Инструменты

Изгиб. Архив рубрики: Задачи на изгиб Внешние силы вызывающие плоский изгиб

Изгиб. Архив рубрики: Задачи на изгиб Внешние силы вызывающие плоский изгиб

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым , если в любом поперечном сечении балки возникает только один изгибающий момент.

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным . Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией .

Внутренние силовые факторы при изгибе балки.

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

Дифференциальные зависимости Журавского.

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией , параллельной базе эпюре, а эпюра М - наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок , равный значению этой силы, а на эпюре М -точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок , равный значению этого момента, (рис. 26, б).

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М - по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение M max или M min (рис. г).

Нормальные напряжения при изгибе.

Определяются по формуле:

Моментом сопротивления сечения изгибу называется величина:

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе.

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

где S отс - статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе.

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

2. При проектном расчете подбор сечения бруса производится из условия:

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

Перемещения при изгибе.

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие - на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y - перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

Угол поворота сечения - угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина .

Метод Мора.

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов М f от приложенной нагрузки и М 1 - от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина.

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

где A f – площадь эпюры изгибающего момента М f от заданной нагрузки; y c – ордината эпюры от единичной нагрузки под центром тяжести эпюры М f ; EI x – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (A f *y c) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра М f должна быть разбита на простые фигуры(применяется так называемое "расслоение эпюры"), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.

При построении эпюры изгибающих моментов М у строителей при­нято: ординаты, выражающие в определенном масштабе положительные значения изгибающих моментов, откладывать со стороны растянутых волокон, т.е. - вниз , а отрицательные - вверх от оси балки. Поэтому говорят, что строители строят эпюры на растянутых волокнах. У механиков положительные значения и поперечной силы и изгибающего момента откладываются вверх. Механики строят эпюры на сжатых волокнах.

Главные напряжения при изгибе. Эквивалентные напряжения .

В общем случае прямого изгиба в поперечных сечениях балки возникают нормальные и касательные напряжения . Эти напряжения изменяются как по длине, так и по высоте балки.

Таким образом, в случае изгиба имеет место плоское напряженное состояние.

Рассмотрим схему, где балка нагружена силой Р

Наибольшие нормальные напряжения возникают в крайних, наиболее удаленных от нейтральной линии точках, а касательные напряжения в них отсутствуют. Таким образом, для крайних волокон ненулевыми главными напряжениями являются нормальные напряжения в поперечном сечении.

На уровне нейтральной линии в поперечном сечении балки возникают наибольшие касательные напряжения, а нормальные напряжения равны нулю . значит, в волокнах нейтрального слоя главные напряжения определяются значениями касательных напряжений.

В данной расчетной схеме верхние волокна балки будут растянуты, а нижние – сжаты. Для определения главных напряжений используем известное выражение:

Полный анализ напряженного состояния представим на рисунке.

Анализ напряженного состояния при изгибе

Наибольшее главное напряжение σ 1 находится на верхних крайних волокнах и равно нулю на нижних крайних волокнах. Главное напряжение σ 3 имеет наибольшее по абсолютной величине значение на нижних волокнах.

Траектория главных напряжений зависит от типа нагрузки и способа закрепления балки.


При решении задач достаточно отдельно проверить нормальные и отдельно касательные напряжения. Однако иногда наиболее напряженными оказываются промежуточные волокна, в которых имеются и нормальные, и касательные напряжения. Это происходит в сечениях, где одновременно и изгибающий момент, и поперечная сила достигают больших значений — это может быть в заделке консольной балки, на опоре балки с консолью, в сечениях под сосредоточенной силой или в сечениях с резко меняющейся шириной. К примеру, в двутавровом сечении наиболее опасны места примыкания стенки к полке — там имеются значительные и нормальные, и касательные напряжения.

Материал находится в условиях плоского напряженного состояния и требуется проверка по эквивалентным напряжениям.

Условия прочности балок из пластичных материалов по третьей (теории наибольших касательных напряжений) и четвертой (теория энергии формоизменений) теориям прочности.

Как правило,в прокатных балках эквивалентные напряжения не превышают нормальных напряжений в крайних волокнах и специальной проверки не требуется. Другое дело - составные металлические балки, у которых стенка тоньше , чем у прокатных профилей при той же высоте. Чаще применяются сварные составные балки из стальных листов. Расчет подобных балок на прочность: а) подбор сечения — высоты, толщины, ширины и толщины поясов балки; б) проверка прочности по нормальным и касательным напряжениям; в) проверка прочности по эквивалентным напряжениям.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Рассмотрим сечение стандартного профиля в виде двутавра и определим касательные напряжения , действующие параллельно поперечной силе:

Рассчитаем статические моменты простых фигур:

Эту величину можно вычислить и иначе , используя то обстоятельство, что для двутаврового и корытного сечения в дан статический момент половины сечения. Для этого необходимо вычесть из известной величины статического момента величину статического момента до линии А 1 В 1:

Касательные напряжения в месте примыкания полки к стенке изменяются скачкообразно , так как резко изменяется толщина стенки от t ст до b .

Эпюры касательных напряжений в стенках корытного, полого прямоугольного и других сечений имеют тот же вид, что и в случае двутаврового сечения. В формулу входит статический момент заштрихованной части сечения относительно оси Х, а в знаменателе ширина сечения (нетто) в том слое, где определяется касательное напряжение.

Определим касательные напряжения для круглого сечения.

Так как у контура сечения касательные напряжения должны быть направлены по касательной к контуру, то в точках А и В у концов какой-либо параллельной диаметру хорде АВ, касательные напряжения направлены перпендикулярно радиусам ОА и ОВ. Следовательно, направления касательных напряжений в точках А , В, К сходятся в некоторой точке Н на оси Y.

Статический момент отсеченной части:

То есть касательные напряжения меняются по параболическому закону и будут максимальны на уровне нейтральной линии, когда у 0 =0

Формула для определения касательных напряжений (формула )

Рассмотрим прямоугольное сечение

На расстоянии у 0 от центральной оси проведем сечение 1-1 и определим касательные напряжения. Статический момент площади отсеченной части:

Следует иметь в виду, что принципиально безразлично , брать статический момент площади заштрихованной или остальной части поперечного сечения. Оба статических момента равны и противоположны по знаку , поэтому их сумма, которая представляет статический момент площади всего сечения относительно нейтральной линии, а именно центральной оси х, будет равна нулю.

Момент инерции прямоугольного сечения:

Тогда касательные напряжения по формуле

Переменная у 0 входит в формулу во второй степени, т.е. касательные напряжения в прямоугольном сечении изменяются по закону квадратной параболы.

Касательные напряжения достигнут максимума на уровне нейтральной линии, т.е. когда у 0 =0:

, где А -площадь всего сечения.

Условие прочности по касательным напряжениям имеет вид:

, где S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение,Q -поперечная сила, τ — касательное напряжение, [τ] — допускаемое касательное напряжение.

Данное условие прочности позволяет производить три вида расчета (три типа задач при расчете на прочность):

1. Проверочный расчет или проверка прочности по касательным напряжениям:

2. Подбор ширины сечения (для прямоугольного сечения):

3.Определение допускаемой поперечной силы (для прямоугольного сечения):

Для определения касательных напряжений рассмотрим балку, нагруженную силами.

Задача по определению напряжений всегда статически неопределима и требует привлечения геометрических и физических уравнений. Однако можно принять такие гипотезы о характере распределения напряжений , что задача станет статически определимой.

Двумя бесконечно близкими поперечными сечениями 1-1 и 2-2 выделим элемент dz, изобразим его в крупном масштабе, затем проведем продольное сечение 3-3.

В сечениях 1–1 и 2–2 возникают нормальные σ 1 , σ 2 напряжения , которые определяются по известным формулам:

где М — изгибающий момент в поперечном сечении, dМ — приращение изгибающего момента на длине dz

Поперечная сила в сечениях 1–1 и 2–2 направлена вдоль главной центральной оси Y и, очевидно, представляет сумму вертикальных составляющих внутренних касательных напряжений, распределенных по сечению . В сопротивлении материалов обычно принимается допущение о равномерном их распределении по ширине сечения.

Для определения величины касательных напряжений в какой-либо точке поперечного сечения, расположенного на расстоянии у 0 от нейтральной оси Х, проведем через эту точку плоскость, параллельную нейтральному слою (3-3), и вынесем отсеченный элемент. Будем определять напряжение, действующее по площадке АВСД.

Спроецируем все силы на ось Z

Равнодействующая внутренних продольных сил по правой грани будет равна:

где А 0 – площадь фасадной грани, S x 0 – статический момент отсеченной части относительно оси Х . Аналогично на левой грани:

Обе равнодействующие направлены навстречу друг другу, поскольку элемент находится в сжатой зоне балки. Их разность уравновешивается касательными силами на нижней грани 3-3.

Предположим, что касательные напряжения τ распределены по ширине поперечного сечения балки b равномерно . Такое допущение тем вероятнее, чем меньше ширина по сравнению с высотой сечения. Тогда равнодействующая касательных сил dT равна значению напряжений, умноженному на площадь грани:

Составим теперь уравнение равновесия Σz=0:

или, откуда

Вспомним дифференциальные зависимости , согласно которым Тогда получаем формулу:

Эта формула получила название формулы . Эта формула получена в 1855 г. Здесь S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение, Q -поперечная сила в сечении.

— условие прочности при изгибе, где

- максимальный момент (по модулю) с эпюры изгибающих моментов; - осевой момент сопротивления сечения,геометрическая характеристика; - допускаемое напряжение (σ adm)

- максимальное нормальное напряжение.

Если расчет ведется по методу предельных состояний ,то в расчет вместо допускаемого напряжения вводится расчетное сопротивление материала R.

Типы расчетов на прочность при изгибе

1. Проверочный расчет или проверка прочности по нормальным напряжениям

2. Проектный расчет или подбор сечения

3. Определение допускаемой нагрузки (определение грузоподъемност и или эксплуатационной несущей способности)

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту , а поперечная сила оказывается равной нулю . Этот случай изгиба носит название чистого изгиба . Рассмотрим средний участок балки, подвергающийся чистому изгибу.

В нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков , в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза ) . Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1) Выполняется гипотеза плоских сечений. 2) Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия. 3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми. 4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости. 5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков. 6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.Изгибающий момент представляет собой результирующий момент внутренних нормальных сил , возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: (1), где y — плечо элементарной силы относительно оси х

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения.

Выделим на среднем участке балки и рассмотрим участок длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

Сечения, ограничивающие участок dz, параллельны друг другу до деформации , а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол . Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:, где -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину . Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине,тогда:

Сократим на и приведем подобные члены, тогда получим:(2) Эта формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя.

Теперь перейдем к напряжениям , т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем при осевом растяжении-сжатии:, тогда с учетом формулы (2) имеем (3), т.е. нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим (3) в уравнение (1) и вынесем за знак интеграла дробь как постоянную величину, тогда имеем. Но выражение - это осевой момент инерции сечения относительно оси х - I х . Его размерность см 4 , м 4

Тогда ,откуда (4) ,где - это кривизна изогнутой оси балки, а - жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения: (5)

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение (6) называют осевым моментом сопротивления сечения . Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: (7)

Условие прочности при изгибе: (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения ,т.к. имеется поперечная сила . Касательные напряжения усложняют картину деформирования , они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений . Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5) . Таким образом,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии.

При изгибе отсутствует продольная сила, поэтому можно записать Подставим сюда формулу нормальных напряжений (3) и получим Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х , и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие (отсутствие момента внутренних сил относительно силовой линии) даст или с учетом (3) . По тем же соображениям (см. выше) . В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у равен нулю , значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр прямом изгибе взаимно перпендикулярны.

Установив положение нейтральной линии , несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М<0

В инженерных и инженерно-строительных науках (сопротивление материалов, строительная механика, теория прочности), под балкой понимается элемент несущей конструкции, воспринимающаяся преимущественно на изгибные нагрузки, и имеющая различные формы поперечного сечения.

Конечно, в реальном строительстве, балочные конструкции подвержены и другим видам нагружения (ветровой нагрузке, вибрации, знакопеременному нагружения), однако основной расчет горизонтальных, многоопертых и жесткозакрепленных балок проводится на действие или поперечной, или приведенной к ней эквивалентной нагрузке.

Расчетная схема рассматривает балку как жесткозакрепленный стержень или как стержень, установленный на двух опорах. При наличии 3 и более опор, стержневая система считается статически неопределимой и расчет на прогиб как всей конструкции, так и ее отдельных элементов, значительно усложняется.

При этом, основное нагружение рассматривается как сумма сил, действующая в направлении перпендикулярному сечению. Целью расчета на прогиб является определение максимального прогиба (деформации) который не должен превышать предельных значений и характеризует жесткость как отдельного элемента (так и всей связанной с ней строительной конструкции.

Основные положения расчетных методик


Современные строительные методики расчета стержневых (балочных) конструкций на прочность и жесткость, дают возможность уже на стадии проектирования определить значение прогиба и сделать заключение о возможности эксплуатации строительной конструкции.

Расчет на жесткость позволяет решить вопрос о наибольших деформациях, которые могут возникнуть в строительной конструкции при комплексном действии различного вида нагрузок.

Современные методы расчета, проводимые с использованием специализированных расчетов на электронно-вычислительных машинах, или выполняемые при помощи калькулятора, позволяют определить жесткость и прочность объекта исследований.

Несмотря на формализацию расчетных методик, которые предусматривают использование эмпирических формул, а действие реальных нагрузок учитывается введением поправочных коэффициентов (коэффициенты запаса прочности), комплексный расчет достаточно полно и адекватно оценивает эксплуатационную надежность возведенного сооружения или изготовленного элемента какой-либо машины.

Несмотря на отдельность прочности расчетов и определения жесткости конструкции, обе методики взаимосвязаны, а понятия «жесткость» и «прочность» неразделимы. Однако, в деталях машин, основное разрушение объекта происходит из-за потери прочности, в то время как объекты строительной механики часто непригодны к дальнейшей эксплуатации из значительных пластических деформаций, которые свидетельствуют о низкой жесткости элементов конструкции или объекта в целом.

Сегодня, в дисциплинах «Сопротивление материалов», «Строительная механика» и «Детали машин», приняты два метода расчета на прочность и жесткость:

  1. Упрощенный (формальный), при проведении которого в расчетах применяются укрупненные коэффициенты.
  2. Уточненный , где используются не только коэффициенты запаса прочности, но и производится расчет контракции по предельным состояниям.

Алгоритм расчета на жесткость

Формула определения прочности балки на изгиб

  • M – максимальный момент, возникающий в балке (находится по эпюре моментов);
  • W n , min – момент сопротивления сечения (находится по таблице или вычисляется для данного профиля), у сечения обычно 2-а момента сопротивления сечения, в расчетах используется Wx, если нагрузка перпендикулярна оси х-х профиля или Wy, если нагрузка перпендикулярна оси y-y;
  • R y – расчетное сопротивление стали при изгибе (задается в соответствии с выбором стали);
  • γ c – коэффициент условий работы (данный коэффициент можно найти в таблице 1 СП 16.13330.2011;

Алгоритм расчета на жесткость (определение величины прогиба) достаточно формализован и не представляет труда для овладения.

Для того, чтобы определить прогиб балки, необходимо в нижеприведенной последовательности выполнить следующие действия:

  1. Составить расчетную схему объекта исследований.
  2. Определить размерные характеристики балки и расчетных сечений.
  3. Рассчитать максимальную нагрузку , действующую на балку, определив точку ее приложения.
  4. При необходимости , балка (в расчетной схеме она заменятся невесомым стержнем) дополнительно проверяется на прочность по максимальному изгибающему моменту.
  5. Определяется значение максимального прогиба , который характеризует жесткость балки.

Для составления расчетной схемы балки, необходимо знать:

  1. Геометрические размеры балки , включая пролет между опорами, а при наличии консолей – их длину.
  2. Геометрическую форму и размеры поперечного сечения.
  3. Характер нагрузки и точки их приложения.
  4. Материал балки и его физико-механические характеристики.

При простейшем расчете двухопорных балок, одна опора считается жесткой, а вторая закреплена шарнирно.

Определение моментов инерции и сопротивления сечения

К геометрическим характеристикам, которые необходимы при выполнении расчетов на прочность и жесткость, относится момент инерции сечения (J) и момент сопротивления (W). Для вычисления их величины существуют специальные расчётные формулы.

Формула момента сопротивления сечения

При определении моментов инерции и сопротивления, необходимо обращать внимание на ориентацию сечения в плоскости разреза. С увеличением момента инерции жесткость балки увеличивается, а прогиб уменьшается. Это легко проверить на практике, пытаясь согнуть доску в обычном, «лежачем» положении и поставив ее на ребро.

Определение максимальной нагрузки и прогиба

Формула определения прогиба

  • q – равномерно-распределенная нагрузка, выраженная в кг/м (Н/м);
  • l – длина балки в метрах;
  • E – модуль упругости (для стали равен 200-210 ГПа);
  • I – момент инерции сечения.

При определении максимальной нагрузки, необходимо учитывать довольно значительное число факторов, действующих как постоянно (статические нагрузки), так и периодически (ветровая, вибрационная ударная нагрузка).

В одноэтажном доме, на деревянный брус потолочного перекрытия будут действовать постоянные весовые усилия от собственного веса, расположенных на втором этаже простенков, мебели, находящихся обитателей и так далее.

Особенности расчета на прогиб

Конечно, расчет элементов перекрытий на прогиб проводится для всех случаев и обязателен при наличии значительного уровня внешних нагрузок.

Сегодня, все вычисления величины прогиба достаточно формализованы и все сложные реальные нагружения сведены к следующим простым расчетным схемам:

  1. Стержень , опирающийся на неподвижную и шарнирно закрепленную опоры, воспринимающий сосредоточенную нагрузку (случай рассмотрен выше).
  2. Стержень , опирающийся на неподвижную и шарнирно закрепленную на который действует распределенное нагружение.
  3. Различные варианты нагружения жестко закрепощённого консольного стержня.
  4. Действие на расчетный объект сложной нагрузки – распределенной, сосредоточенной, изгибающего момента.

При этом, методика и алгоритм расчета не зависят от материала изготовления, прочностные характеристики которого учтены различными значениями модуля упругости.

Наиболее распространенной ошибкой обычно является недоучет единиц измерения. К примеру, силовые факторы в расчетные формулы подставляются в килограммах, а величина модуля упругости принимается по системе «СИ», где нет понятия «килограмм силы», а все усилия измеряются в ньютонах или килоньютонах.

Разновидности балок, применяемых в строительстве

Современная стройиндустрия при возведении сооружений промышленного и жилого назначения, практикует использование стержневых систем различного сечения, формы и длины, изготовленных из различных материалов.

Наиболее большее распространение получили стальные и деревянные изделия. В зависимости от используемого материала, определение значения прогиба имеет свои нюансы, связанные со структурой и однородностью материала.

Деревянные


Современное малоэтажное строительство индивидуальных домов и загородных коттеджей практикует широкое использование лаг, изготовленных из хвойных и твердых пород древесины.

В основном, деревянные изделия, работающие на изгиб, применяются для обустройства напольных и потолочных перекрытий. Именно эти элементы конструкции испытают наибольшее действие поперечных нагрузок, взывающих наибольший прогиб.

Стрела прогиба деревянной лаги зависит:

  1. От материала (породы древесины), который использовался при изготовлении балки.
  2. От геометрических характеристик и формы попечённого сечения расчетного объекта.
  3. От совокупного действия различного вида нагрузок.

Критерий допустимости прогиба балки учитывает два фактора:

  1. Соответствие реального прогиба предельно допустимым значениям.
  2. Возможность эксплуатации конструкции при наличии расчетного прогиба.

Стальные


Имеют более сложное сечение, которое может быть составным, выполненным из нескольких видов металлического проката. При расчете металлоконструкций, помимо определения жесткости самого объекта его элементов, часто появляется необходимость определения прочностных характеристик соединений.

Обычно, соединение отдельных элементов стальной металлоконструкции проводится:

  1. Путем применения резьбовых (шпилечных, болтовых и винтовых) соединений.
  2. Соединением заклепками.

Изгибом называется деформация , связанная с искривлением оси бруса (или изменением его кривизны). Прямой брус, воспринимающий в основном изгибающую нагрузку, называется балкой. В общем случае при изгибе в поперечных сечениях балки имеют место два внутренних силовых фактора: перерезывающая сила Q и изгибающий момент. Если в поперечных сечениях балки действует только один силовой фактор, а , то изгиб называется чистым. Если в поперечном сечении балки действуют изгибающий момент и поперечная сила, то изгиб называется поперечным.

Изгибающий моменти поперечная сила Q определяются методом сечений. В произвольном поперечном сечении бруса величина Q численно равна алгебраической сумме проекций на вертикальную ось всех внешних (активных и реактивных) сил приложенных к отсеченной части; изгибающий моментв произвольном поперечном сечении бруса численно равен алгебраической сумме моментоЕ всех внешних сил и пар сил, расположенных по одну сторону от сечения.

Для системы координат, ноказанно) на рис. 2.25, изгибающий момент от нагрузок, расположенных в плоскости хОу, действует относительно оси г, а перерезывающая сила – по направлению оси у. Поэтому обозначим перерезывающую силу , изгибающий момент

Если поперечная нагрузка действует так, что ее плоскость совпадает с плоскостью, содержащей одну из главных центральных осей инерции сечений, то изгиб называетсяпрямым.

Для изгиба характерны два вида перемещений:

  • искривление продольной оси бруса Ох, соответствующее перемещениям точек оси бруса в направлении Оу,
  • поворот в пространстве одного поперечного сечения относительно другого, т.е. поворот сечения относительно оси г в плоскости XОу.

Рис. 2.25

Дифференциальные и интегральные зависимости при изгибе

Пусть на балку действует непрерывная распределенная нагрузка q(x) (рис. 2.26, а). Двумя поперечными сечениями т–т и п–п выделим участок балки длиной dx. Полагаем, что на этом участке д(х) = const ввиду малости длины участка.

Внутренние силовые факторыи, действующие в сечении п–п, получают некоторое приращение и будут равны. Рассмотрим равновесие элемента (рис. 2.26, б):

а) , отсюда

Рис. 2.26

Членможно опустить, так как он имеет второй порядок малости по сравнению с остальными. Тогда

Подставляя равенство (2.69) в выражение (2.68), получаем

Выражения (2.68)-(2.70) называются дифференциальными зависимостями при изгибе балки. Они справедливы только для балок с первоначально прямолинейной продольной осью.

Правило знаков для и носит условный характер:

Графическииизображаются в виде эпюр. Положительные значения откладываются вверх от оси бруса, отрицательные – вниз.

Рис. 2.27

Нормальные напряжения при чистом изгибе балки

Рассмотрим модель чистого изгиба (рис. 2.28, а, б). После окончания процесса нагружения продольная ось балки X искривится, а ее поперечные сечения повернутся относительно своего первоначального положения на уголг/О. Для выяснения закона распределения нормальных напряжений по поперечному сечению балки примем следующие допущения:

  • при чистом прямом изгибе сира ведлива гипотеза плоских сечений: поперечные сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к его оси во время и после деформации;
  • волокна бруса при его деформации не надавливают друг на друга;
  • материал работает в пределах упругости.

В результате деформации изгиба ось х искривится и сечениеповернется относительно условно защемленного сеченияна угол. Определим продольную деформацию произвольного волокна АВ, расположенного на расстоянии у от продольной оси (см. рис. 2.28, а).

Пусть – радиус кривизны оси бруса (см.рис. 2.28, б). Абсолютное удлинение волокна АВ равно. Относительное удлинение этого волокна

Так как согласно допущению волокна друг на друга не надавливают, то они находятся в состоянии одноосного растяжения или сжатия. Используя закон Гука, получим зависимость изменения напряжений по поперечному сечению батки:

Величинапостоянна для данного сечения, поэтому изменяется по высоте сечения в зависимости от координа-

Рис. 2.28

Рис. 2.29

ты у. При изгибе часть волокон бруса растягивается, часть – сжимается. Границей между областями растяжения и сжатия является слой волокон, который лишь искривляется, не изменяя своей длины. Этот слой называется нейтральным.

Напряжения σ* в нейтральном слое должны равняться нулю, соответственно Этот результат следует из выражения (2.71) при. Рассмотрим выражения дляПоскольку при чистом изгибе продольная сила равна нулю, то запишем:(рис. 2.29), а так как", то , т.е.. Отсюда следует, что ось Οζ является центральной. Эта ось в поперечном сечении называется нейтральной линией. Для чистого прямого изгиба Тогда

Поскольку , то

Отсюда следует, что оси Οζ и Оу сечения являются не только центральными, но и главными осями инерции. Это предположение делалось выше при определении понятия "прямой изгиб". Подставив в выражение для изгибающего моментазначениеиз выражения (2.71), получим

Или , (2.72)

где– момент инерции относительно главной центральной оси сечения Οζ.

Подставляя равенство (2.72) в выражение (2.71), получаем

Выражение (2.73) определяет закон изменения напряженияпо сечению. Видно, чтоизменяется не по координате 2 (т.е. по ширине сечения нормальные напряжения постоянны), а по высоте сечения в зависимости от координаты у

Рис. 2. 30

(рис. 2.30). Значения возникают в волокнах, наиболее удаленных от нейтральной линии, т.е. при . Тогда . Обозначив , получим

где – момент сопротивления сечения изгибу.

Воспользовавшись формулами для главных центральных моментов инерции основных геометрических форм сечений, получим следующие выражения для:

Прямоугольное сечение: , где – сторона, параллельная оси г; h – высота прямоугольника. Так как ось г проходит по середине высоты прямоугольника, то

Тогда момент сопротивления прямоугольника