Инструменты

От чего зависит степень вероятности p. Задание на дом

От чего зависит степень вероятности p. Задание на дом

Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

Чтобы верно определить проходимость, нужно сделать три шага:

  • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
  • Вычислить вероятность по статистическим данным самостоятельно;
  • Узнать ценность ставки, учитывая обе вероятности.

Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

Быстрый переход

Подсчёт вероятности, заложенной в букмекерские коэффициенты

Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

P Б =(1/K)*100%,

где P Б – вероятность исхода по мнению букмекерской конторы;

K – коэффициент БК на исход.

Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

Расчёт вероятности события игроком

Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

P И =(УМ/М)*100%,

где P И – вероятность события по мнению игрока;

УМ – количество успешных матчей, в которых такое событие происходило;

М – общее количество матчей.

Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

Определение ценности ставки

Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

V= P И *K-100%,

где V – ценность;

P И – вероятность исхода по мнению беттера;

K – коэффициент БК на исход.

Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

Профессиональный беттер должен хорошо ориентироваться в коэффициентах, быстро и правильно оценивать вероятность события по коэффициенту и при необходимости уметь перевести коэффициенты из одного формата в другой . В данном мануале мы расскажем о том, какие бывают виды коэффициентов, а так же на примерах разберём, как можно высчитывать вероятность по известному коэффициенту и наоборот.

Какие бывают типы коэффициентов?

Существует три основных вида коэффициентов, которые предлагают игрокам букмекеры: десятичные коэффициенты , дробные коэффициенты (английские) и американские коэффициенты . Наиболее распространённые коэффициенты в Европе - десятичные. В Северной Америке популярны американские коэффициенты. Дробные коэффициенты - наиболее традиционный вид, они сразу же отражают информацию о том сколько нужно поставить, чтобы получить определённую сумму.

Десятичные коэффициенты

Десятичные или еще их называют европейские коэффициенты - это привычный формат числа, представленный десятичной дробью с точностью до сотых, а иногда даже до тысячных. Пример десятичного коэффициента - 1.91. Рассчитать прибыль в случае с десятичными коэффициентами очень просто, достаточно лишь умножить сумму вашей ставки на этот коэффициент. Например, в матче "Манчестер Юнайтед" - "Арсенал" победа "МЮ" выставлена с коэффициентом - 2.05, ничья оценена коэффициентом - 3.9, а победа "Арсенала" равняется - 2.95. Предположим, что мы уверены в победе "Юнайтед" и ставим на них 1000 долларов. Тогда наш возможный доход рассчитывается следующим образом:

2.05 * $1000 = $2050;

Правда ведь ничего сложного?! Точно так же рассчитывается возможный доход при ставке на ничью и победу "Арсенала".

Ничья: 3.9 * $1000 = $3900;
Победа "Арсенала": 2.95 * $1000 = $2950;

Как рассчитать вероятность события по десятичным коэффициентам?

Представим теперь что нам нужно определить вероятность события по десятичным коэффициентам, которые выставил букмекер. Делается это так же очень просто. Для этого мы единицу делим на этот коэффициент.

Возьмем уже имеющиеся данные и посчитаем вероятность каждого события:

Победа "Манчестер Юнайтед": 1 / 2.05 = 0,487 = 48,7%;
Ничья: 1 / 3.9 = 0,256 = 25,6%;
Победа "Арсенала": 1 / 2.95 = 0,338 = 33,8%;

Дробные коэффициенты (Английские)

Как понятно из названия дробный коэффициент представлен обыкновенной дробью. Пример английского коэффициента - 5/2. В числителе дроби находиться число, являющееся потенциальной суммой чистого выигрыша, а в знаменателе расположено число обозначающее сумму которую нужно поставить, чтобы этот выигрыш получить. Проще говоря, мы должны поставить $2 доллара, чтобы выиграть $5. Коэффициент 3/2 означает что для того чтобы получить $3 чистого выигрыша нам придётся сделать ставку в размере $2.

Как рассчитать вероятность события по дробным коэффициентам?

Вероятность события по дробным коэффициентам рассчитать так же не сложно, нужно всего на всего разделить знаменатель на сумму числителя и знаменателя.

Для дроби 5/2 рассчитаем вероятность: 2 / (5+2) = 2 / 7 = 0,28 = 28%;
Для дроби 3/2 рассчитаем вероятность:

Американские коэффициенты

Американские коэффициенты в Европе непопулярны, зато в Северной Америке очень даже. Пожалуй, данный вид коэффициентов самый сложный, но это только на первый взгляд. На самом деле и в этом типе коэффициентов ничего сложного нет. Сейчас во всем разберёмся по порядку.

Главной особенностью американских коэффициентов является то, что они могут быть как положительными , так и отрицательными . Пример американских коэффициентов - (+150), (-120). Американский коэффициент (+150) означает, что для того чтобы заработать $150 нам нужно поставить $100. Иными словами положительный американский коэффициент отражает потенциальный чистый заработок при ставке в $100. Отрицательный же американский коэффициент отражает сумму ставки, которую необходимо сделать для того чтобы получить чистый выигрыш в $100. Например коэффициент (- 120) нам говорит о том, что поставив $120 мы выиграем $100.

Как рассчитать вероятность события по американским коэффициентам?

Вероятность события по американскому коэффициенту считается по следующим формулам:

(-(M)) / ((-(M)) + 100) , где M - отрицательный американский коэффициент;
100 / (P + 100) , где P - положительный американский коэффициент;

Например, мы имеем коэффициент (-120), тогда вероятность рассчитывается так:

(-(M)) / ((-(M)) + 100); подставляем вместо "M" значение (-120);
(-(-120)) / ((-(-120)) + 100 = 120 / (120 + 100) = 120 / 220 = 0,545 = 54,5%;

Таким образом, вероятность события с американским коэффициентом (-120) равна 54,5%.

Например, мы имеем коэффициент (+150), тогда вероятность рассчитывается так:

100 / (P + 100); подставляем вместо "P" значение (+150);
100 / (150 + 100) = 100 / 250 = 0,4 = 40%;

Таким образом, вероятность события с американским коэффициентом (+150) равна 40%.

Как зная процент вероятности перевести его в десятичный коэффициент?

Для того чтобы рассчитать десятичный коэффициент по известному проценту вероятности нужно 100 разделить на вероятность события в процентах. Например, вероятность события составляет 55%, тогда десятичный коэффициент этой вероятности будет равен 1,81.

100 / 55% = 1,81

Как зная процент вероятности перевести его в дробный коэффициент?

Для того чтобы рассчитать дробный коэффициент по известному проценту вероятности нужно от деления 100 на вероятность события в процентах отнять единицу. Например, имеем процент вероятности 40%, тогда дробный коэффициент этой вероятности будет равен 3/2.

(100 / 40%) - 1 = 2,5 - 1 = 1,5;
Дробный коэффициент равен 1,5/1 или 3/2.

Как зная процент вероятности перевести его в американский коэффициент?

Если вероятность события больше 50%, то расчёт производится по формуле:

- ((V) / (100 - V)) * 100, где V - вероятность;

Например, имеем вероятность события 80%, тогда американский коэффициент этой вероятности будет равен (-400).

- (80 / (100 - 80)) * 100 = - (80 / 20) * 100 = - 4 * 100 = (-400);

В случае если вероятность события меньше 50%, то расчёт производиться по формуле:

((100 - V) / V) * 100 , где V - вероятность;

Например, имеем процент вероятности события 20%, тогда американский коэффициент этой вероятности будет равен (+400).

((100 - 20) / 20) * 100 = (80 / 20) * 100 = 4 * 100 = 400;

Как перевести коэффициент в другой формат?

Бывают случаи, когда необходимо перевести коэффициенты из одного формата в другой. Например, у нас есть дробный коэффициент 3/2 и нам нужно перевести его в десятичный. Для перевода дробного коэффициента в десятичный мы сначала определяем вероятность события с дробным коэффициентом, а затем эту вероятность переводим в десятичный коэффициент.

Вероятность события с дробным коэффициентом 3/2 равна 40%.

2 / (3+2) = 2 / 5 = 0,4 = 40%;

Теперь переведём вероятность события в десятичный коэффициент, для этого 100 делим на вероятность события в процентах:

100 / 40% = 2.5;

Таким образом, дробный коэффициент 3/2 равен десятичному коэффициенту 2.5. Аналогичным образом переводятся, например, американские коэффициенты в дробные, десятичные в американские и т.д. Самое сложное во всём этом лишь расчёты.

Вероятность наступления события в некотором испытании равна отношению , где:

Общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

Количество элементарных исходов, благоприятствующих событию .

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

Извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30-ти шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: - из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
- вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность. Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

Из урны будет извлечён красный шар;
- из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию - 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

На практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
- вероятность того, то из урны будет извлечён белый шар;
- вероятность того, то из урны будет извлечён красный шар;
- вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?


Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них - ноль, а другая - нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль - это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр - ноль, а другая цифра - нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:

01, 03, 05, 07, 09

10, 30, 50, 70, 90

И подсчитываем их - всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
- вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин - код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр - то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже - большее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;

б) не более четырёх очков;

в) от 3-х до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где - цифра, выпавшая на 1-м кубике, - цифра, выпавшая на 2-м кубике.

Например:

На первом кубике выпало 3 очка, на втором - 5 очков, сумма очков: 3 + 5 = 8;
- на первом кубике выпало 6 очков, на втором - 1 очко, сумма очков: 6 + 1 = 7;
- на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую - две «шестёрки».

а) Рассмотрим событие: - при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
- искомая вероятность.

б) Рассмотрим событие: - выпадет не более 4-х очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия - подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
- вероятность того, что выпадет не более 4-х очков.

в) Рассмотрим событие: - выпадет от 3-х до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : - выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
- вероятность того, что выпадет меньше трёх или больше 9-ти очков.

Особо щепетильные люди могут перечислить все 29 пар, выполнив тем самым проверку.

Ответ :

В следующей задаче повторим таблицу умножения:

Задача 6

Найти вероятность того, что при броске двух игральных костей произведение очков:

а) будет равно семи;

б) окажется не менее 20-ти;

в) будет чётным.

Краткое решение и ответ в конце урока.

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах;

б) двое выйдут на одном этаже;

в) все выйдут на одном этаже.

Решение : вычислим общее количество исходов: способами может выйти из лифта 1-й пассажир и способами - 2-й пассажир и способами - третий пассажир. По правилу умножения комбинаций: возможных исходов. То есть, каждый этаж выхода 1-го человека может комбинироваться с каждым этажом выхода 2-го человека и с каждым этажом выхода 3-го человека.

Второй способ основан на размещениях с повторениями :
- кому как понятнее.

а) Рассмотрим событие: - пассажиры выйдут на разных этажах. Вычислим количество благоприятствующих исходов:
способами могут выйти 3 пассажира на разных этажах. Рассуждения по формуле проведите самостоятельно.

По классическому определению:

в) Рассмотрим событие: - пассажиры выйдут на одном этаже. Данному событию благоприятствуют исходов и по классическому определению, соответствующая вероятность: .

Заходим с чёрного хода:

б) Рассмотрим событие: - два человека выйдут на одном этаже (и, соответственно, третий - на другом) .

События образуют полную группу (считаем, что в лифте никто не уснёт и лифт не застрянет , а значит, .

В результате, искомая вероятность:

Таким образом, теорема о сложении вероятностей событий, образующих полную группу , может быть не только удобной, но и стать самой настоящей палочкой-выручалочкой!

Ответ :

Когда получаются большие дроби, то хорошим тоном будет указать их приближенные десятичные значения. Обычно округляют до 2-3-4-х знаков после запятой.

Поскольку события пунктов «а», «бэ», «вэ» образуют полную группу, то есть смысл выполнить контрольную проверку, причём, лучше с приближенными значениями:

Что и требовалось проверить.

Иногда по причине погрешности округлений может получиться 0,9999 либо 1,0001, в этом случае одно из приближенных значений следуют «подогнать» так, чтобы в сумме нарисовалась «чистая» единица.

Самостоятельно:

Задача 8

Подбрасывается 10 монет. Найти вероятность того, что:

а) на всех монетах выпадет орёл;

б) на 9 монетах выпадет орёл, а на одной - решка;

в) орёл выпадет на половине монет.

Задача 9

На семиместную скамейку случайным образом рассаживается 7 человек. Какова вероятность того, что два определённых человека окажутся рядом?

Решение : с общим количеством исходов проблем не возникает:
способами могут рассесться 7 человек на скамейке.

Но вот как подсчитать количество благоприятствующих исходов? Тривиальные формулы не подходят и единственный путь - это логические рассуждения. Сначала рассмотрим ситуацию, когда Саша и Маша оказались рядом на левом краю скамейки:

Очевидно, что порядок имеет значение: слева может сидеть Саша, справа Маша и наоборот. Но это ещё не всё - для каждого из этих двух случаев остальные люди могут рассесться на свободных местах способами. Выражаясь комбинаторно, Сашу и Машу можно переставить на соседних местах способами и для каждой такой перестановки других людей можно переставить способами.

Таким образом, по правилу умножения комбинаций, выходит благоприятствующих исходов.

Но и это ещё не всё! Перечисленные факты справедливы для каждой пары соседних мест:

Интересно отметить, что если скамейку «скруглить» (соединяя левое и правое место) , то образуется дополнительная, седьмая пара соседних мест. Но не будем отвлекаться. Согласно тому же принципу умножения комбинаций, получаем окончательное количество благоприятствующих исходов:

По классическому определению:
- вероятность того, что два определённых человека окажутся рядом.

Ответ :

Задача 10

На шахматную доску из 64 клеток ставят наудачу две ладьи белого и чёрного цвета. С какой вероятностью они не будут «бить» друг друга?

Справка : шахматная доска имеет размер клеток; черная и белая ладьи «бьют» друг друга, когда располагаются на одной горизонтали или на одной вертикали

Обязательно выполните схематический чертёж доски, а ещё лучше, если неподалёку есть шахматы. Одно дело рассуждения на бумаге, и совсем другое - когда расставляешь фигуры собственными руками.

Задача 11

Какова вероятность того, что в четырех сданных картах будет один туз и один король?

Вычислим общее количество исходов. Сколькими способами можно извлечь 4 карты из колоды? Наверное, все поняли, что речь идёт о количестве сочетаний :
способами можно выбрать 4 карты из колоды.

Теперь считаем благоприятствующие исходы. По условию, в выборке из 4-х карт должен быть один туз, один король и, о чём не сказано открытым текстом, - две другие карты :

Способами можно извлечь одного туза;
способами можно выбрать одного короля.

Исключаем из рассмотрения тузов и королей: 36 - 4 - 4 = 28

способами можно извлечь две другие карты.

По правилу умножения комбинаций:
способами можно извлечь искомую комбинацию карт (1-го туза и 1-го короля и две другие карты).

Прокомментирую комбинационный смысл записи другим способом:
каждый туз комбинируется с каждым королем и с каждой возможной парой других карт.

По классическому определению:
- вероятность того, что среди четырех сданных карт будет один туз и один король.

Если хватает времени и терпения, максимально сокращайте большие дроби.

Ответ :

Более простая задача для самостоятельного решения:

Задача 12

В ящике находится 15 качественных и 5 бракованных деталей. Наудачу извлекаются 2 детали.

Найти вероятность того, что:

а) обе детали будут качественными;

б) одна деталь будет качественной, а одна - бракованной;

в) обе детали бракованны.

События перечисленных пунктов образуют полную группу, поэтому проверка здесь напрашивается сама собой. Краткое решение и ответ в конце урока. А вообще, всё самое интересное только начинается!

Задача 13

Студент знает ответы на 25 экзаменационных вопросов из 60-ти. Какова вероятность сдать экзамен, если для этого необходимо ответить не менее чем на 2 из 3-х вопросов?

Решение : итак, расклад таков: всего 60 вопросов, среди которых 25 «хороших» и, соответственно, 60 - 25 = 35 «плохих». Ситуация шаткая и не в пользу студента. Давайте узнаем, насколько хороши его шансы:

способами можно выбрать 3 вопроса из 60-ти (общее количество исходов) .

Для того чтобы сдать экзамен, нужно ответить на 2 или 3 вопроса. Считаем благоприятствующие комбинации:

Способами можно выбрать 2 «хороших» вопроса и один «плохой»;

способами можно выбрать 3 «хороших» вопроса.

По правилу сложения комбинаций :
способами можно выбрать благоприятствующую для сдачи экзамена комбинацию 3-х вопросов (без разницы с двумя или тремя «хорошими» вопросами) .

По классическому определению:

Ответ :

Задача 14

Игроку в покер сдаётся 5 карт. Найти вероятность того, что:

а) среди этих карт будет пара десяток и пара валетов;
б) игроку будет сдан флеш (5 карт одной масти);
в) игроку будет сдано каре (4 карты одного номинала).

Какую из перечисленных комбинаций вероятнее всего получить?

! Внимание! Если в условии задан подобный вопрос, то на него необходимо дать ответ.
Справка : в покер традиционно играют 52-х карточной колодой, которая содержит карты 4-х мастей номиналом от «двоек» до тузов.

Покер - игра самая что ни на есть математическая (кто играет, тот знает), в которой можно обладать заметным преимуществом перед менее квалифицированными соперниками.

Решения и ответы :

Задача 2: Решение : 30 - 5 = 25 холодильников не имеют дефекта.

- вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4-х мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):

7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558

Благоприятствующий исход один (правильный пин-код).

Таким образом, по классическому определению:
- вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2-х кубиках.

а) Рассмотрим событие: - при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов,
, т.е. это событие является невозможным.

б) Рассмотрим событие: - при броске двух игральных костей произведение очков окажется не менее 20-ти. Данному событию благоприятствуют следующие исходы:

Итого: 8

По классическому определению:

- искомая вероятность.

в) Рассмотрим противоположные события:

- произведение очков будет чётным;

- произведение очков будет нечётным.

Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.

По классическому определению вероятности:

Противоположные события образуют полную группу, поэтому:

- искомая вероятность.

Ответ :

Задача 8: Решение способами могут упасть 2 монеты.
Другой путь: способами может упасть 1-ая монета и способами может упасть 2-ая монета и и способами может упасть 10-ая монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: - на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: - на 9 монетах выпадет орёл, а на одной - решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: - орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

Задача 10: Решение : вычислим общее количество исходов:
способами можно расставить двух ладей на доске.
Другой вариант оформления: способами можно выбрать две клетки шахматной доски и способами поставить белую и чёрную ладью в каждом из 2016 случаев. Таким образом, общее число исходов: .

Теперь подсчитаем исходы, в которых ладьи «бьют» друг друга. Рассмотрим 1-ую горизонталь. Очевидно, что фигуры можно расставить на ней произвольным образом, например, так:

Кроме того, ладей можно переставить. Придаём рассуждениям числовую форму: способами можно выбрать две клетки и способами переставить ладей в каждом из 28 случаев. Всего: возможных расположений фигур на горизонтали.
Короткая версия оформления: способами можно разместить белую и чёрную ладью на 1-й горизонтали.

Проведённые рассуждения справедливы для каждой горизонтали, поэтому количество комбинаций следует умножить на восемь: . Кроме того, аналогичная история справедлива для любой из восьми вертикалей. Вычислим итоговое количество расстановок, в которых фигуры «бьют» друг друга:

Тогда в оставшихся вариантах расстановки ладьи не будут «бить» друг друга:
4032 - 896 = 3136

По классическому определению вероятности:
- вероятность того, что наугад поставленные на доску белая и чёрная ладья не будут «бить» друг друга.

Ответ :

Задача 12: Решение : всего: 15 + 5 = 20 деталей в ящике. Вычислим общее число исходов:
способами можно извлечь 2 детали из ящика.
а) Рассмотрим событие: - обе извлечённые детали будут качественными.
способами можно извлечь 2 качественные детали.
По классическому определению вероятности:
б) Рассмотрим событие: - одна деталь будет качественной, а одна - бракованной.
способами можно извлечь 1 качественную деталь и 1 бракованную.
По классическому определению:
в) Рассмотрим событие: - обе извлечённые детали бракованны.
способами можно извлечь 2 бракованные детали.
По классическому определению:
Проверка : вычислим сумму вероятностей событий, образующих полную группу: , что и требовалось проверить.
Ответ :

А сейчас возьмём в руки уже знакомое и безотказное орудие учёбы - игральный кубик с полной группой событий , которые состоят в том, что при его броске выпадут 1, 2, 3, 4, 5 и 6 очков соответственно.

Рассмотрим событие - в результате броска игральной кости выпадет не менее пяти очков. Данное событие состоит в двух несовместных исходах: (выпадет 5 или 6 очков)
- вероятность того, что в результате броска игральной кости выпадет не менее пяти очков.

Рассмотрим событие , состоящее в том, что выпадет не более 4-х очков и найдем его вероятность. По теореме сложения вероятностей несовместных событий:

Возможно, некоторые читатели ещё не до конца осознали суть несовместности. Вдумаемся ещё раз: студент не может ответить на 2 вопроса из 3-х и в то же самое время ответить на все 3 вопроса. Таким образом, события и - несовместны.

Теперь, пользуясь классическим определением , найдём их вероятности:

Факт успешной сдачи экзамена выражается суммой (ответ на 2 вопроса из 3-х или на все вопросы) . По теореме сложения вероятностей несовместных событий:
- вероятность того, что студент сдаст экзамен.

Этот способ решения совершенно равноценен, выбирайте, какой больше нравится.

Задача 1

Магазин получил продукцию в ящиках с четырех оптовых складов: четыре с 1-го, пять со 2-го, семь с 3-го и четыре с 4-го. Случайным образом выбран ящик для продажи. Какова вероятность того, что это будет ящик с первого или третьего склада.

Решение : всего получено магазином: 4 + 5 + 7 + 4 = 20 ящиков.

В данной задаче удобнее воспользоваться «быстрым» способом оформления без расписывания событий большими латинскими буквами. По классическому определению:
- вероятность того, что для продажи будет выбран ящик с 1-го склада;
- вероятность того, что для продажи будет выбран ящик с 3-го склада.

По теореме сложения несовместных событий:
- вероятность того, что для продажи будет выбран ящик с первого или третьего склада.

Ответ : 0,55

Безусловно, задача разрешима и чисто через классическое определение вероятности путём непосредственного подсчёта кол-ва благоприятствующих исходов (4 + 7 = 11), но рассмотренный способ ничем не хуже. И даже чётче.

Задача 2

В коробке 10 красных и 6 синих пуговиц. Наудачу извлекаются две пуговицы. Какова вероятность того, что они будут одноцветными?

Аналогично - здесь можно использовать комбинаторное правило суммы , но мало ли … вдруг кто-то его запамятовал. Тогда на помощь придёт теорема сложения вероятностей несовместных событий!

Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Долгое время теория вероятностей не имела четкого определения. Оно было сформулировано лишь в 1929 году. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Французские математики XVII века Блез Паскаль и Пьер Ферма, исследуя прогнозирование выигрыша в азартных играх, открыли первые вероятностные закономерности, возникающие при бросании костей.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат определенные закономерности. Теория вероятности изучает данные закономерности.

Теория вероятностей занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о степени вероятности наступления одних событий по сравнению с другими.

Например: определить однозначно результат выпадения «орла» или «решки» в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число «орлов» и «решек», что означает, что вероятность того, что выпадет «орел» или «решка», равна 50%.

Испытанием в этом случае называется реализация определенного комплекса условий, то есть в данном случае подбрасывание монеты. Испытание может воспроизводиться неограниченное количество раз. При этом комплекс условий включает в себя случайные факторы.

Результатом испытания является событие . Событие бывает:

  1. Достоверное (всегда происходит в результате испытания).
  2. Невозможное (никогда не происходит).
  3. Случайное (может произойти или не произойти в результате испытания).

Например, при подбрасывании монеты невозможное событие - монета станет на ребро, случайное событие - выпадение «орла» или «решки». Конкретный результат испытания называется элементарным событием . В результате испытания происходят только элементарные события. Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий .

Основные понятия теории

Вероятность - степень возможности происхождения события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным.

Случайная величина - это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Например: число на пожарную станцию за сутки, число попадания при 10 выстрелах и т.д.

Случайные величины можно разделить на две категории.

  1. Дискретной случайной величиной называется такая величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
  2. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что количество возможных значений непрерывной случайной величины бесконечно.

Вероятностное пространство - понятие, введенное А.Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплине.

Вероятностное пространство - это тройка (иногда обрамляемая угловыми скобками: , где

Это произвольное множество, элементы которого называются элементарными событиями, исходами или точками;
- сигма-алгебра подмножеств , называемых (случайными) событиями;
- вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

Теорема Муавра-Лапласа - одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Она утверждает, что число успехов при многократном повторении одного и того же случайного эксперимента с двумя возможными исходами приблизительно имеет нормальное распределение. Она позволяет найти приближенное значение вероятности.

Если при каждом из независимых испытаний вероятность появления некоторого случайного события равна () и - число испытаний, в которых фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа.

Функция распределения в теории вероятностей - функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х - произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.

Математическое ожидание - среднее значение случайной величины (это распределение вероятностей случайной величины, рассматривается в теории вероятностей). В англоязычной литературе обозначается через , в русской - . В статистике часто используют обозначение .

Пусть задано вероятностное пространство и определенная на нем случайная величина . То есть, по определению, - измеримая функция. Тогда, если существует интеграл Лебега от по пространству , то он называется математическим ожиданием, или средним значением и обозначается .

Дисперсия случайной величины - мера разброса данной случайной величины, т. е. ее отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.

Пусть - случайная величина, определенная на некотором вероятностном пространстве. Тогда

где символ обозначает математическое ожидание.

В теории вероятностей два случайных события называются независимыми , если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют зависимыми , если значение одной из них влияет на вероятность значений другой.

Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Общий смысл закона больших чисел - совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Центральные предельные теоремы - класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек - правша.

b) Определите вероятность того, что человек - левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
17% от 120 = 0,17.120 = 20,4,
то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


Предположим, что мы бросаем игральную кость. Найдите
a) Исходы
b) Пространство исходов

Решение
a) Исходы: 1, 2, 3, 4, 5, 6.
b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения - это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.
b) Если событие E случиться непременно тогда P(E) = 1.
c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.