Инструменты

Какой метод исследования используют в селекции. Особенности селекции Методы селекции растений и их характеристика

Какой метод исследования используют в селекции. Особенности селекции Методы селекции растений и их характеристика

Лекция 1. Основы селекции. Основные направления биотехнологии

Селекция - о выведении новых и совершенствовании существующих сортов растений, пород животных и штаммов микроорганизмов с необходимыми человеку свойствами.

Сортом, породой и штаммом называют организмов (растений, животных и микроорганизмов), искусственно созданную человеком, которая характеризуется определенным генофондом, наследственно закрепленным морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.

В задачи селекции входит:

-повышение продуктивности сортов растений, пород животных и штаммов микроорганизмов;
- изучение разнообразия , животных и микроорганизмов, являющихся объектами селекционной работы;
- анализ закономерностей наследственной изменчивости при гибридизации и мутационном процессе;
- исследование роли среды в развитии признаков и свойств организмов;
- разработка систем искусственного отбора, способствующих усилению и закреплению полезных для человека признаков у организмов с различными типами размножения;
- создание устойчивых к заболеваниям и климатическим условиям сортов и пород; - получение сортов, пород и штаммов, пригодных для механизированного промышленного выращивания, разведения и уборки.

Основные методы селекции.

К методам селекции относят отбор, гибридизацию, мутагенез. Во второй половине XX в. стали применять принципиально новые методы экспериментальной биологии - клеточную и генную инженерию. Это направление легло в основу новой области биологии - биотехнологии.

Биотехнология - это промышленное использование биологических процессов и систем на основе получения высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с заданными свойствами.

В основе селекции как лежит разработанная Ч. Дарвином концепция искусственного отбора.

Различают два вида искусственного отбора: массовый и индивидуальный. При массовом отборе выделяют группу особей с желаемыми признаками. Потомство при таком отборе генетически неоднородно и поэтому дает расщепление признаков при размножении. В связи с этим отбор проводят в ряде поколений.

При индивидуальном отборе выделяют единичные особи с ценными качествами и отдельно выращивают их потомство. При последующем самоопылении у растений или близкородственных скрещиваниях у животных выводят чистые линии. Чистая линия - группа генетически однородных (гомозиготных) организмов, представляющих ценный исходный материал для селекции.

Отбор тем эффективнее, чем разнообразнее в наследственном отношении исходный материал. Одним из путей увеличения разнообразия материала для селекции является гибридизация. Она бывает двух видов: близкородственная, позволяющая перевести рецессивные гены в гомозиготное состояние; неродственная, помогающая объединить в одном организме гены, ответственные за ценные признаки разных особей.

При близкородственной гибридизации - инбридинге (англ. inbreeding, от in - в, внутри и breeding - разведение) - повышается степень гомозиготности организмов. Многократный инбридинг может привести к резкому ослаблению или вырождению потомков.

Неродственная гибридизация может быть внутривидовой - скрещивание особей разных сортов или пород одного вида и отдаленной - скрещивание особей разных видов и родов.

При гибридизации особей разных линий - аутбридинге (англ. out - вне и breeding - разведение) - удается получить гетерозиготные гибриды, превосходящие по своим качествам родительские формы. В этом случае проявляется эффект гетерозиса (греч. heteroiosis - изменение, превращение) - гибридной силы, основной причиной которого является отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии.

В естественных условиях частота мутирования невелика. Повышения количества мутаций можно достичь, действуя на организм различными мутагенами (радиация, ультрафиолетовые лучи, некоторые химические вещества). Мутации не носят направленного характера, но они поставляют материал, из которого селекционер отбирает организмы с интересующими его признаками.

Клеточная инженерия основана на культивировании отдельных клеток или тканей на искусственных питательных средах. Такие клеточные культуры используются для синтеза ценных веществ, производства незараженного посадочного материала, получения клеточных гибридов. Таким путем можно получать клетки, выделяющие необходимые человеку .

Генная инженерия - это целенаправленный перенос нужных генов от одного вида живых организмов в другой, часто очень далеких по своему происхождению. Это, как считают ученые, перспективное направление, которое в недалеком будущем позволит человеку целенаправленно улучшать наследственные качества организмов, получать в неограниченном количестве ценные биологически активные вещества. В то же время многие ученые высказывают опасения, что неконтролируемые работы в области генной инженерии могут привести к созданию организмов, опасных для человека.

Методы селекции растений

На необходимость использовать в селекции все видовое многообразие флоры нашей планеты указывал еще академик Николай Иванович Вавилов, выдающийся генетик и селекционер. Под его руководством были организованы научные экспедиции в разные регионы Земли для сбора образцов культурных растений, их диких предков и сородичей. В ходе экспедиций было собрано более 160 тыс. образцов разных видов и сортов растений.

Н. И. Вавилов выделил 8 центров происхождения культурных растений: 1) Восточноазиатский - родина сои, проса, гречихи, многих плодовых и овощных культур; 2) Южноазиатский тропический - родина риса, сахарного тростника, цитрусовых, многих овощных культур; 3) Юго-Западноазиатский - пшеница, рожь, бобовые культуры, лен, конопля, морковь, виноград и др.; 4) Переднеазиатский - родина мягкой пшеницы, ячменя, овса; 5) Среднеземноморский - родина капусты, свеклы, маслин; б) Абиссинский - родина твердой пшеницы, сорго, бананов, кофе; 7) Центральноамериканский - родина кукурузы, какао, тыквы, табака, хлопчатника; 8) Южноамериканский - родина картофеля, ананаса, хинного дерева.

Дальнейшие исследования ученых привели к установлению еще четырех центров; Австралийского, Африканского, Европейско-Сибирского и Североамериканского.

Закон гомологических рядов наследственной изменчивости.

Н. И. Вавилов сформулировал закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».

Н. И. Вавилов показал, что сходные признаки наблюдаются у разных видов данного семейства. Так, у пшеницы, ячменя, овса и кукурузы бывает белая, красная и черная окраска зерновок, существуют голые и пленчатые зерновки, встречаются колосья с длинными и короткими остями, безостые и с вздутиями вместо остей. В ходе последующих наблюдений было выяснено, что данный закон применим не только для растений, но распространяется на животных и микроорганизмы. Так, альбинизм встречается у всех классов позвоночных животных, короткопалость наблюдается у всех пород крупного рогатого скота, овец и собак.

Основные методы селекции растений.

Отбор и гибридизация являются основными и традиционными методами селекции растений. Применяя массовый или индивидуальный отбор, селекционер не создает ничего нового, а выделяет растения с полезными качествами, уже имеющиеся в популяции. Этим методом выведены многие сорта, в том числе так называемые сорта народной селекции, например знаменитый по своим качествам сорт яблони Антоновка.

Для создания сортов растений с запрограммированными качествами ведется специальная целенаправленная работа - подбирается исходный материал, проводится гибридизация с последующим отбором.

Используя метод гибридизации с последующим отбором, селекционеры получили ценные высокоурожайные сорта пшеницы, ржи, подсолнечника, овощных, плодовых и других культур.

В селекции растений широко применяется явление гетерозиса.

Сначала выводят ряд отличающихся друг от друга чистых линий, а затем производят межлинейное скрещивание.

Выяснив, в каких случаях эффект гетерозиса проявляется наиболее сильно, используют лишь эти линии для получения гибридных семян. Эта методика применяется для получения высоких урожаев кукурузы, огурцов, томатов и других культур.

Полиплоидию (кратное увеличение числа хромосом) использовали при создании сортов пшеницы, овса, картофеля, хлопчатника, плодовых, декоративных и других культур. Полиплоидные растения появлялись в популяциях случайно в результате естественных мутаций. В настоящее время применяют методы искусственного получения полиплоидов, воздействуя на растения разными мутагенами (в основном колхицином), разрушающими веретено деления клетки. Таким образом из диплоидных (2n) можно получить тетраплоидные (4n) формы.

Полиплоидные растения могут отличаться более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Использование метода полиплоидии позволило селекционерам получить ценные сорта сахарной свеклы, ржи, гречихи, фасоли и других культур.

Методы клеточной инженерии.

Селекционеры все шире начинают применять для получения новых сортов растений методы клеточной инженерии. В качестве примера можно привести работу по соматической гибридизации двух видов картофеля: культурного и дикого. Для гибридизации использовались протопласты (греч. protos - первый и греч. plastos - вылепленный, образованный) - клетки, полностью лишенные клеточной (оболочки) и имеющие только клеточную мембрану, которая ограничивает цитоплазму с различными органоидами.

Полученный соматический гибрид в сравнении с родительскими формами имел промежуточные характеристики по форме листа, величине клубней, но отличался большей мощностью куста и высотой стеблей, благодаря чему и был включен в дальнейшую практическую селекционную работу.

Метод вегетативного размножения культурой тканей широко применяется в селекции для быстрого размножения новых перспективных сортов растений.

Методы селекции животных

Основные методы селекции животных.

Методы селекции животных те же, что и методы селекции , но при их применении селекционерам приходится учитывать ряд особенностей, характерных для животных. Животные размножаются только половым путем, а количество особей в потомстве невелико. В связи с этим селекционеру важно определить наследственные признаки, которые непосредственно у производителей могут не проявляться. Поэтому значительную роль приобретает оценка животных по их родословной и по качеству их потомства. Часто большое значение имеет учет экстерьера, т. е. совокупности внешних признаков животного.

Анализ и обобщение опыта многих поколений по выведению новых пород животных позволил разработать методы и правила животных, сформировав ее как науку.

К основным направлениям селекции животных относят:

    сочетание высокой продуктивности с приспособленностью пород к условиям среды конкретных природных зон;

    - повышение роли качественных показателей продуктивности животных (жирномолочность, соотношение мяса, жира и костей у мясных животных, качество меха и шерсти и т. д.);

    - выведение пород интенсивного типа, снижающих экономические затраты;

    - повышение устойчивости к заболеваниям и др.

Гибридизация и индивидуальный отбор являются основными методами в селекции животных. Массовый отбор практически не применяется из-за небольшого количества особей в потомстве.

В селекции животных применяют два вида гибридизации: родственную (инбридинг) и неродственную (аутбридинг).

Родственное скрещивание между братьями и сестрами или между родителями и потомством ведет к гомозиготности и часто сопровождается ослаблением животных, уменьшению их устойчивости к неблагоприятным факторам среды, снижению плодовитости и т. д. Тем не менее инбридинг применяют в селекции животных с целью закрепления в породе характерных хозяйственно ценных признаков. Как правило, близкородственное скрещивание ведется в нескольких линиях внутри породы. Для устранения неблагоприятных последствий инбридинга используют неродственное скрещивание разных линий или даже разных пород. Это скрещивание сопровождается строгим отбором, что позволяет усиливать и поддерживать ценные качества породы.

Сочетание близкородственного скрещивания с неродственным широко применяется селекционерами для выведения новых пород животных. Так, известный селекционер М. Ф. Иванов, используя эту методику, создал высокопродуктивную породу свиней Белая степная украинская, породу овец Асканийская рамбулье и др.
Важным направлением в селекции животных является использование явления гетерозиса. Особенно широко это направление применяется в птицеводстве, например для получения бройлерных цыплят.

Метод полиплоидии в селекции животных практически не применяется. Исключение составляет выведение В. Л. Астауровым полиплоидных гибридов тутового шелкопряда, размножавшихся партеногенезом.
Вы уже знаете, что межвидовые гибриды лошади с ослом (мул), одногорбого и двугорбого верблюдов (нар), яка с крупным рогатым скотом и других с древних времен используются человеком. Эти гибриды обладают повышенной выносливостью по сравнению с родителями.

В некоторых случаях отдаленная гибридизация домашних животных с дикими предками дает плодовитое потомство и может быть использована в селекции. Так, в результате скрещивания тонкорунных овец мериносов с диким бараном архаром были получены тонкорунные архаромериносы, которые могут круглогодично пастись на высокогорных пастбищах. В результате скрещивания крупного рогатого скота с горбатым зебу получены ценные группы молочного скота (рис. 100).

В селекции животных, кроме описанных выше методов, применяют искусственное осеменение (введение полученной от высокоценных самцов спермы в половые пути самки с целью ее оплодотворения) и полиэмбрионию (искусственное образование нескольких зародышей из одной зиготы ценных пород с последующим их введением в матку беспородных животных). Эти методы позволяют в несколько раз увеличить скорость получения потомства от пенных производителей.

Методы клеточной инженерии.

Успехи клеточной инженерии могут открыть новые возможности в селекции животных. В 1997 г. научная общественность была взбудоражена сообщением, что в Англии были проведены успешные эксперименты по генетическому клонированию овцы. Для этого использовали ядра соматических клеток, полученных ш ткани молочной железы взрослой овцы. Из яйцеклетки удалялось Ядро и замещалось ядром соматической клетки. Образовавшуюся диплоидную зиготу стимулировали к дроблению и трансплантировали в овцу-реципиента, Через 148 дней приемная мама родила живую овечку, ее назвали Долли (рис. 101).

Открытие английских ученых показало, что соматические взрослого организма млекопитающих способны передавать полную информацию о всех признаках, характерных для взрослой особи. Следовательно, как считали ученые, открываются возможности воспроизведения многочисленных генетических копий выдающихся по продуктивности животных-рекордистов. Но в ходе дальнейших наблюдений за овечкой Долли было установлено, что она стала очень быстро стареть. К тому времени, когда Долли достигла размеров взрослой овцы, ее физиологическое состояние было такое же, как у старой особи. Это поставило под сомнение целесообразность клонирования животных.

Селекция микроорганизмов


1. Какие относят к микроорганизмам?
2. Какие способы размножения характерны для микроорганизмов?
3. Какова роль микроорганизмов в жизни человека?


Микроорганизмы и особенности их селекции.

К микроорганизмам относят всех прокариот, а из эукариот - простейших, микроскопические формы грибов и водорослей. Все они находят широкое применение в промышленности, сельском хозяйстве, и энергетике. Роль микроорганизмов в производстве , биологически активных соединений, кормовых добавок, бактериальных удобрений, в хлебопечении, виноделии, в производстве многих невозможно переоценить. В связи с этим постоянно ведется поиск новых высокопродуктивных штаммов микроорганизмов.

Селекция микроорганизмов, в отличие от селекции- и животных, имеет ряд особенностей. На небольшой площади в специальных аппаратах с питательной средой в считанные дни можно вырастить миллиарды особей.

Мутационный процесс в селекции микроорганизмов можно использовать более эффективно, чем у высших организмов, так как геном большинства микроорганизмов гаплоидный, что позволяет выявлять любые мутации уже в первом поколении.

Методы селекции микроорганизмов.

От методов высших эукариот они отличаются существенно. До недавнего времени основными методами получения высокопродуктивных штаммов микроорганизмов были искусственный мутагенез и последующий отбор групп генетически идентичных клеток - клонов. После выделения из дикого штамма микроорганизмов, обладающих полезными для человека свойствами, проводится отбор наиболее продуктивных штаммов среди них. Следующий этап, как правило, - применение искусственного мутагенеза, позволяющего усилить появление различных мутаций. В качестве мутагенов используются ионизирующие излучения, некоторые химические вещества, а также ультрафиолетовое излучение, обладающее хотя и низкой проникающей способностью, но достаточной для появления мутаций у микроорганизмов.

Вероятность возникновения у микроорганизмов та же, что и у всех других организмов, - примерно 1 мутация на 1 млн особей по каждому гену. Однако, учитывая то, что получить миллионное и миллиардное потомство у микроорганизмов нетрудно, вероятность выделения мутаций по данному гену достаточно высокая.
Для получения культуры микроорганизмов - мутантов с нужными качествами учеными-селекционерами разработаны специальные методы отбора. Отобранный клон подвергается многократному пересеву на питательную среду с контролем на образование требуемого продукта. Цель такого многократного клонирования - получение наиболее однородной популяции клеток. После получения продуктивных штаммов приступают к их размножению (рис. 102). Использование данной технологии позволило селекционерам получить штаммы, продуктивность которых в сотни и тысячи раз выше по сравнению с исходными штаммами микроорганизмов, взятыми из природы.


Генная инженерия.

Успехи, достигнутые молекулярной биологией и генетикой в изучении микроорганизмов, а также ограниченность возможностей традиционной селекции привели к созданию новых методов целенаправленного и контролируемого получения микроорганизмов с заданными свойствами.

В основе этих технологий лежат приемы генной инженерии. Они позволяют выделять необходимый ген и вводить его в новое генетическое окружение с целью создания организма с новыми, заранее предопределенными признаками.

Методы генной инженерии остаются еще очень сложными и дорогостоящими. Но уже сейчас с их помощью в промышленности получают такие важные медицинские препараты, как интерферон, гормоны роста, инсулин и др.

Селекция микроорганизмов является важнейшим направлением в биотехнологии.

Современное состояние и перспективы биотехнологии

Биотехнология в практической деятельности человека.

С древних времен известны отдельные биотехнологические процессы, используемые в сферах практической деятельности человека. К ним относятся хлебопечение, виноделие, пивоварение, приготовление кисломолочных продуктов и т. д. Наши предки не имели представления о сути процессов, лежащих в основе таких , но в течение тысячелетий, используя метод проб и ошибок, совершенствовали их. Биологическая сущность этих процессов была выявлена лишь в XIX в. благодаря научным открытиям Л. Пастера. Его работы послужили основой для развития производств с использованием разнообразных видов микроорганизмов. В первой половине XX в. стали применять микробиологические процессы для промышленного получения ацетона и бутанола, антибиотиков, , , кормового белка.

Успехи, достигнутые во второй половине XX в. в области цитологии, биохимии, молекулярной биологии и генетики, создали предпосылки для управления элементарными механизмами жизнедеятельности клетки, что способствовало бурному развитию биотехнологии. Благодаря высокопродуктивных штаммов микроорганизмов, эффективность биотехнологических процессов увеличилась в десятки и сотни раз.
Особенностью биотехнологии является то, что она сочетает в себе самые передовые достижения научно-технического прогресса с накопленным опытом прошлого, выражающимся в использовании природных источников для создания полезных для человека продуктов. Любой биотехнологический процесс включает ряд этапов:

подготовку объекта, его культивирование, выделение, очистку, модификацию и использование полученных продуктов. Многоэтапность и сложность процесса обусловливает необходимость привлечения к его осуществлению самых разных специалистов: генетиков и молекулярных биологов, цитологов, биохимиков, вирусологов, микробиологов и физиологов, инженеров-технологов, конструкторов биотехнологического оборудования и др.

Перспективы развития биотехнологии.

Дальнейшее развитие биотехнологии как отрасли сельскохозяйственного производства позволит решить многие важные проблемы человечества.

Острейшей проблемой в целом ряде слаборазвитых стран, стоящей перед человечеством, является нехватка продовольствия. В связи с этим усилия биотехнологов направлены на повышение эффективности растениеводства и животноводства.

Все большее распространение получает использование биогумуса - высокоэффективного естественного органического удобрения. Его получают в процессе переработки органических отходов дождевыми червями. В настоящее время для этой цели используется выведенный селекционерами США красный калифорнийский червь, который обеспечивает быстрый прирост биомассы и скорейшую утилизацию субстрата. Как показали исследования, биогумус значительно эффективнее других удобрений, существенно повышает плодородие и ее устойчивость к водной и ветровой эрозии, быстро восстанавливает плодородие низкоплодородных участков, улучшает экологическую обстановку. Промышленное получение биогумуса освоено во многих странах. В нашей стране промышленным разведением червей на основе использования органических отходов для производства биогумуса занимаются с 80-х годов XX столетия.

В последние годы повышается интерес к дождевым червям как к источнику животного белка для сбалансирования кормовых рационов , птиц, рыб, пушных зверей, а также белковой добавки, обладающей лечебно-профилактическими свойствами.

Все шире на промышленной основе применяется метод вегетативного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножить новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал (рис. 103).

Для повышения продуктивности животных нужен полноценный корм. Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов - бактерий, грибов, дрожжей, водорослей. Как показали промышленные испытания, богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет сэкономить 5-7 т зерна. Это имеет большое значение, поскольку 80% площадей сельскохозяйственных угодий в мире отводятся для производства корма скоту и птице.

Особенно широко успехи биотехнологии применяются в медицине. В настоящее время с помощью биосинтеза получают антибиотики, ферменты, аминокислоты, гормоны.

Например, гормоны раньше, как правило, получали из органов и тканей животных. Даже для получения небольшого количества лечебного препарата требовалось много исходного материала. Следовательно, трудно было получить необходимое количество препарата, и он был очень дорог.

Так, инсулин, гормон поджелудочной железы, - основное при сахарном диабете. Этот гормон надо вводить больным постоянно. Производство его из поджелудочной железы свиньи или крупного рогатого скота сложно и дорого. К тому же молекулы инсулина животных отличаются от молекул инсулина человека, что нередко вызывало аллергические реакции, особенно у детей, В настоящее время налажено биохимическое производство человеческого инсулина. Был получен ген, осуществляющий синтез инсулина. С помощью генной инженерии этот ген был введен в бактериальную клетку, которая в результате приобрела способность синтезировать инсулин человека.

Помимо получения лечебных средств, биотехнология позволяет проводить раннюю диагностику инфекционных заболеваний и злокачественных новообразований на основе применения препаратов антигенов, ДНК/РНК-проб.
С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней.

Угроза исчерпания традиционных источников энергии побудила человечество к поиску альтернативных путей ее получения. Биотехнология позволяет получать экологически чистые виды топлива путем биопереработки отходов промышленного и сельскохозяйственного производств. Например, созданы установки, в которых используются бактерии для переработки навоза и других органических отходов в биогаз. Из 1 т навоза получают до 500 м3 биогаза, что эквивалентно 350 л бензина, при этом качество навоза как удобрения улучшается.

Биотехнологические разработки находят все большее применение в добыче и переработке полезных ископаемых.
Несомненно, уже полученные и ожидаемые в будущем достижения в области биотехнологии будут использоваться практически во всех сферах человеческой деятельности. В то же время современные исследования требуют тщательного анализа всех возможных опасных последствий их проведения.

В настоящее время во многих странах, в том числе и в России, активно разрабатываются законы, направленные на то, чтобы ввести в правовые рамки работы по генной инженерии, по практическому использованию трансгенных организмов, а также исследований по клонированию человека. Важно, чтобы новые научные исследования и разработки в биотехнологии были направлены на благо человечества.

В отличие от селекции микроорганизмов селекция растений не оперирует миллионами и миллиардами особей и скорость их размножения измеряется не минутами и часами, а месяцами и годами. Однако по сравнению с селекцией животных, где число потомков единично, селекция растений находится в более выгодном положении. Кроме того, различаются и методические подходы к селекции само- и перекрестноопыляющихся растений, размножающихся вегетативным и половым путем, одно- и многолетних растений и т. д.

Основными методами селекции растений являются отбор и гибридизация. Для отбора необходимо наличие гетерогенности, т. е. различий, разнообразия в используемой группе особей. В противном случае отбор не имеет смысла, он будет неэффективен, Поэтому сначала осуществляется гибридизация, а затем после появления расщепления - отбор.

В случае, если селекционеру не хватает естественного разнообразия признаков, существующего генофонда, он использует искусственный мутагенез (получает генные, хромосомные или геномные мутации - полиплоиды), для манипуляций с отдельными генами - генетическую инженерию, а для ускорения селекционного процесса - клеточную. Однако классическими методами селекции были и остаются гибридизация и отбор.

Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор - это выделение целой группы особей, обладающих ценными признаками. Чаще он используется при работе с перекрестноопыляемыми растениями. В этом случае сорт не является гомозиготным. Это сорт-популяция, обладающий сложной гетерозиготностью по многим генам, что обеспечивает ему пластичность в сложных условиях среды и возможность проявления гетерозисного эффекта. Основным достоинством метода является то, что он позволяет сравнительно быстро и без больших затрат сил улучшать местные сорта, а недостатком - то, что не может контролироваться наследственная обусловленность отбираемых признаков, в силу чего часто неустойчивы результаты отбора.



Скрещивание, при котором родительские формы отличаются только по одной паре альтернативных признаков, называется моногибридным. Мендель до скрещивания разных форм гороха проводил их самоопыление. При скрещивании белоцветковых горохов с такими же белоцветковыми он получал во всех последующих поколениях только белоцветковые. Аналогичная ситуация наблюдалась и в случае пурпурноцветковых. При скрещивании же Горохов, имеющих пурпурные цветки, с белоцветковыми растениями все гибриды первого поколения Р 1 имели пурпурные цветки, но при их самоопылении среди гибридов второго поколения Р 2 кроме пурпурноцветковых растений (три части) появлялись и белоцветковые (одна часть) (Приложение 2).

Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным.

Проводя скрещивание гомозиготных родительских форм, имеющих желтые семена с гладкой поверхностью и зеленые семена с морщинистой, Мендель получил все растения с желтыми гладкими семенами и сделал вывод, что эти признаки являются доминантными. Во втором поколении после самоопыления гибридов Р 1 он наблюдал следующее расщепление: 315 желтых гладких, 101 желтых морщинистых, 108 зеленых гладких и 32 зеленых морщинистых. Используя другие гомозиготные родительские формы (желтые морщинистые и зеленые гладкие), Мендель получил аналогичные результаты и в первом, и во втором поколениях гибридов, т. е. расщепление во втором поколении в отношении 9: 3: 3: 1 (Приложение 3).

При индивидуальном отборе получают потомство от каждого растения отдельно при обязательном контроле наследования интересующих признаков. Он применяется у самоопылителей (пшеница, ячмень). Результатом индивидуального отбора является увеличение числа гомозигот. Это связано с тем, что при самоопылении гомозигот будут образовываться только гомозиготы, а половина потомков самоопыленных гетерозигот также будут гомозиготами. При индивидуальном отборе формируются чистые линии. Чистые линии - это группа особей, являющаяся потомками одной гомозиготной самоопыленной особи. Они обладают максимальной степенью гомозиготности. Однако абсолютно гомозиготных особей практически не бывает, так как непрерывно происходит мутационный процесс, нарушающий гомозиготность. Кроме того, даже самые строгие самоопылители иногда могут переопыляться перекрестно. Это повышает их приспособленность к условиям и выживаемость, поскольку народу с искусственным отбором на все органические формы действует и естественный.

Естественный отбор играет важную роль в селекции, так как при проведении искусственного отбора селекционер не может избежать того, чтобы селекционный материал не подвергался воздействию условий внешней среды. Более того, селекционерами часто привлекается и естественный отбор для отбора форм, наиболее приспособленных к условиям произрастания - влажности, температуры, устойчивости к естественным вредителям и болезням.

Так как одним из методов селекции является гибридизация, то большую роль играет выбор типа скрещиваний, т. е. система скрещиваний.

Системы скрещивания могут быть разделены на два основных типа: близкородственное (инбридинг - разведение в себе) и скрещивание между неродственными формами (аутбридинг - неродственное разведение). Если принудительное самоопыление приводит к гомозиготизации, то неродственные скрещивания - к гетерозиготизации потомков от этих скрещиваний.

Инбридинг, т.е. принудительное самоопыление перекрестноопыляющихся форм, кроме прогрессирующей с каждым поколением степени гомозиготности, приводит и к распадению, разложению исходной формы на ряд чистых линий. Такие чистые линии будут обладать пониженной жизнеспособностью, что, по-видимому, связано с переходом из генетического груза в гомозиготное состояние всех рецессивных мутаций, которые в. основном являются вредными.

Чистые линии, полученные в результате инбридинга, имеют различные свойства. У них различные признаки проявляются по-разному. Кроме того, различна и степень снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то, как правило, наблюдается эффект гетерозиса.

Гетерозис - явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей. Уже со второго поколения гетерозисный эффект угасает. Генетические основы гетерозиса не имеют однозначного толкования, но предполагается, что гетерозис связан с высоким уровнем гетерозиготности у гибридов чистых линий (межлинейные гибриды). Производство чистолинейного материала кукурузы с использованием так называемой цитоплазматической мужской стерильности было широко изучено и поставлено на промышленную основу в США. Ее использование исключало необходимость кастрировать цветки, удалять пыльники, так как мужские цветки растений, используемые в качестве женских, были стерильны.

Разные чистые линии обладают разной комбинационной способностью, т. е. дают неодинаковый уровень гетерозиса при скрещиваниях друг с другом. Поэтому, создав большое количество чистых линий, экспериментально определяют наилучшие комбинации скрещиваний, которые затем используются в производстве.

Отдаленная гибридизация - это скрещивание растений, относящихся к различным видам. Отдаленные гибриды, как правило, стерильны, что связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. В результате этого формируются стерильные гаметы. Для устранения данной причины в 1924 г. советским ученым Г. Д. Карпеченко было предложено использовать удвоение числа хромосом у отдаленных гибридов, которое приводит к образованию амфидиплоидов.

Таким методом кроме тритикале были получены многие ценные отдаленные гибриды, в частности многолетние пшенично-пырейные гибриды и др. У таких гибридов в клетках содержится полный диплоидный набор хромосом одного и другого родителя, поэтому хромосомы каждого родителя конъюгируют друг с другом и мейоз проходит нормально. Путем скрещивания с последующим удвоением числа хромосом терна и алычи удалось повторить эволюцию - произвести ресинтез вида сливы домашней.

Подобная гибридизация позволяет полностью совместить в одном виде не только хромосомы, но и свойства исходных видов. Например, тритикале сочетает многие качества пшеницы (высокие хлебопекарные качества) и ржи (высокое содержание незаменимой аминокислоты лизина, а также способность расти на бедных песчаных почвах).

Это один из примеров использования в селекции полиплоидии, точнее аллоплоидии. Еще более широко используется автополиплоидия. Например, в Беларуси возделывается тетраплоидная рожь, выведены сорта полиплоидных овощных культур, гречихи, сахарной свеклы. Все эти формы обладают более высокой урожайностью по сравнению с исходными формами, сахаристостью (свекла), содержанием витаминов и других питательных веществ. Многие культуры представляют собой естественные полиплоиды (пшеница, картофель и др.).

Выведение новых высокопродуктивных сортов растений играет важнейшую роль в повышении урожайности и обеспечении населения продовольствием. Во многих странах мира идет «зеленая революция» - резкая интенсификация сельскохозяйственного производства за счет выведения новых сортов растений интенсивного типа. В нашей стране также получены ценные сорта многих сельскохозяйственных культур.

При использовании новых методов селекции получены новые сорта растений. Так, академиком Н. В. Цициным путем отдаленной гибридизации пшеницы с пыреем и последующей полиплоидизации выведены многолетние пшеницы. Такими же методами получены перспективные сорта новой зерновой культуры тритикале. Для селекции вегетативно размножаемых растений используются соматические мутации (они использовались и И.В. Мичуриным, но он называл их почковыми вариациями). Широкое применение получили многие методы И. В. Мичурина после их генетического осмысления, хотя некоторые из них теоретически так и не разработаны. Большие успехи достигнуты в использовании результатов мутационной селекции в выведении новых сортов зерновых, хлопчатника и кормовых культур. Однако наибольший вклад во все возделываемые сорта внесли образцы коллекции мирового генофонда культурных растений, собранные Н. И. Вавиловым и его учениками.

Особенности селекции растений

С самого начала осознанной деятельности человек стремился отобрать для своего использования те растения, которые отвечали потребностями человека. Это касалось различных качеств растений. Для одних целей требовались определенные вкусовые качества, для других – определенный внешний вид растения, для третьих – устойчивость к неблагоприятным факторам внешней среды. Для того, чтобы получить растения с желаемыми качествами, возникла такая отрасль научно-практической деятельности, как селекция.

Определение 1

Селекция – это совокупность способов деятельности человека, направленных на создание новых и улучшения существующих разновидностей живых организмов (сортов растений, пород животных и штаммов микроорганизмов).

Особенность селекции растений заключается в том, что на протяжении года происходит вегетация и созревание плодов. Одно растение может дать большое количество семян. Это означает, что при организации опытной работы можно в течении года получить результаты в большом количестве, которые легко отобрать по фенотипу и обработать статистически.

Общая характеристика методов селекции растений

Как известно, основными методами селекции являются гибридизация и искусственный отбор . Эти методы применяются одновременно и взаимно дополняют друг друга.

Гибридизация дает возможность получить организмы с определенным генотипом, а искусственный отбор позволяет отобрать организмы с определенными внешними признаками (фенотипом) и продолжить работу по их закреплению.

Кроме того в селекции растений применяется метод прививок . Это позволяет искусственно объединить части разных растений для дальнейшей селекционной работы.

Эффективность селекционной работы зависит от разнообразия исходного материала. В селекции растений эту проблему удается решить. Используя различные формы гибридизации в сочетании с искусственным мутагенезом. Благодаря применению последнего и дальнейшему отбору среди мутантных форм были созданы сотни новых сортов пшеницы, ржи, ячменя и других культурных растений. Теперь познакомимся с методами селекции растений подробнее.

Гибридизация

В селекции растений используются различные формы гибридизации: внутривидовое (близкородственное и неродственное) и межвидовое скрещивание .

  • Близкородственным считается такое скрещивание , когда скрещиваемые особи имеют общих близких предков. Этот метод позволяет получить чистые линии растений с высоким процентом гомозиготности по большинству признаков.
  • Неродственное скрещивание проводится между растениями одного вида, но не имеющими общих предков. Оно позволяет сочетать в гибридах различные качества одного и того же вида.
  • Межвидовое скрещивание проводится между растениями, принадлежащими к разным видам.

Но довольно часто межвидовые гибриды стерильны. Причина заключается в количестве хромосом в кариотипе организмов. Но современная наука научилась преодолевать стерильность межвидовых гибридов. Например, И. В. Мичурин применял метод посредника. Чтобы преодолеть нескрещиваемость двух видов растений, он брал третье растение, скрещивал его с первым, а полученный гибрид скрещивал со вторым растением.

Полиплоидия

Определение 2

Полиплоидия – это явление увеличения количества хромосом в ядре клеток растения.

Достигается это различными способами. Если удвоение хромосом не сопровождается делением клетки, то мы можем получить диплоидную половую клетку, а затем – триплоидный гибрид. Еще есть способы получения явления полиплоидии – слияние соматических клеток или их ядер; образование гамет с нередуцированным числом хромосом вследствие нарушения мейоза.

Ученый-генетик Г. Д. Карпеченко применял методику воздействия на веретено деления различными мутагенами (химическими веществами, ионизирующим излучением, критическими температурами) с целью получения гамет с диплоидным набором хромосом и получением тетраплоидного гибрида.

Применяют и мутации, приводящие к кратному уменьшению числа хромосом. Это позволяет быстро получать формы растений, гомозиготные по большинству генов.

Метод прививок

Один из классических методов селекции растений заключается в искусственном объединении частей разных растений. На растущее растение (подвой) прививают часть (почку, побег) другого растения. Часть прививаемого растения называется привой. Прививка не является настоящей гибридизацией. Она приводит только лишь к ненаследуемым изменениям фенотипа объединенного растения, не изменяя генотип исходных форм. Но прививки способствуют сближению биохимических и физиологических процессов объединенных растений. Целью применения данного метода является усиление желаемых изменений фенотипа в результате сочетания свойств привоя и подвоя (например, морозоустойчивость северного подвоя и вкусовые качества южных сортов привоя или устойчивость подвоя против болезней). Кроме того в результате прививок могут проявляться новые качества, которые можно использовать в дальнейшей селекционной работе.

Некоторые сорта культурных растений при их размножении семенами быстро возвращаются к фенотипам предковых форм – «дичают». Поэтому единственным способом поддержания таких сортов является или вегетативное размножение, или их прививка к дичку.

Основные методы селекции растений

Классическими методами селœекции растений были и остаются гибридизация и отбор.
Размещено на реф.рф
Различают две основные формы искусственного отбора: массовый и индивидуальный .

1. Массовый отбор применяют при селœекции перекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

2. Индивидуальный отбор эффективен для самоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и принято называть чистой линией . Чистая линия - потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всœего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

3. Естественный отбор в селœекции играет определяющую роль. На любое растение в течение всœей его жизни действует целый комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определœенному температурному и водному режиму.

4. Инбридинг используют при самоопылении перекрестноопыляемых растений , к примеру, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса - жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии - на протяжении ряда лет, производят принудительное самоопыление - срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Далее скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.

Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии - тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).

ААbbCCdd x aaBBccDD

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности. Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.

АА 2Аа аа

5. Перекрестное опыление самоопылителœей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта͵ и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селœекционеру признаки разных сортов.

6. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют из себяестественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

7. Отдаленная гибридизация - скрещивание растений, относящихся к разным видам. Но отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.

В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n = 18 редечных хромосом) и капусту (2n = 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.

С помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными. Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др.
Размещено на реф.рф
Виды, у которых произошло объединœение разных геномов в одном организме, а

затем их кратное увеличение, называются аллополиплоидами.

8. Использование соматических мутаций применимо для селœекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Вместе с тем, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

9. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Многие методы селœекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. К примеру, в случае если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определœенных признаков при развитии гибрида. Для этого на ранних стадиях развития крайне важно воздействие определœенными внешними факторами. К примеру, в случае если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.

Основные методы селекции растений - понятие и виды. Классификация и особенности категории "Основные методы селекции растений" 2017, 2018.