80 °С, а кремниевые – до +140 °С.

По конструктивно-технологическому признаку диоды делятся на плоскостные и точечные. Наиболее распространены плоскостные сплавные диоды, применение которых затруднительно лишь на повышенных частотах. Преимуществом точечных диодов является низкое значение емкости p-n -перехода, дающая возможность их работы на высоких сверхвысоких частотах.

Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (50-100 000 Гц). В настоящее время широко применяются кремниевые выпрямительные диоды с р -n -переходом плоскостного типа, имеющие во много раз меньшие обратные токи и большие обратные напряжения по сравнению с германиевыми.

Основным элементом выпрямительного диода является полупроводниковая пластинка, в которой методом сплавления или диффузии сформован р -n -переход. Кремниевый р -n -переход образуется при сплавлении исходного кристалла кремния n-типа с бором или алюминием. Для защиты от внешних воздействий, а также для обеспечения хорошего теплоотвода полупроводниковая пластинка с р -n -переходом и двумя внешними выводами от слоев p и n заключается в корпус

Выпрямительные диоды подразделяются на диоды малой (I пр. ср < 0,3 А), средней (0,3 А < I пр. ср < 10 А) и большой (I пp.ср > 10 А) мощности. Для повышения допустимого обратного напряжения выпускаются высоковольтные столбы, в которых несколько диодов включены последовательно. Кроме того, производством серийно выпускаются выпрямительные блоки, которые содержат как последовательно, так и параллельно (для повышения прямого тока) соединенные диоды.

Рис. 1.11 Конструкция (а) и вольтамперная характеристика (б) точечного диода

Высокочастотные диоды являются приборами универсального назначения. Они могут работать в выпрямителях переменного тока широкого диапазона частот (до нескольких сотен мегагерц), а также в модуляторах, детекторах и других нелинейных преобразователях электрических сигналов. Высокочастотные диоды содержат, как правило, точечный р -n -переход и поэтому называются точечными. Конструкция типичного представителя точечных диодов (Д106А) показана на рис. 1.11, а , а его вольтамперная характеристика – на рис. 1.11, б .

Прямая ветвь вольтамперной характеристики не отличается от соответствующей ветви характеристики плоскостного диода, чего нельзя сказать при сравнении обратных ветвей. Поскольку площадь р -n -перехода мала, то обратный ток невелик, однако участок насыщения практически не выражен и за счет токов утечки и термогенерации обратный ток равномерно возрастает. Значения постоянных прямых токов точечных диодов не превышают десятков миллиампер, а значения допустимых обратных напряжений 100 В. Малая величина статической емкости С д между выводами точечных диодов (малая площадь перехода) позволяет использовать их в широком диапазоне частот. По частотным свойствам точечные диоды подразделяются на две подгруппы: ВЧ (f макс ? 300 МГц) и СВЧ (f мак с? 300 МГц). Помимо статической емкости С д точечные диоды характеризуются теми же параметрами, что и выпрямительные.

Импульсные диоды являются разновидностью высокочастотных диодов и предназначены для использования в качестве ключевых элементов в быстродействующих импульсных схемах. Помимо высокочастотных свойств импульсные диоды должны обладать минимальной длительностью переходных процессов при включении и выключении. Изготовляются точечные и плоскостные диоды. Общая конструкция импульсных диодов, а также их вольтамперные характеристики практически такие же, как у высокочастотных.

Как и выпрямительные, импульсные диоды характеризуются статическими параметрами, а также параметрами предельного режима. Основными же являются импульсные параметры: С д и t восст – время восстановления запирающих свойств диода после снятия прямого напряжения.

Стабилитроны – это кремниевые плоскостные диоды, предназначенные для стабилизации уровня постоянного напряжения в схеме при изменении в некоторых пределах тока через диод. Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя. Как отмечалось в разд. 1.2, если обратное напряжение превышает значение U обр. пр , то происходит лавинный пробой р -n -перехода,

при котором обратный ток резко возрастает при почти неизменном обратном напряжении. Такой участок характеристики (участок аб, см. рис. 1.8, а ) используют стабилитроны, нормальным включением которых в цепь источника постоянного напряжения является обратное (см. рис. 1.8, б ). Если обратный ток через стабилитрон не превышает некоторого значения I ст. макс , то состояние электрического пробоя не приводит к порче диода и может воспроизводиться в течение десятков и сотен тысяч часов. В качестве исходного материала при изготовлении стабилитронов используют кремний, поскольку обратные токи кремниевых р- n -переходов невелики, а следовательно, нет условий для саморазогрева полупроводника и теплового пробоя р -n -перехода.

К основным параметрам стабилитронов относится напряжение стабилизации
U ст – напряжение на стабилитроне при указанном номинальном токе стабилизации I ст . ном (см. рис. 1.8, а ). Помимо I ст. ном указываются также минимальное I ст. мин и максимальное I ст. макс значения токов на участке стабилизации. Уровень напряжения стабилизации определяется величиной пробивного напряжения U обр. пр , зависящего, в свою очередь, от ширины р -n -перехода, а следовательно, степени легирования кремния примесью. Для получения низковольтных стабилитронов используется сильнолегированный кремний. Поэтому у стабилитронов с напряжением стабилизации <5,4 В участок стабилизации определяется обратным током туннельного характера. У низковольтных стабилитронов с ростом температуры напряжение стабилизации уменьшается, а у высоковольтных увеличивается.

Схема на рис. 1.8, б объясняет принцип работы простейшего стабилизатора постоянного напряжения. Увеличение входного напряжения u вх приводит к увеличению тока через стабилитрон и сопротивление R . Избыток входного напряжения выделяется на R , а напряжение u вых остается практически неизменным.

Варикапом называется специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Значение емкости варикапа определяется емкостью его р -n -перехода и изменяется при изменении приложенного к переходу (диоду) напряжения.

Как было сказано выше (см. гл. 1.2), прямосмещенный р -n -переход характеризуется, в частности, диффузионной емкостью, а обратносмещенный – барьерной. В варикапах используется барьерная емкость (выражение 1.12), отличающаяся малым температурным коэффициентом, низким уровнем собственных шумов и слабой зависимостью от частоты. Следовательно, в рабочем режиме к

варикапу прикладывается запирающее внешнее напряжение. Поскольку толщина p -n -перехода зависит от величины приложенного внешнего напряжения U , то, изменяя последнее, можно регулировать значение ёмкости. Это используется, в частности, для настройки на нужный канал в телевизорах и радиоприёмниках.

Основными параметрами варикапов являются: номинальная емкость С ном , определяемая при номинальном напряжений смещения (U ном = 4 В), максимальная С мак с и минимальная С мин емкости соответственно при максимальном и минимальном напряжениях смещения (или коэффициент перекрытия по емкости К с = С макс /С мин ), добротность Q , а также U обр.макс .

Фотодиод полупроводниковый фотоэлектрический прибор с внутренним фото-эффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том, что под действием энергии светового излучения в области p -n -перехода происходит ионизация атомов основного вещества и примеси, в результате чего генерируются пары носителей заряда электрон и дырка. Во внешней цепи, присоединенной к р -n -переходу, возникает ток, вызванный движением этих носителей (фототок).

Фотодиоды могут работать в двух режимах: вентильном (фотогенераторном) и фотодиодном (фотопреобразовательном). В отличие от вентильного, фотодиодный режим предполагает наличие внешнего источника питания (смещения).

При контакте двух полупроводников n - и р -типов на их общей границе создается контактная разность потенциалов. При отсутствии светового потока и нагрузки диффузионная составляющая тока р -n -перехода, уравновешивается дрейфовой составляющей тока, поэтому общий ток через переход равен нулю.

При освещении полупроводника в области р -n -перехода генерируются дополнительные пары носителей заряда. Поле объемного заряда р -n -перехода «разделяет» эти пары: дырки дрейфуют в р -область, а электроны – в n -область, т. е. происходит перемещение дополнительно возникших неосновных носителей. В результате плотности дрейфовых составляющих токов, определяемые равенствами (1.8), (1.9), возрастают, а следовательно, дрейфовый ток получает некоторое приращение, называемое фототоком I ф . При этом полный дрейфовый ток представляет собой, в соответствии с выражением (1.10), тепловой ток I o , обусловленный неосновными носителями при отсутствии освещения. Поскольку в области полупроводника p -типа накапливаются избыточные носители с положительным зарядом, а в области полупроводника n -типа – с отрицательным зарядом, то между внешними электродами появляется разность потенциалов представляющая собой фотоЭДС Е ф . Эта ЭДС уменьшает высоту потенциального барьера, вызывая тем самым увеличение диффузионной составляющей тока. ФотоЭДС не превышает значения, численно равного ширине запрещенной зоны полупроводника. Такой режим используется, в частности, в солнечных батареях.

Светодиоды (электролюминесцентные диоды) преобразуют энергию электрического поля в нетепловое оптическое излучение, называемое электролюминесценцией. Основой светодиода является р -n -переход, смещаемый внешним источником напряжения в проводящем направлении. При таком смещении электроны из n -области полупроводника инжектируют в р -область, где они являются неосновными носителями, а дырки во встречном направлении. В последующем происходит рекомбинация избыточных неосновных носителей с электрическими зарядами противоположного знака. Рекомбинация электрона и дырки соответствует переходу электрона из энергетического уровня Е е в энергетическое состояние уровня Е у с меньшим запасом энергии.

В германии и кремнии ширина запрещенной зоны сравнительно невелика и поэ-тому выделяемая при рекомбинации энергия передается в основном кристаллической решетке в виде тепла. Рекомбинационные процессы в арсениде галлия (GaAs ), фосфиде галлия (GaP ), карбиде кремния (SiC ), имеющих большую ширину запрещенной зоны (например, для GaAs A ? = 1,38 эВ), сопровождаются выделением энергии в виде квантов света, которые частично поглощаются объемом полупроводника, а частично излучаются в окружающее пространство. Поэтому внешний квантовый выход, фиксируемый зрительно, всегда меньше внутреннего.

Основными характеристиками светодиодов являются вольтамперная характеристика, а также зависимости мощности и яркости излучения от величины прямого тока. Мощность и яркость излучения во многом определяются конструкцией светодиода. Чем больший ток можно пропускать через диод при допустимом его нагреве, тем больше мощность и яркость излучения

К основным параметрам светодиода относятся мощность излучения Р , длина волны излучаемого света l и КПД. Длина световой волны, определяющая цвет свечения, зависит от разности энергий, между которыми осуществляется переход электронов.

Светодиоды применяются для индикации и вывода информации в микроэлектронных устройствах. Управляемые светодиоды (с подвижной границей светящегося поля) используются для замены стрелочных приборов как аналоги оптических индикаторов настройки радиоаппаратуры. Светодиоды с несколькими светящимися полями позволяют воспроизводить цифры от 0 до 9. Кроме того, светодиоды применяются как источники излучения в оптронах – приборах бурно развивающейся оптоэлектроники.

Туннельный диод – это полупроводниковый диод, в котором используется явление туннельного пробоя при включении в прямом направлении. Характерной особенностью туннельного диода является наличие на прямой ветви вольтамперной характеристики участка с отрицательным дифференциальным сопротивлением.

Для примера на рис. 1.12 показана прямая ветвь вольтамперной характеристики германиевого туннельного усилительного диода 1И104А (I пр.макс = 1 мА – постоянный прямой ток, U обр.макс = 20 мВ), предназначенного для усиления в диапазоне волн 2…10 см (это соответствует частоте более 1 ГГц).

Общая емкость диода в точке минимума характеристики составляет 0,8…1,9 пФ. Туннельные диоды могут работать на очень высоких частотах более 1 ГГц. Наличие участка с отрицательным дифференциальным сопротивлением на вольтамперной характеристике обеспечивает возможность использования туннельных диодов в качестве усилительного элемента и в качестве основного элемента генераторов. В настоящее время туннельные диоды используются именно в этом качестве в области сверхвысоких частот.


Выпрямительные диоды используют для выпрямления переменных токов частотой 50 Гц - 100 кГц. В них используется главное свойство p-n перехода - односторонняя проводимость. Полупроводниковые выпрямительные диоды имеют большие площади p-n перехода, поскольку они рассчитаны на выпрямление больших по величине токов. Основные параметры выпрямительных диодов даются применительно к их работе в однополупериодном выпрямителе с активной нагрузкой (без конденсатора, сглаживающего пульсации).

Кремниевые выпрямительные диоды широко используются для преобразования переменного тока в пульсирующий постоянный и обычно подразделяются на:

  • выпрямительные диоды малой мощности, рассчитанные на выпрямленный ток до 0,3 А;
  • выпрямительные диоды средней мощности, рассчитанные на выпрямленный ток от 0,3 до 10 А;
  • мощные выпрямительные диоды, рассчитанные на выпрямленный ток свыше 10 А.
Подробнее характеристики диодов можно посмотреть ниже:
Примечания:

1. Выпрямительные мосты - электронные устройства, предназначенные для преобразования переменного тока в пульсирующий постоянный. Такое преобразование называется двухполупериодным. Выпускаются выпрямительные мосты, имеющие в одном корпусе по четыре или восемь диодов, соединенные по мостовой схеме выпрямителя и имеющие I пр. max до 1 А и U o6p. max до 600 В. Выпрямительные мосты - основные компоненты блоков питания практически всех электронных устройств.

2. Выпрямительные столбы - полупроводниковые приборы, представляющие набор последовательно соединённых между собой выпрямительных полупроводниковых диодов и собранных в единую конструкцию с двумя выводами. Несколько выпрямительных столбов, заключённых в единый корпус, составляют выпрямительный блок, который можно включать в электрические цепи по различным схемам. Выпрямительные столбы и блоки применяют в различных радиоэлектронных, электротехнических приборах и устройствах для выпрямления переменного тока промышленной и звуковой частот на высоких напряжениях до 1500 В.

3. Высокочастотные диоды объединяют группу полупроводниковых диодов, предназначенных для обработки высокочастотных сигналов. В частности, детекторные высокочастотные диоды предназначены для выделения низкочастотного сигнала из модулированного, а смесительные высокочастотные диоды - для перемножения 2-х высокочастотных сигналов.

4. Импульсные диоды - разновидность полупроводниковых диодов, предназначенных для работы в быстродействующих импульсных схемах для выпрямления токов, модуляции и детектирования сигналов с частотами до нескольких сотен мегагерц. Импульсные диоды используют в качестве ключевых элементов в устройствах с микросекундной и наносекундной длительностью импульсов. При коротких импульсах необходимо учитывать инерционность процессов включения и выключения диода. Импульсные диоды отличаются малой барьерной емкостью и малым временем восстановления обратного сопротивления. По способу изготовления р-n перехода импульсные диоды подразделяются на:

  • точечные импульсные диоды;
  • сплавные импульсные диоды;
  • сварные импульсные диоды;
  • диффузионные импульсные диоды;
  • меза и пленарные импульсные диоды.

Диод – это электропреобразовательный полупроводниковый прибор (ПП) с одним электрическим переходом и двумя выводами (рис. 3.1).

Рис. 3.1. Устройство полупроводникового диода

База Б и эмиттер Э с помощью базового БЭ и эмиттерного ЭЭ электродов, обеспечивающих омические контакты с n- и p-областями, соединяются с металлическими выводами В, посредством которых диод включается во внешнюю цепь.

Принцип работы большинства диодов основан на использовании физических явлений в электрическом переходе, таких, как асимметрия вольт-амперной характеристики, пробой электронно-дырочного перехода, зависимость барьерной емкости от напряжения и т.д.

Различают диоды:

в зависимости от назначения :

  • выпрямительные;
  • стабилитроны;
  • варикапы;
  • туннельные;
  • импульсные и др.;

по применяемым исходным материалам :

  • германиевые;
  • кремниевые;
  • из арсенида галлия;

по технологии изготовления :

  • сплавные;
  • диффузионные;
  • планарные;

по частотному диапазону :

  • низкочастотные;
  • высокочастотные;
  • СВЧ-диоды (сверхвысокочастотные диоды);

по типу р-n-перехода :

  • плоскостные;
  • точечные.

Плоскостным называют р-n-переход, линейные размеры которого, определяющие его площадь, значительно больше толщины. К точечным относят переходы, размеры которых, определяющие их площадь, меньше толщины области объемного заряда.

Плоскостные диоды малой и средней мощности выполняются обычно со сплавным p-n-переходом. Сплавной р-n-переход в германиевых диодах (рис. 3.2) получается путем вплавления таблетки примесного акцепторного элемента (индия) в кристалл германия n-типа. При этом расплавленный индий частично диффундирует в германий, придавая близлежащей области кристалла германия дырочную проводимость. Область с дырочной проводимостью (р-типа) имеет очень низкое удельное сопротивление и является эмиттером по отношению к более высокоомному кристаллу полупроводника n-типа – базе диода. Устройство германиевого плоскостного диода показано на рис. 3.2. Кремниевые плоскостные диоды получаются путем вплавления алюминия в кристалл кремния. Кремниевые и германиевые диоды оформляются в металлическом сварном корпусе со стеклянными изоляторами и гибкими выводами.

В мощных плоскостных диодах p-n-переход чаще выполняется путем диффузии из газовой фазы атомов примеси в кристалл полупроводника. При диффузионном методе обеспечивается лучшая воспроизводимость параметров диодов. Мощные диоды часто выполняются с охлаждающими радиаторами.


Рис. 3.2. Устройство диода: а – плоскостного; б - точечного

В точечных диодах (рис. 3.2, б) выпрямляющий p-n-переход образуется между металлическим острием контактной пружины (диаметром 10…20 мкм) и кристаллом полупроводника обычно n-типа. Переход создается за счет пропускания коротких и мощных импульсов прямого тока через диод. При этом острие контактной пружины сплавляется с кристаллом, и вблизи места сплавления за счет диффузии расплавленного металла острия в кристалл получается область полупроводника p-типа. Точечные диоды вследствие малой площади p-n-перехода выпускаются на малые токи.

Рис. 3.3. Вольт-амперные характеристики: 1 –n-p-перехода, 2 –диода

Теоретические вольт-амперные характеристики n-p-перехода и полупроводникового диода (рис.3.3) несколько отличаются. В области прямых токов это объясняется тем, что часть внешнего напряжения, приложенного к выводам диода, падает на объемном омическом сопротивлении базы (r б), которое определяется ее геометрическими размерами и удельным сопротивлением исходного материала. Его величина может лежать в пределах от единиц до нескольких десятков ом. Падение напряжения на сопротивлении r б становится существенным при токах, превышающих единицы миллиампер. Кроме того, часть напряжения падает на сопротивлении выводов. В результате, напряжение непосредственно на n-р-переходе будет меньше напряжения, приложенного к внешним выводам диода. Реальная характеристика идет ниже теоретической и становится почти линейной. Реальная ВАХ в области прямых напряжений описывается выражением:

Отсюда напряжение, приложенное к диоду, равно:

U эб = I r б + U pn .

Необходимо заметить, что сопротивление базы (r б) зависит от величины прямого тока диода, поэтому вольт-амперная характеристика и в области больших токов является нелинейной функцией.

При увеличении обратного напряжения ток диода не остается постоянным и равным току I 0 . Одной из причин увеличения тока является термическая генерация носителей заряда в переходе, не учтенная при выводе выражения для теоретической ВАХ. Составляющая обратного тока через переход, зависящая от количества генерируемых в переходе носителей, называется током термогенерации (I тг) . С ростом обратного напряжения переход расширяется, количество генерируемых в нем носителей растет и ток I тг также увеличивается.

Другой причиной увеличения обратного тока является конечная величина проводимости поверхности кристалла, из которого изготовлен диод. Этот ток называется током утечки (I у). В современных диодах он всегда меньше термотока. Таким образом, обратный ток в диоде, обозначаемый I обр, определяется как сумма токов:

I обр = I 0 + I тг + I у.

Каждый тип диодов характеризуется параметрами – величинами, определяющими основные свойства приборов, а также имеет отличные от других вольт-амперные характеристики. Различают параметры, которыми характеризуется любой полупроводниковый диод, и специальные, присущие только отдельным диодам.

Полупроводниковые диоды имеют следующие основные параметры :

  • постоянный обратный ток диода (I обр) – значение постоянного тока, протекающего через диод в обратном направлении при заданном обратном напряжении;
  • постоянное обратное напряжение диода (U обр) – значение постоянного напряжения, приложенного к диоду в обратном направлении;
  • постоянный прямой ток диода (I пр) – значение постоянного тока, протекающего через диод в прямом направлении;
  • постоянное прямое напряжение диода (U пр) – значение постоянного напряжения на диоде при заданном постоянном прямом токе;

Предельный режим работы диодов характеризуют максимально допустимые параметры – параметры, которые обеспечивают заданную надежность и значения которых не должны превышаться при любых условиях эксплуатации:

  • максимально допустимая рассеиваемая мощность (Р mах);
  • максимально допустимый постоянный прямой ток (I пр. mах), значение которого ограничивается разогревом р-n-перехода;
  • максимально допустимое постоянное обратное напряжение (U обр. mах);
  • дифференциальное сопротивление (r диф);
  • минимальная (Т мин) и максимальная (Т mах) температуры окружающей среды для работы диода.

Допустимая рассеиваемая мощность (Р mах) определяется тепловым сопротивлением диода (R т), допустимой температурой перехода (Т п mах) и температурой окружающей среды (Т о) в соответствии с соотношением:

Максимально допустимый прямой ток можно определить по заданной, максимально допустимой мощности:

Обратное максимально допустимое напряжение (U обр. mах) для различных типов диодов может принимать значения от нескольких единиц до десятков тысяч вольт. Оно ограничивается пробивным напряжением:

U обр max ? 0,8 U проб.

Дифференциальное сопротивление (r диф) равно отношению приращения напряжения на диоде к вызвавшему его малому приращению тока через диод:

Сопротивление r диф зависит от режима работы диода.

Минимальная температура окружающей среды (Т мин), при которой могут эксплуатироваться полупроводниковые диоды, обычно равна -60°С. При более низких температурах ухудшаются электрические и механические свойства полупроводниковых кристаллов и элементов конструкций диодов.

Для германиевых диодов максимальная температура Т макс = +70 °С. Для кремневых она может достигать +150 °С. При более высоких температурах происходит вырождение полупроводника: концентрации основных и неосновных носителей становятся одинаковыми, переход перестает обладать свойствами односторонней проводимости

Обозначение диодов состоит из шести символов:

  • первый символ (буква или цифра) обозначает материал диода (цифрой обозначаются диоды, способные выдерживать более высокую температуру):

Г или 1 – германий;
К или 2 – кремний;
А или 3 – соединения галлия;

  • второй символ (буква) указывает подкласс приборов:
  • третий символ (цифра) обозначает классификационный номер, по которому различают диоды внутри данного типа (например: 1 – малой мощности, 2 – средней мощности, 3 – большой мощности, 4 – универсальные и т.д).
  • четвертый и пятый символы (цифры) обозначают порядковый номер разработки (от 1 до 99).
  • шестой символ (буква), указывает различие по параметрам, которые не являются классификационными.

Для полупроводниковых диодов с малыми размерами корпуса используется цветная маркировка в виде меток, наносимых на корпус прибора.

Cтраница 1


Кремниевые диоды Д202, Д205 предназначены для выпрямления переменного тока с частотой до 50 кгц и могут работать при температуре - 60 125 С. Они оформлены в металлическом герметичном корпусе с винтом для крепления на тешюотводящем шасси. При окружающей температуре 125 С и наличии шасси / max составляет 400 ма, без шасси 200 ма.  


Кремниевые диоды выдерживают большие обратные напряжения, чем германиевые.  


Кремниевые диоды могут быть применены не только для выпрямления, но и для стабилизации напряжения постоянного тока. В этом случав они называются кремниевыми стабилитронами. IX-10, точка А), После излома характеристика идет почти параллельно оси тока, подобно характеристике габового стабилитрона.  

Кремниевые диоды по сравнению с германиевыми допускают работу при значительно более высоких температурах и дмеют большие обратные сопроти-вления, однако у германиевых диодов меньше прямое сопротивление, кроме того, они дешевле кремниевых.  

Кремниевые диоды имеют во много раз меньшие обратные токи при одинаковом напряжении, чем германиевые. Это обусловлено тем, что при температурах выше 85 С резко увеличивается собственная проводимость германия, приводящая к недопустимому возрастанию обратного тока.  

Кремниевые диоды применяют чаще германиевых, особенно когда недопустим обратный ток. Кроме того, они сохраняют работоспособность при температуре до 125 - 150 С, тогда как германиевые могут работать только при температуре до 70 С.  

Кремниевые диоды даже при нагружении в направлении пропускания тока через них имеют сравнительно высокое омическое сопротивление, если противодействующее напряжение не превышает примерно 0 7 В.