Инструменты

Как берутся производные от сложных функций. Сложная функция

Как берутся производные от сложных функций. Сложная функция

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Приводится доказательство формулы производной сложной функции. Подробно рассмотрены случаи, когда сложная функция зависит от одной и двух переменных. Производится обобщение на случай произвольного числа переменных.

Здесь мы приводим вывод следующих формул для производной сложной функции.
Если , то
.
Если , то
.
Если , то
.

Производная сложной функции от одной переменной

Пусть функцию от переменной x можно представить как сложную функцию в следующем виде:
,
где и есть некоторые функции. Функция дифференцируема при некотором значении переменной x . Функция дифференцируема при значении переменной .
Тогда сложная (составная) функция дифференцируема в точке x и ее производная определяется по формуле:
(1) .

Формулу (1) также можно записать так:
;
.

Доказательство

Введем следующие обозначения.
;
.
Здесь есть функция от переменных и , есть функция от переменных и . Но мы будем опускать аргументы этих функций, чтобы не загромождать выкладки.

Поскольку функции и дифференцируемы в точках x и , соответственно, то в этих точках существуют производные этих функций, которые являются следующими пределами:
;
.

Рассмотрим следующую функцию:
.
При фиксированном значении переменной u , является функцией от . Очевидно, что
.
Тогда
.

Поскольку функция является дифференцируемой функцией в точке , то она непрерывна в этой точке. Поэтому
.
Тогда
.

Теперь находим производную.

.

Формула доказана.

Следствие

Если функцию от переменной x можно представить как сложную функцию от сложной функции
,
то ее производная определяется по формуле
.
Здесь , и есть некоторые дифференцируемые функции.

Чтобы доказать эту формулу, мы последовательно вычисляем производную по правилу дифференцирования сложной функции.
Рассмотрим сложную функцию
.
Ее производная
.
Рассмотрим исходную функцию
.
Ее производная
.

Производная сложной функции от двух переменных

Теперь пусть сложная функция зависит от нескольких переменных. Вначале рассмотрим случай сложной функции от двух переменных .

Пусть функцию , зависящую от переменной x , можно представить как сложную функцию от двух переменных в следующем виде:
,
где
и есть дифференцируемые функции при некотором значении переменной x ;
- функция от двух переменных, дифференцируемая в точке , . Тогда сложная функция определена в некоторой окрестности точки и имеет в производную, которая определяется по формуле:
(2) .

Доказательство

Поскольку функции и дифференцируемы в точке , то они определены в некоторой окрестности этой точки, непрерывны в точке и существуют их производные в точке , которые являются следующими пределами:
;
.
Здесь
;
.
В силу непрерывности этих функций в точке имеем:
;
.

Поскольку функция дифференцируема в точке , то она определена в некоторой окрестности этой точки, непрерывна в этой точке и ее приращение можно записать в следующем виде:
(3) .
Здесь

- приращение функции при приращении ее аргументов на величины и ;
;

- частные производные функции по переменным и .
При фиксированных значениях и , и есть функции от переменных и . Они стремятся к нулю при и :
;
.
Поскольку и , то
;
.

Приращение функции :

. :
.
Подставим (3):



.

Формула доказана.

Производная сложной функции от нескольких переменных

Приведенный выше вывод легко обобщается на случай, когда число переменных сложной функции больше двух.

Например, если f является функцией от трех переменных , то
,
где
, и есть дифференцируемые функции при некотором значении переменной x ;
- дифференцируемая функция, от трех переменных, в точке , , .
Тогда, из определения дифференцируемости функции , имеем:
(4)
.
Поскольку, в силу непрерывности,
; ; ,
то
;
;
.

Разделив (4) на и выполнив предельный переход , получим:
.

И, наконец, рассмотрим самый общий случай .
Пусть функцию от переменной x можно представить как сложную функцию от n переменных в следующем виде:
,
где
есть дифференцируемые функции при некотором значении переменной x ;
- дифференцируемая функция от n переменных в точке
, , ... , .
Тогда
.

В этой статье мы будем говорить о таком важном математическом понятии, как сложная функция, и учиться находить производную сложной функции.

Прежде чем учиться находить производную сложной функции, давайте разберемся с понятием сложной функции, что это такое, "с чем ее едят", и "как правильно ее готовить".

Рассмотрим произвольную функцию, например, такую:

Заметим, что аргумент , стоящий в правой и левой части уравнения функции - это одно и то же число, или выражение.

Вместо переменной мы можем поставить, например, такое выражение: . И тогда мы получим функцию

Назовем выражение промежуточным аргументом, а функцию - внешней функцией. Это не строгие математические понятия, но они помогают уяснить смысл понятия сложной функции.

Строгое определение понятия сложной функции звучит так:

Пусть функция определена на множестве и - множество значений этой функции. Пусть, множество (или его подмножество) является областью определения функции . Поставим в соответствие каждому из число . Тем самым на множестве будет задана функция . Ее называют композицией функций или сложной функцией.

В этом определении, если пользоваться нашей терминологией, - внешняя функция, - промежуточный аргумент.

Производная сложной функции находится по такому правилу:

Чтобы было более понятно, я люблю записывать это правило в виде такой схемы:

В этом выражении с помощью обозначена промежуточная функция.

Итак. Чтобы найти производную сложной функции, нужно

1. Определить, какая функция является внешней и найти по таблице производных соответствующую производную.

2. Определить промежуточный аргумент.

В этой процедуре наибольшие затруднения вызывает нахождение внешней функции. Для этого используется простой алгоритм:

а. Запишите уравнение функции.

б. Представьте, что вам нужно вычислить значение функции при каком-то значении х. Для этого вы подставляете это значение х в уравнение функции и производите арифметические действия. То действие, которое вы делаете последним и есть внешняя функция.

Например, в функции

Последнее действие - возведение в степень.

Найдем производную этой функции. Для этого запишем промежуточный аргумент

Приводятся примеры вычисления производных с применением формулы производной сложной функции.

Здесь мы приводим примеры вычисления производных от следующих функций:
; ; ; ; .

Если функцию можно представить как сложную функцию в следующем виде:
,
то ее производная определяется по формуле:
.
В приводимых ниже примерах, мы будем записывать эту формулу в следующем виде:
.
где .
Здесь нижние индексы или , расположенные под знаком производной, обозначают переменные, по которой выполняется дифференцирование.

Обычно, в таблицах производных , приводятся производные функций от переменной x . Однако x - это формальный параметр. Переменную x можно заменить любой другой переменной. Поэтому, при дифференцировании функции от переменной , мы просто меняем, в таблице производных, переменную x на переменную u .

Простые примеры

Пример 1

Найти производную сложной функции
.

Решение

Запишем заданную функцию в эквивалентном виде:
.
В таблице производных находим:
;
.

По формуле производной сложной функции имеем:
.
Здесь .

Ответ

Пример 2

Найти производную
.

Решение

Выносим постоянную 5 за знак производной и из таблицы производных находим:
.


.
Здесь .

Ответ

Пример 3

Найдите производную
.

Решение

Выносим постоянную -1 за знак производной и из таблицы производных находим:
;
Из таблицы производных находим:
.

Применяем формулу производной сложной функции:
.
Здесь .

Ответ

Более сложные примеры

В более сложных примерах мы применяем правило дифференцирования сложной функции несколько раз. При этом мы вычисляем производную с конца. То есть разбиваем функцию на составные части и находим производные самых простых частей, используя таблицу производных . Также мы применяем правила дифференцирования суммы , произведения и дроби . Затем делаем подстановки и применяем формулу производной сложной функции.

Пример 4

Найдите производную
.

Решение

Выделим самую простую часть формулы и найдем ее производную. .



.
Здесь мы использовали обозначение
.

Находим производную следующей части исходной функции, применяя полученные результаты. Применяем правило дифференцирования суммы:
.

Еще раз применяем правило дифференцирования сложной функции.

.
Здесь .

Ответ

Пример 5

Найдите производную функции
.

Решение

Выделим самую простую часть формулы и из таблицы производных найдем ее производную. .

Применяем правило дифференцирования сложной функции.
.
Здесь
.

Функции сложного вида не всегда подходят под определение сложной функции. Если имеется функция вида y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11 , то ее нельзя считать сложной в отличие от y = sin 2 x .

Данная статья покажет понятие сложной функции и ее выявление. Поработаем с формулами нахождения производной с примерами решений в заключении. Применение таблицы производных и правила дифференцирования заметно уменьшают время для нахождения производной.

Yandex.RTB R-A-339285-1

Основные определения

Определение 1

Сложной функцией считается такая функция, у которой аргумент также является функцией.

Обозначается это таким образом: f (g (x)) . Имеем, что функция g (x) считается аргументом f (g (x)) .

Определение 2

Если есть функция f и является функцией котангенса, тогда g (x) = ln x – это функция натурального логарифма. Получаем, что сложная функция f (g (x)) запишется как arctg(lnx). Или функция f , являющаяся функцией возведенной в 4 степень, где g (x) = x 2 + 2 x - 3 считается целой рациональной функцией, получаем, что f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно, что g (x) может быть сложной. Из примера y = sin 2 x + 1 x 3 - 5 видно, что значение g имеет кубический корень с дробью. Данное выражение разрешено обозначать как y = f (f 1 (f 2 (x))) . Откуда имеем, что f – это функция синуса, а f 1 - функция, располагаемая под квадратным корнем, f 2 (x) = 2 x + 1 x 3 - 5 - дробная рациональная функция.

Определение 3

Степень вложенности определено любым натуральным числом и записывается как y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))) .

Определение 4

Понятие композиция функции относится к количеству вложенных функций по условию задачи. Для решения используется формула нахождения производной сложной функции вида

(f (g (x))) " = f " (g (x)) · g " (x)

Примеры

Пример 1

Найти производную сложной функции вида y = (2 x + 1) 2 .

Решение

По условию видно, что f является функцией возведения в квадрат, а g (x) = 2 x + 1 считается линейной функцией.

Применим формулу производной для сложной функции и запишем:

f " (g (x)) = ((g (x)) 2) " = 2 · (g (x)) 2 - 1 = 2 · g (x) = 2 · (2 x + 1) ; g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 · x " + 0 = 2 · 1 · x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) · g " (x) = 2 · (2 x + 1) · 2 = 8 x + 4

Необходимо найти производную с упрощенным исходным видом функции. Получаем:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Отсюда имеем, что

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 · (x 2) " + 4 · (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Результаты совпали.

При решении задач такого вида важно понимать, где будет располагаться функция вида f и g (x) .

Пример 2

Следует найти производные сложных функций вида y = sin 2 x и y = sin x 2 .

Решение

Первая запись функции говорит о том, что f является функцией возведения в квадрат, а g (x) – функцией синуса. Тогда получим, что

y " = (sin 2 x) " = 2 · sin 2 - 1 x · (sin x) " = 2 · sin x · cos x

Вторая запись показывает, что f является функцией синуса, а g (x) = x 2 обозначаем степенную функцию. Отсюда следует, что произведение сложной функции запишем как

y " = (sin x 2) " = cos (x 2) · (x 2) " = cos (x 2) · 2 · x 2 - 1 = 2 · x · cos (x 2)

Формула для производной y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))) запишется как y " = f " (f 1 (f 2 (f 3 (. . . (f n (x)))))) · f 1 " (f 2 (f 3 (. . . (f n (x))))) · · f 2 " (f 3 (. . . (f n (x)))) · . . . · f n " (x)

Пример 3

Найти производную функции y = sin (ln 3 a r c t g (2 x)) .

Решение

Данный пример показывает сложность записи и определения расположения функций. Тогда y = f (f 1 (f 2 (f 3 (f 4 (x))))) обозначим, где f , f 1 , f 2 , f 3 , f 4 (x) является функцией синуса, функцией возведения в 3 степень, функцией с логарифмом и основанием е, функцией арктангенса и линейной.

Из формулы определения сложной функции имеем, что

y " = f " (f 1 (f 2 (f 3 (f 4 (x))))) · f 1 " (f 2 (f 3 (f 4 (x)))) · · f 2 " (f 3 (f 4 (x))) · f 3 " (f 4 (x)) · f 4 " (x)

Получаем, что следует найти

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) в качестве производной синуса по таблице производных, тогда f " (f 1 (f 2 (f 3 (f 4 (x))))) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) в качестве производной степенной функции, тогда f 1 " (f 2 (f 3 (f 4 (x)))) = 3 · ln 3 - 1 a r c t g (2 x) = 3 · ln 2 a r c t g (2 x) .
  3. f 2 " (f 3 (f 4 (x))) в качестве производной логарифмической, тогда f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 " (f 4 (x)) в качестве производной арктангенса, тогда f 3 " (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2 .
  5. При нахождении производной f 4 (x) = 2 x произвести вынесение 2 за знак производной с применением формулы производной степенной функции с показателем, который равняется 1 , тогда f 4 " (x) = (2 x) " = 2 · x " = 2 · 1 · x 1 - 1 = 2 .

Производим объединение промежуточных результатов и получаем, что

y " = f " (f 1 (f 2 (f 3 (f 4 (x))))) · f 1 " (f 2 (f 3 (f 4 (x)))) · · f 2 " (f 3 (f 4 (x))) · f 3 " (f 4 (x)) · f 4 " (x) = = cos (ln 3 a r c t g (2 x)) · 3 · ln 2 a r c t g (2 x) · 1 a r c t g (2 x) · 1 1 + 4 x 2 · 2 = = 6 · cos (ln 3 a r c t g (2 x)) · ln 2 a r c t g (2 x) a r c t g (2 x) · (1 + 4 x 2)

Разбор таких функций напоминает матрешки. Правила дифференцирования не всегда могут быть применены в явном виде при помощи таблицы производных. Зачастую нужно применять формулу нахождения производных сложных функций.

Существуют некоторые различия сложного вида от сложных функций. При явном умении это различать, нахождение производных будет давать особенно легко.

Пример 4

Необходимо рассмотреть на приведении подобного примера. Если имеется функция вида y = t g 2 x + 3 t g x + 1 , тогда ее можно рассмотреть в качестве сложной вида g (x) = t g x , f (g) = g 2 + 3 g + 1 . Очевидно, что необходимо применение формулы для сложной производной:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g 2 - 1 (x) + 3 · g " (x) + 0 = 2 g (x) + 3 · 1 · g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3 ; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) · g " (x) = (2 t g x + 3) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функция вида y = t g x 2 + 3 t g x + 1 не считается сложной, так как имеет сумму t g x 2 , 3 t g x и 1 . Однако, t g x 2 считается сложной функцией, то получаем степенную функцию вида g (x) = x 2 и f , являющуюся функцией тангенса. Для этого следует продифференцировать по сумме. Получаем, что

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 · (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Переходим к нахождению производной сложной функции (t g x 2) " :

f " (g (x)) = (t g (g (x))) " = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 · x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) · g " (x) = 2 x cos 2 (x 2)

Получаем, что y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функции сложного вида могут быть включены в состав сложных функций, причем сами сложные функции могут являться составными функции сложного вида.

Пример 5

Для примера рассмотрим сложную функцию вида y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1)

Данная функция может быть представлена в виде y = f (g (x)) , где значение f является функцией логарифма по основанию 3 , а g (x) считается суммой двух функций вида h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 и k (x) = ln 2 x · (x 2 + 1) . Очевидно, что y = f (h (x) + k (x)) .

Рассмотрим функцию h (x) . Это отношение l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 к m (x) = e x 2 + 3 3

Имеем, что l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) является суммой двух функций n (x) = x 2 + 7 и p (x) = 3 cos 3 (2 x + 1) , где p (x) = 3 · p 1 (p 2 (p 3 (x))) является сложной функцией с числовым коэффициентом 3 , а p 1 - функцией возведения в куб, p 2 функцией косинуса, p 3 (x) = 2 x + 1 - линейной функцией.

Получили, что m (x) = e x 2 + 3 3 = q (x) + r (x) является суммой двух функций q (x) = e x 2 и r (x) = 3 3 , где q (x) = q 1 (q 2 (x)) - сложная функция, q 1 - функция с экспонентой, q 2 (x) = x 2 - степенная функция.

Отсюда видно, что h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) + r (x)

При переходе к выражению вида k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x) видно, что функция представлена в виде сложной s (x) = ln 2 x = s 1 (s 2 (x)) с целой рациональной t (x) = x 2 + 1 , где s 1 является функцией возведения в квадрат, а s 2 (x) = ln x - логарифмической с основанием е.

Отсюда следует, что выражение примет вид k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x) .

Тогда получим, что

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1) = = f n (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) · t (x)

По структурам функции стало явно, как и какие формулы необходимо применять для упрощения выражения при его дифференцировании. Для ознакомления подобных задач и и для понятия их решения необходимо обратиться к пункту дифференцирования функции, то есть нахождения ее производной.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter