Инструменты

Стереометрия как строить сечение. Тетраэдр

Стереометрия как строить сечение. Тетраэдр

Разберем, как построить сечение пирамиды, на конкретных примерах. Поскольку в пирамиде нет параллельных плоскостей, построение линии пересечения (следа) секущей плоскости с плоскостью грани чаще всего предполагает проведение прямой через две точки, лежащие в плоскости этой грани.

В простейших задачах требуется построить сечение пирамиды плоскостью, проходящей через данные точки, уже лежащие в одной грани.

Пример.

Построить сечение плоскостью (MNP)

Треугольник MNP — сечение пирамиды

Точки M и N лежат в одной плоскости ABS, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, значит, соединяем M и N сплошной линией.

Точки M и P лежат в одной плоскости ACS, поэтому через них проведем прямую. След — отрезок MP. Мы его не видим, поэтому отрезок MP проводим штрихом. Аналогично строим след PN.

Треугольник MNP — искомое сечение.

Если точка, через которую требуется провести сечение, лежит не на ребре, а на грани, то она не будет концом следа-отрезка.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS.

Здесь точки B и M лежат в одной грани ABS, поэтому можем через них провести прямую.

Аналогично проводим прямую через точки B и P. Получили, соответственно, следы BK и BL.

Точки K и L лежат в одной грани ACS, поэтому через них можем провести прямую. Ее след — отрезок KL.

Треугольник BKL — искомое сечение.

Однако не всегда через данные в условии точки удается провести прямую. В этом случае нужно найти точку, лежащую на прямой пересечения плоскостей, содержащих грани.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскость ABS, поэтому через них можно провести прямую. Получаем след MN. Аналогично — NP. Оба следа видимые, поэтому соединяем их сплошной линией.

Точки M и P лежат в разных плоскостях. Поэтому соединить их прямой не можем.

Продолжим прямую NP.

Она лежит в плоскости грани BCS. NP пересекается только с прямыми, лежащими в этой же плоскости. Таких прямых у нас три: BS, CS и BC. С прямыми BS и CS уже есть точки пересечения — это как раз N и P. Значит, ищем пересечение NP с прямой BC.

Точку пересечения (назовем ее H), получаем, продолжая прямые NP и BC до пересечения.

Эта точка H принадлежит как плоскости (BCS), поскольку лежит на прямой NP, так и плоскости (ABC), поскольку лежит на прямой BC.

Таким образом мы получили еще одну точку секущей плоскости, лежащей в плоскости (ABC).

Через H и точку M, лежащую в этой же плоскости, можем провести прямую.

Получим след MT.

T — точка пересечения прямых MH и AC.

Так как T принадлежит прямой AC, то через нее и точку P можем провести прямую, так как они обе лежат в одной плоскости (ACS).

4-угольник MNPT — искомое сечение пирамиды плоскостью, проходящей через данные точки M,N,P.

Мы работали с прямой NP, продлевая ее для отыскания точки пересечения секущей плоскости с плоскостью (ABC). Если работать с прямой MN, приходим к тому же результату.

Рассуждаем так: прямая MN лежит в плоскости (ABS), поэтому пересекаться может только с прямыми, лежащими в этой же плоскости. У нас таких прямых три: AB, BS и AS. Но с прямыми AB и BS уже есть точки пересечения: M и N.

Значит, продлевая MN, ищем точку пересечения ее с прямой AS. Назовем эту точку R.

Точка R лежит на прямой AS, значит, она лежит и в плоскости (ACS), которой принадлежит прямая AS.

Поскольку точка P лежит в плоскости (ACS), через R и P можем провести прямую. Получаем след PT.

Точка T лежит в плоскости (ABC), поэтому через нее и точку M можем провести прямую.

Таким образом, получили все то же сечение MNPT.

Рассмотрим еще один пример такого рода.

Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Через точки M и N, лежащие в одной плоскости (BCS), проводим прямую. Получаем след MN (видимый).

Через точки N и P, лежащие в одной плоскости (ACS), проводим прямую. Получаем след PN (невидимый).

Через точки M и P прямую провести не можем.

1) Прямая MN лежит в плоскости (BCS), где есть еще три прямые: BC, SC и SB. С прямыми SB и SC уже есть точки пересечения: M и N. Поэтому ищем точку пересечения MN с BC. Продолжив эти прямые, получаем точку L.

Точка L принадлежит прямой BC, а значит, она лежит в плоскости (ABC). Поэтому через L и P, которая также лежит в плоскости (ABC) можем провести прямую. Ее след — PF.

F лежит на прямой AB, а значит, и в плоскости (ABS). Поэтому через F и точку M, которая также лежит в плоскости (ABS), проводим прямую. Ее след — FM. Четырехугольник MNPF — искомое сечение.

2) Другой путь — продолжить прямую PN. Она лежит в плоскости (ACS) и пересекается с прямыми AC и CS, лежащими в этой плоскости, в точках P и N.

Значит, ищем точку пересечения PN с третьей прямой этой плоскости — с AS. Продолжаем AS и PN, на пересечении получаем точку E. Поскольку точка E лежит на прямой AS, принадлежащей плоскости (ABS), то через E и точку M, которая также лежит в (ABS), можем провести прямую. Ее след — FM. Точки P и F лежат водной плоскости (ABC), проводим через них прямую и получаем след PF (невидимый).

Вся история геометрии и некоторых других разделов математики тесно связана с развитием теории геометрических построений. Важнейшие аксиомы геометрии, сформированные Евклидом около 300 года до нашей эры, ясно показывают, какую роль сыграли геометрические построения в формировании геометрии.

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Многогранники и построение их сечений”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

На уроках геометрии в этом году мы прошли тему “Построение сечений многогранников”. В рамках программы мы изучили один метод построения сечений, но мне стало интересно, а какие методы ещё существуют.

Цель моей работы : Изучить все методы построения сечений многогранников.

Ни одни геометрические тела не обладают таким совершенством и красотой, как многогранники. "Многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

В настоящее время теория геометрических построений представляет обширную и глубоко развитую область математики, связанную с решением разнообразных принципиальных вопросов, уходящих в другие ветви математики.

  1. История начертательной геометрии

Еще в глубокой древности человек чертил и рисовал на скалах, камнях, стенах и предметах домашнего обихода изображения вещей, деревьев, животных и людей. Он делал это для удовлетворения своих потребностей, в том числе эстетических. При этом основное требование к таким изображениям заключалось в том, чтобы изображение вызывало правильное зрительное представление о форме изображаемого предмета.

С ростом практических и технических применений изображений (в строительстве зданий и других гражданских и военных сооружений и т. п.) к ним стали предъявлять и такие требования, чтобы по изображению можно было судить о геометрических свойствах, размерах и взаиморасположении отдельных элементов определенного предмета. О таких требованиях можно судить по многим памятникам древности, уцелевшим до наших дней. Однако строгие геометрические обоснованные правила и методы изображения пространственных фигур (с соблюдением перспективы) стали систематически разрабатывать художники, архитекторы и скульпторы лишь в эпоху Возрождения: Леонардо да Винчи, Дюрер, Рафаэль, Микеланджело, Тициан и др.

Начертательная геометрия как наука была создана в конце XVIII века великим французским геометром и инженером Гаспаром Монжем (1746 – 1818). В 1637 г. французский геометр и философ Рене Декарт (1596 – 1650) создал метод координат и заложил основы аналитической геометрии, а его соотечественник, инженер и математик Жирар Дезаг (1593 – 1662), использовал этот метод координат для построения перспективных проекций и обосновал теорию аксонометрических проекций.

В XVII веке в России успешно развивались технические чертежи, выполненные в виде планов и профилей в масштабе. Здесь в первую очередь следует назвать чертежи выдающегося русского механика и изобретателя И.П. Кулибина (1735 – 1818). В его проекте деревянного арочного моста впервые были использованы ортогональные проекции (1773). (Ортогональное проектирование плоскости на лежащую в ней прямую или пространства на плоскость – это частный случай параллельного проектирования, в котором направление проекции перпендикулярно прямой или плоскости, на которую проектируют.)

Большой вклад в развитие ортогональных проекций внес французский инженер А. Фрезье (1682 –1773), который впервые рассмотрел проецирование объекта на две плоскости – горизонтальную и фронтальную.

Величайшей заслугой Г. Монжа явилось обобщение всех научных трудов его предшественников, всей теории о методах изображения пространственных фигур и создание единой математической науки об ортогональном проецировании – начертательной геометрии.

Рождение этой новой науки почти совпало с основанием в Петербурге первого в России высшего транспортного учебного заведения – Института Корпуса инженеров путей сообщения (2 декабря 1809 г.)

Выпускники этого института, его профессора и ученые внесли существенный вклад в развитие геометрических методов изображения, в теорию и практику начертательной геометрии.

  1. Определения многогранников

В стереометрии изучаются фигуры в пространстве, называемые телами . Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник - это такое тело, поверхность которого состоит из нескольких плоских многоугольников. Многогранник называется выпуклым , если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью . Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника , а вершины - вершинами многогранника.

Сечением многогранника плоскостью называется геометрическая фигура, представляющая собой множество всех точек пространства, принадлежащих одновременно данным многограннику и плоскости; плоскость при этом называется секущей плоскостью.

Поверхность многогранника состоит из ребер, отрезков и граней плоских многоугольников. Так как прямая и плоскость пересекаются в точке, а две плоскости - по прямой, то сечением многогранника плоскостью является плоский многоугольник ; вершинами этого многоугольника служат точки пересечения секущей плоскости с ребрами многогранника, а сторонами - отрезки, по которым секущая плоскость пересекает его грани. Это означает, что для построения искомого сечения данного многогранника плоскостью α достаточно построить точки ее пересечения с ребрами многогранника. Затем последовательно соединить отрезками эти точки, при этом выделить сплошными линиями, видимые и штриховыми невидимые стороны полученного многоугольника сечения.

III. Методы построения сечений многогранников

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

  • Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  • В задачах используются в основном простейшие многогранники.
  • Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  • Что значит построить сечение многогранника плоскостью;
  • Как могут располагаться относительно друг друга многогранник и плоскость;
  • Как задается плоскость;
  • Когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

  • Тремя точками;
  • Прямой и точкой;
  • Двумя параллельными прямыми;
  • Двумя пересекающимися прямыми,

Построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

3.1 Построение сечений многогранников на основе системы аксиом стереометрии

Задача 1 . Постройте сечение пирамиды РАВС плоскостью α = (МКH), где М, К и Н- внутренние точки соответственно ребер РС, РВ и АВ (рис. 1, а).

Решение .

1-й шаг . Точки М и K лежат в каждой из двух плоскостей α и РВС. Поэтому по аксиоме пересечения двух плоскостей плоскость α пересекает плоскость РВС по прямой МК. Следовательно, отрезок МК - одна из сторон искомого сечения (рис. 1, б).

2-й шаг . Аналогично, отрезок КН - другая сторона искомого сечения (рис. 1, в).

3-й шаг . Точки М и Н не лежат одновременно ни в одной из граней пирамиды РАВС, поэтому отрезок МН не является стороной сечения этой пирамиды. Прямые КН и РА лежат в плоскости грани АВР и пересекаются. Построим точку T= КН ∩АР (рис. 1, г).

Поскольку прямая КН лежит в плоскости α, то и точка T лежит в плоскости α. Теперь мы видим, что плоскости α и АРС имеют общие точки М и T. Следовательно, по аксиоме пересечения двух плоскостей плоскость α и плоскость АРС пересекаются по прямой МТ, которая, в свою очередь, пересекает ребро АС в точке R (рис. 1, д).

4-й шаг . Теперь так же, как в шаге 1, устанавливаем, что плоскость α пересекает грани АСР и АВС по отрезкам MR и HR соответственно. Следовательно, искомое сечение - четырехугольник MKHR (рис. 1, е).

Рис. 2

Задача 2. Постройте сечение пирамиды MABCD плоскостью α = (КНР), где K, H и P - внутренние точки ребер соответственно МА, МВ и MD (рис. 2, а).

Решение. Первые два шага аналогичны шагам 1 и 2 предыдущей задачи. В результате получим стороны КР и КН (рис. 2, б) искомого сечения. Построим остальные вершины и стороны многоугольника - сечения.

3-й шаг . Продолжим отрезок КР до пересечения с прямой AD в точке F (рис. 2, в). Так как прямая КР лежит в секущей плоскости α, то точка F= КР ∩ AD = КР ∩ (АВС) является общей для плоскостей α и АВС.

4-й шаг . Продолжим отрезок КН до пересечения с прямой АВ в точке L (рис. 2, г). Так как прямая КН лежит в секущей плоскости α, то точка L = КН ∩ АВ = КН ∩ (АВС) является общей для плоскостей α и АВС.

Таким образом , точки F и L являются общими для плоскостей α и АВС. Это означает, что плоскость α пересекает плоскость АВС основания пирамиды по прямой FL.

5-й шаг . Проведем прямую FL. Эта прямая пересекает ребра ВС и DС соответственно в точках R и T (рис. 2, д), которые служат вершинами искомого сечения. Значит, плоскость α пересекает грань основания ABCD по отрезку RT - стороне искомого сечения.

6-й шаг . Теперь проводим отрезки RH и РТ (рис. 2, е), по которым плоскость α пересекает грани ВМС и MCD данной пирамиды. Получаем пятиугольник РКНRТ - искомое сечение пирамиды MABCD (рис. 2, е).

Рассмотрим более сложную задачу.

Задача 3 . Постройте сечение пятиугольной пирамиды PABCDE плоскостью α = (KQR), где K, Q - внутренние точки ребер соответственно РА и РС, а точка R лежит внутри грани DPE (рис. 3, а).

Решение . Прямые (QK и АС лежат в одной плоскости АСР (по аксиоме прямой и плоскости) и пересекаются в некоторой точке T1, (рис. 3 б), при этом T1 є α, так как QК є α.

Прямая РR пересекает DE в некоторой точке F (рис. 3, в), которая является точкой пересечения плоскости АРR и стороны DE основания пирамиды. Тогда прямые КR и АF лежат в одной плоскости АРR и пересекаются в некоторой точке Т2 (рис. 3, г), при этом Т2 є α, как точка прямой KR є α (по аксиоме прямой и плоскости).

Получили: прямая Т1 Т2 лежит в секущей плоскости α и в плоскости основания пирамиды (по аксиоме прямой и плоскости), при этом прямая пересекает стороны DE и АЕ основания ABCDE пирамиды соответственно в точках М и N (рис. 3, д), которые являются точками пересечения плоскости α с ребрами DE и АЕ пирамиды и служат вершинами искомого сечения.

Далее , прямая MR лежит в плоскости грани DPE и в секущей плоскости α (по аксиоме прямой и плоскости), пересекая при этом ребро PD в некоторой точке Н - еще одной вершине искомого сечения (рис. 3, е).

Далее, построим точку Т3 - Т1Т2 ∩ АВ (рис. 3, ж), которая, как точка прямой Т1Т2 є α, лежит в плоскости а (по аксиоме прямой и плоскости). Теперь плоскости грани РАВ принадлежат две точки Т3 и К секущей плоскости α, значит, прямая Т3К - прямая пересечения этих плоскостей. Прямая Т3К пересекает ребро РВ в точке L (рис. 3, з), которая служит очередной вершиной искомого сечения.

Рис. 3

Таким образом, «цепочка» последовательности построения искомого сечения такова:

1 . Т1 = QK ∩АС;

2 . F = PR ∩ DE;

3. Т2 = KR ∩ AF;

4 . М = Т1Т2 ∩ DE;

5 . N = Т1Т2 ∩ АЕ;

6 . Н = MR ∩ PD;

7. T3 = Т1Т2 ∩ АВ;

8 . L = T3K ∩ PB.

Шестиугольник MNKLQH - искомое сечение.

Сечение пирамиды на рис. 1 и сечение куба на рис. 2 построены на основании лишь аксиом стереометрии.

Вместе с тем сечение многогранника, имеющего параллельные грани (призма, параллелепипед, куб), можно строить, используя свойства параллельных плоскостей.

3.2 Метод следов в построении плоских сечений многогранников

Прямая, по которой секущая плоскость α пересекает плоскость основания многогранника, называется следом плоскости α в плоскости этого основания.

Из определения следа получаем: в каждой его точке пересекаются прямые, одна из которых лежит в секущей плоскости, другая - в плоскости основания. Именно это свойство следа используют при построении плоских сечений многогранников методом следов. Причем в секущей плоскости, удобно использовать такие прямые, которые пересекают ребра многогранника.

Сначала секущую плоскость зададим ее следом в плоскости основания призмы (пирамиды) и точкой, принадлежащей поверхности призмы (пирамиды).

Задача 1 . Построить сечение призмы АВСВЕА1В1С1D1Е1 плоскостью α, которая задана следом l в плоскости АВС основания призмы и точкой М, принадлежащей ребру DD1.

Решение. Анализ . Предположим, что пятиугольник MNPQR - искомое сечение (рис. 4). Для построения этого плоского пятиугольника достаточно построить его вершины N, P, Q, R (точка М дана) - точки пересечения секущей плоскости α с ребрами соответственно СС1, ВB1, АА1, ЕЕ1 данной призмы.

Е1 D1

Для построения точки N =α ∩ СС1 достаточно построить прямую пересечения секущей плоскости α с плоскостью грани СDD1C1. Для этого, в свою очередь, достаточно построить в плоскости этой грани еще одну точку, принадлежащую секущей плоскости α. Как построить такую точку?

Так как прямая l лежит в плоскости основания призмы, то она может пересекать плоскость грани СDD1C1 лишь в точке, которая принадлежит прямой CD = (CDD1) ∩ (АВС), т.е. точка X = l ∩ СD = l ∩ (CDD1) принадлежит секущей плоскости α. Таким образом, для построения точки N = α ∩ СС1 достаточно построить точку X = l ∩ СD.

Аналогично, для построения точек Р= α ∩ ВВ1, Q = α ∩ АА1 и R = α ∩ ЕЕ1 достаточно построить соответственно точки: У = l ∩ ВС, Z = 1 ∩ АВ и Т =1 ∩ АЕ.

Построение . Строим (рис. 5):

1. X = l ∩ СD (рис. 5, б);

2. N = МХ ∩ СС1 (рис. 5, в);

3. У = l ∩ ВС (рис. 5, г);

4. Р = NY ∩ ВВ1 (рис. 5, д);

5. Z = 1 ∩ АВ (рис. 5, е);

6. Q= РZ ∩ АА1 (рис. 5, ж);

7. T= l ∩ АЕ (рис. 5, з);

8. R= QT ∩ ЕЕ1 (рис. 5, и).

Пятиугольник MNPQR - искомое сечение (рис. 5, к).

Доказательство. Так как прямая l - след секущей плоскости α, то точки X = l ∩ СD, Y = l ∩ ВС, Z = 1 ∩ АВ и T= l ∩ АЕ принадлежат этой плоскости.

Поэтому имеем :

М Є α, X Є α => МХ є α, тогда МХ ∩ СС1 = N є α , значит, N = α ∩ СС1;

N Є α, Y Є α => NY Є α, тогда NY ∩ ВВ1= Р Є α, значит, Р = α ∩ ВВ1;

Р Є α, Z Є α => РZ Є α, тогда PZ ∩ AА1 = Q Є α, значит, Q = α ∩ АA1;

Q Є α, T Є α => QТ Є α, тогда QТ ∩ EЕ1 =R Є α, значит, R = α ∩ ЕЕ1.

Следовательно, MNPQR - искомое сечение.

Исследование. След l секущей плоскости α не пересекает основание призмы, а точка М секущей плоскости принадлежит боковому ребру DD1 призмы. Поэтому секущая плоскость α не параллельна боковым ребрам. Следовательно, точки N, Р, Q и R пересечения этой плоскости с боковыми ребрами призмы (или продолжениями этих ребер) всегда существуют. А поскольку, кроме того, точка М не принадлежит следу l, то определяемая ими плоскость α единственна. Это означает, что задача имеет (всегда) единственное решение.

3.3 Метод внутреннего проектирования в построении плоских сечений многогранников

В некоторых учебных пособиях метод построения сечений много-гранников, ко¬торый мы сейчас будем рассматривать, называют методом внутреннего проекти¬рования или методом соответствий, или методом диа-гональных сечений.

Задача 1 . Постройте сечение пирамиды PABCDE плоскостью α = (МFR), если точки М, F и R являются внутренними точками ребер соответ-ственно РА, РС и РЕ. (Рис. 6)

Решение . Плоскость основания пирамиды обозначим β. Для построе-ния искомого сечения построим точки пересечения секущей плоскости α с ребрами пирамиды.

Построим точку пересечения секущей плоскости с ребром РD данной пирамиды.

Плоскости APD и CPE пересекают плоскость β по прямым соответ-ственно АD и СЕ, которые пересекаются в некоторой точке К. Прямая РК=(АРD) ∩(СРЕ) пересекает прямую FR є α в некоторой точке К1: К1 = РК ∩ FR, при этом К1 є α. Тогда: М є α, К1 є α => прямая МK є а. Поэтому точка Q = МК1 ∩ РD есть точка пересечения ребра РD и секущей плоскости: Q =α ∩ PD. Точка Q- вершина искомого сечения. Аналогично строим точку пересечения плоскости α и ребра РВ. Плоскости ВРЕ и АРD пересекают плоскость β по прямым соответственно ВЕ и АD, которые пересекаются в точке Н. Прямая РН = (ВРЕ) ∩ (АРD) пересекает прямую МQ в точке Н1.Тогда прямая RН1 пересекает ребро РВ в точке N = α ∩ РВ - вершине сечения.

Таким образом , последовательность шагов построения искомого сечения такова:

1 . К = АD ∩ ЕС; 2 . К1 = РК ∩ RF;

3 . Q = МК1 ∩ РD; 4. H = BE ∩ АD;

5 . Н1 = РН ∩ МQ; 6 . N = RН1 ∩ РВ.

Пятиугольник MNFQR - искомое сечение.

3.4 Комбинированный метод в построении плоских сечений многогранников

Сущность комбинированного метода по¬строения сечений многогранников состоит в следующем. На некоторых этапах по¬строения сечения применяется или метод следов, или метод внутреннего проектирования, а на других этапах построения этого же сечения используются изученные теоремы о параллельности, перпендикулярности прямых и плоскостей.

Для иллюстрации применения этого метода рассмотрим следующую задачу.

Задача1 .

Постройте сечение параллелепипеда АВСDА1В1С1D1 плоскостью α, заданной точками Р, Q и R, если точка Р лежит на диагонали А1C1, точка Q на ребре ВВ1 и точка R на ребре DD1. (Рис. 7)

Решение

Решим эту задачу с применением метода следов и теорем о параллельности прямых и плоскостей.

Прежде всего, построим след секущей плоскости α = (РQR) на плоско-сти АВС Для этого строим точки Т1 = РQ ∩ Р1В (где PP1 ║AA1,P1є AC) и T2 = RQ ∩ ВD. Построив след Т1Т2, замечаем, что точка Р лежит в плоскости А1B1C1, которая параллельна плоскости АВС. Это означает, что плоскость α пересекает плоскость А1B1C1 по прямой, проходящей через точку Р и парал-лельной прямой Т1Т2. Проведем эту прямую и обозначим через М и Е точки ее пересечения с ребрами соответственно А1B1 и А1D1 Получаем: М = α ∩ А1B1, Е =α∩ А1D1. Тогда отрезки ЕR и QМ являются сторонами искомого сечения.

Далее, так как плоскость ВСС1 параллельна плоскости грани ADD1A1, то плоскость α пересекает грань ВСC1B1 по от резку QF (F= α ∩ СС1), параллельному прямой ЕR. Таким образом, пятиугольник ERFQM - искомое сечение. (Точку F можно получить, проведя RF║ MQ)

Решим эту задачу, применяя метод внутреннего проектирования и теоремы о параллельности прямых и плоскостей. (Рис. 8)

Рис. 8

Пусть Н=АС ∩ ВD. Проведя прямую НН1 параллельно ребру ВВ1 (Н1 є RQ), построим точку F: F=РН1 ∩ CC1.Tочка F является точкой пересечения плоскости α с ребром СС1, так как РН1 є α. Тогда отрезки RF и QF, по которым плоскость α пересекает соответственно грани CС1D1D и ВСС1В1 данного параллелепипеда, являются сторонами его искомого сечения.

Так как плоскость АВВ1 параллельна плоскости CDD1, то пересечением плоскости α и грани АВВ1А1 является отрезок QМ (М Є А1В1), параллельный отрезку FR; отрезок QМ - сторона сечения. Далее точка Е = МР ∩ А1D1 является точкой пересечения плоскости α и ребра А1D1, так как МР є α. Поэтому точка Е - еще одна вершина искомого сечения. Таким образом, пятиугольник ERFQM - искомое сечение. (Точку Е можно построить, проведя прямую RЕ ║ FQ. Тогда М = РЕ ∩ А1B1).

IV. Заключение

Благодаря этой работе я обобщила и систематизировала знания, полученные за курс геометрии этого года, ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике.

Мне бы хотелось чаще использовать свои новые полученные знания на практике.

К сожалению, я рассмотрела не все методы построения сечений многогранников. Существует ещё множество частных случаев:

  • построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой и др.

В будущем я планирую расширить своё исследование и дополнить свою работу разбором выше перечисленных частных случаев.

Я считаю, что моя работа актуальна, так как она может быть использована учащимися средних и старших классов для самостоятельной подготовки к ЕГЭ по математике, для углубленного изучения материала на факультативах и для самообразования молодых учителей. Выпускники средних школ должны не только овладеть материалом школьных программ, но и уметь творчески применять его, находить решение любой проблемы.

V. Литература

  1. Потоскуев Е.В., Звавич Л.И. Геометрия. 10 кл.: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики. - М.: Дрофа, 2008.
  2. Потоскуев Е.В., Звавич Л.И. Геометрия. 10 кл.: Задачник для общеобразовательных учреждений с углубленным и профильным изучением математики. - М.: Дрофа, 2008.
  3. Потоскуев Е.В. Изображение пространственных фигур на плоскости. Построение сечений многогранников. Учебное пособие для студентов физико-математического факультета педвуза. - Тольятти: ТГУ, 2004.
  4. Научно-практический журнал для старшеклассников «Математика для школьников»,2009,№2/№3,1-64.
  5. Геометрия в таблицах - Учебное пособие для учащихся старших классов - Нелин Е.П.
  6. Геометрия, 7-11 класс, Справочные материалы, Безрукова Г.К., Литвиненко В.Н., 2008.
  7. Математика, Справочное пособие, Для школьников старших классов и поступающих в ВУЗы, Рывкин А.А., Рывкин А.З., 2003.
  8. Алгебра и геометрия в таблицах и схемах, Роганин А.Н., Дергачёв В.А., 2006.

В ходе урока все желающие смогут получить представление о теме « Задачи на построение сечений в параллелепипеде». Вначале мы повторим четыре основные опорные свойства параллелепипеда. Затем, используя их, решим некоторые типовые задачи на построение сечений в параллелепипеде и на определение площади сечения параллелепипеда.

Тема: Параллельность прямых и плоскостей

Урок: Задачи на построение сечений в параллелепипеде

В ходе урока все желающие смогут получить представление о теме «Задачи на построение сечений в параллелепипеде» .

Рассмотрим параллелепипед АВСDА 1 B 1 C 1 D 1 (рис. 1). Вспомним его свойства.

Рис. 1. Свойства параллелепипеда

1) Противоположные грани (равные параллелограммы) лежат в параллельных плоскостях.

Например, параллелограммы АВСD и А 1 B 1 C 1 D 1 равны (то есть их можно совместить наложением) и лежат в параллельных плоскостях.

2) Длины параллельных ребер равны.

Например, AD = BC = A 1 D 1 = B 1 C 1 (рис. 2).

Рис. 2. Длины противоположных ребер параллелепипеда равны

3) Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Например, диагонали параллелепипеда BD 1 и B 1 D пересекаются в одной точке и делятся этой точкой пополам (рис. 3).

4) В сечение параллелепипеда может быть треугольник, четырехугольник, пятиугольник, шестиугольник.

Задача на сечение параллелепипеда

Например, рассмотрим решение следующей задачи. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 и точки M, N, K на ребрах AA 1 , A 1 D 1 , A 1 B 1 соответственно (рис. 4). Постройте сечения параллелепипеда плоскостью MNK. Точки M и N одновременно лежат в плоскости AA 1 D 1 и в секущей плоскости. Значит, MN - линия пересечения двух указанных плоскостей. Аналогично получаем MK и KN. То есть, сечением будет треугольник MKN.

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 13, 14, 15 стр. 50

2. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 . М и N - середины ребер DC и A 1 B 1 .

а) Постройте точки пересечения прямых АМ и AN плоскостью грани ВВ 1 С 1 С.

б) Постройте линию пересечения плоскостей AMN и ВВ 1 С 1

3. Постройте сечения параллелепипеда АВСDА 1 B 1 C 1 D 1 плоскостью, проходящей через ВС 1 и середину М ребра DD 1 .

Само же задание обычно звучит так: "построить натуральный вид фигуры сечения" . Конечно же, мы решили не оставлять этот вопрос в стороне и постараться по возможности объяснить, как происходит построение наклонного сечения.

Для того, чтобы объяснить, как строится наклонное сечение, я приведу несколько примеров. Начну конечно же с элементарного, постепенно наращивая сложность примеров. Надеюсь, что проанализировав эти примеры чертежей сечений, вы разберетесь в том, как это делается, и сможете сами выполнить свое учебное задание.

Рассмотрим "кирпичика" с размерами 40х60х80 мм произвольной наклонной плоскостью. Секущая плоскость разрезает его по точкам 1-2-3-4. Думаю, тут все понятно.

Перейдем к построению натурального вида фигуры сечения.
1. Первым делом проведем ось сечения. Ось следует чертить параллельно плоскости сечения - параллельно линии, в которую проецируется плоскость на главном виде - обычно именно на главном виде задают задание на построение наклонного сечения (Далее я всегда буду упоминать про главный вид, имея в виду что так бывает почти всегда в учебных чертежах).
2. На оси откладываем длину сечения. На моем чертеже она обозначена как L. Размер L определяется на главном виде и равен расстоянию от точки вхождения сечения в деталь до точки выхода из нее.
3. Из получившихся двух точек на оси перпендикулярно ей откладываем ширины сечения в этих точках. Ширину сечения в точке вхождения в деталь и в точке выхода из детали можно определить на виде сверху. В данном случае оба отрезка 1-4 и 2-3 равны 60 мм. Как видно из рисунка выше, края сечения прямые, поэтому просто соединяем два наших получившихся отрезка, получив прямоугольник 1-2-3-4. Это и есть - натуральный вид фигуры сечения нашего кирпичика наклонной плоскостью.

Теперь давайте усложним нашу деталь. Поставим кирпичик на основание 120х80х20 мм и дополним фигуру ребрами жесткости. Проведем секущую плоскость так, чтобы она проходила через все четыре элемента фигуры (через основание, кирпичик и два ребра жесткости). На рисунке ниже вы можете увидеть три вида и реалистичое изображение этой детали


Попробуем построить натуральный вид этого наклонного сечения. Начнем опять с оси сечения: проведем ее параллельно плоскости сечения обозначенного на главном виде. На ней отложим длину сечения равную А-Е. Точка А является точкой входа сечения в деталь, а в частном случае - точкой входа сечения в основание. Точкой выхода из основания является точка В. Отметим точку В на оси сечения. Аналогичным образом отметим и точки входа-выхода в ребро, в "кирпичик" и во второе ребро. Из точек А и В перпендикулярно оси отложим отрезки равные ширине основания (в каждую сторону от оси по 40, всего 80мм). Соединим крайние точки - получим прямоугольник, являющийся натуральным видом сечения основания детали.

Теперь настал черед построить кусочек сечения, являющийся сечением ребра детали. Из точек В и С отложим перпендикуляры по 5 мм в каждую сторону - получатся отрезки по 10 мм. Соединим крайние точки и получим сечение ребра.

Из точек С и D откладывем перпендикулярные отрезки равные ширине "кирпичика" - полностью аналогично первому примеру этого урока.

Отложив перпендикуляры из точек D и Е равные ширине второго ребра и соединив крайние точки получим натуральный вид его сечения.

Остается стереть перемычки между отдельными элементами получившегося сечения и нанести штриховку. Должно получиться что-то вроде этого:


Если же по заданному сечению произвести разделение фигуры, то мы увидим следующий вид:


Я надеюсь, что вас не запугали нудные абзацы описания алгоритма. Если вы прочли все вышенаписанное и еще не до конца поняли, как начертить наклонное сечение , я очень советую вам взять в руки лист бумаги и карандаш и попытаться повторить все шаги за мной - это почти 100% поможет вам усвоить материал.

Когда-то я пообещал продолжение данной статьи. Наконец-то я готов представить вам пошагового построения наклонного сечения детали, более приближенной к уровню домашних заданий. Более того, наклонное сечение задано на третьем виде (наклонное сечение задано на виде слева)


или запишите наш телефон и расскажите о нас своим друзьям - кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки - и кто-то еще сможет освоить черчение.

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое на более сложной детали, с фасками и конусовидным отверстием например.

Спасибо. А разве на разрезах ребра жесткости не штрихуются?
Именно. Именно они и не штрихуются. Потому что таковы общие правила выполнения разрезов. Однако их обычно штрихуют при выполнении разрезов в аксонометрических проекциях - изометрии, диметрии и т.д. При выполнении наклонных сечений, область относящаяся к ребру жесткости так же заштриховывается.

Спасибо,очень доступно.Скажите,а наклонное сечение можно выполнить на виде с верху,или на виде слева?Если да,то хотелось бы увидеть простейший пример.Пожалуйста.

Выполнить такие сечения можно. Но к сожалению у меня сейчас нет под рукой примера. И есть еще один интересный момент: с одной стороны, там ничего нового, а с другой стороны на практике такие сечения чертить реально сложнее. Почему-то в голове все начинает путаться и у большинства студентов возникают сложности. Но вы не сдавайтесь!

Да всё хорошо, только хотелось бы увидеть как делаеться тоже самое, но с отверстиями (сквозными и несквозными), а то в элипс они в голове так и не превращаются

помогите мне по комплексной задаче

Жаль, что вы именно тут написали. Написали бы в почту - может мы смогли бы успеть все обсудить.

Хорошо объясняете. Как быть если одна из сторон детали полукруглая? А также в детали есть отверстия.

Илья, используйте урок из раздела по начертательной геометрии "Сечение цилиндра наклонной плоскостью". С его помощью сможете разобраться, что делать с отверстиями (они же по сути тоже цилиндры) и с полукруглой стороной.

благодарю автора за статью!кратко и доступно пониманию.лет 20 назад сам грыз гранит науки,теперь сыну помогаю. многое забыл,но Ваша статья вернула фундаментальное понимание темы.Пойду с наклонным сечением цилиндра разбираться)

Добавьте свой комментарий.

Сечение - изображение фигуры, получающееся при мысленном рассечении предмета одной или несколькими плоскостями.
На сечении показывается только то, что получается непосредственно в секущей плоскости .

Сечения обычно применяют для выявления поперечной формы предмета. Фигуру сечения на чертеже выделяют штриховкой. Штриховые линии наносят в соответствии с общими правилами.

Порядок формирования сечения:
1. Вводится секущая плоскость в том месте детали, где необходимо более полно выявить ее форму. 2. Мысленно отбрасывается часть детали, расположенная между наблюдателем и секущей плоскостью. 3. Фигура сечения мысленно поворачивается до положения, параллельного основной плоскости проекций P. 4. Изображение сечения формируют в соответствии с общими правилами проецирования.

Сечения, не входящие в состав , разделяют на:

Вынесенные;
- наложенные.

Вынесенные сечения являются предпочтительными и их допускается располагать в разрыве между частями одного и того же вида.
Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями.

Наложенным называют сечение , которое располагают непосредственно на виде предмета. Контур наложенного сечения выполняют сплошной тонкой линией. Фигуру сечения располагают в том месте основного вида, где проходит секущая плоскость, и заштриховывают.


Наложение сечений: а) симметричное; б) несимметричное

Ось симметрии наложенного или вынесенного сечения указывают штрихпунктирной тонкой линией без обозначения буквами и стрелками и линию сечения не проводят.

Сечения в разрыве. Такие сечения располагают в разрыве основного изображения и выполняют сплошной основной линией.
Для несимметричных сечений, расположенных в разрыве или наложенных линию сечения проводят со стрелками, но буквами не обозначают.

Сечение в разрыве: а) симметричное; б) несимметричное

Вынесенные сечения располагают:
- на любом месте поля чертежа;
- на месте основного вида;
- с поворотом с добавлением знака «повернуто»

Если секущая плоскость проходит через ось поверхности вращения, ограничивающие отверстие или углубления, то их контур в сечении показывают полностью, т.е. выполняют по правилу разреза.

Если сечение получается состоящим из двух и более отдельных частей, то следует применить разрез, вплоть до изменения направления взгляда.
Секущие плоскости выбирают так, чтобы получить нормальные поперечные сечения.
Для нескольких одинаковых сечений, относящихся к одному предмета, линию сечения обозначают одной буквой и вычерчивают одно сечение.

Выносные элементы.
Выносной элемент - отдельное увеличенное изображение части предмета для представления подробностей, не указанных на соответствующем изображении; может отличаться от основного изображения по содержанию. Например, основное изображение является видом, а выносной элемент - разрезом.

На основном изображении часть предмета выделяют окружностью произвольного диаметра, выполненной тонкой линией, от нее идет линия-выноска с полочкой, над которой ставят прописную букву русского алфавита, высотой более, чем высота размерных чисел. Над выносным элементом пишут эту же букву и справа от нее в круглых скобках, без буквы М, указывают масштаб выносного элемента.