Энергосберегающие

Системы вентиляции и кондиционирования воздуха бжд. Промышленное кондиционирование, воздухообмен

Системы вентиляции и кондиционирования воздуха бжд. Промышленное кондиционирование, воздухообмен

Вентиляция -- организованный воздухообмен, в процессе которого запыленный, загрязненный газами или сильно нагретый воздух удаляется из помещения и взамен него подается свежий, чистый.

Система вентиляции -- это комплекс архитектурных, конструктивных и специальных инженерных решений, который при правильной эксплуатации обеспечивает необходимый воздухообмен в помещении.

Вентиляционная система -- это инженерная конструкция, которая имеет определенное функциональное назначение (приток, вытяжка, местный отсос и т. п.) и является элементом системы вентиляции.

Системы вентиляции создают условия для обеспечения технологического процесса или поддержания в помещении заданных климатических условий для высокопродуктивной работы человека. В первом случае система вентиляции будет называться технологической, а во втором -- комфортной.

Технологическая вентиляция обеспечивает в помещении заданный состав воздуха, его температуру, влажность, подвижность в соответствии с требованиями технологического процесса. Особенно высоки эти требования в цехах таких производств, как радиотехническая, электровакуумная, текстильная, химико-фармацевтическая промышленность, хранилища сельскохозяйственной продукции, архивы, помещения, в которых хранятся исторические ценности.

Комфортная вентиляция должна обеспечить благоприятные санитарно гигиенические условия для работающих в этих помещениях людей.

Требуемые метеорологические условия в помещениях должны быть, обеспечены в рабочей зоне помещения или на рабочих местах. За рабочую зону помещения принимают пространство высотой 2м от уровня пола или площадки, на которой находится рабочее место. Расчетные параметры воздуха -- температуру, относительную влажность и подвижность воздуха--для различных цехов и производственных помещений в зависимости от категории работы человека и условий технологического процесса.

Задачей вентиляции помещений является поддержание в них благоприятного для человека состояния воздушной среды в соответствии с нормируемыми ее характеристиками.

Химический состав воздуха помещений зависит от длительности пребывания в них людей, работы технологического газовыделяющего оборудования. Предельно допустимое содержание (концентрация) различных вредных газов и паров (ПДК) установленное исследованиями, приводится в ГОСТ 12.1 005 76.

В зависимости от выбранного способа, определяющем принцип действия систем и их конструктивное оформление, paзличают вентиляцию: общеобменную, местную и локализующую.

При общеобменной вентиляции происходит разбавление вредностей во всем объеме помещения за счет притока свежего воздуха, который, проходя по помещению, ассимилирует выделяющиеся вредности и затем выбрасывается наружу.

Количество подаваемого вентиляционного воздуха (воздухообмен) рассчитывается на разбавление выделяющихся вредностей до допустимых на рабочих местах концентраций.

Основным показателем для выбора этого способа является расположение мест нахождения людей и возможных источников выделения вредностей по всей или по значительной площади помещений. Недостаток способа -- неодинаковость санитарно-гигиенических условий воздушной среды в разных местах помещений, а также возможность их недопустимого ухудшения вблизи источников выделения вредностей или мест вытяжки воздуха из помещений.

Последнее необходимо учитывать и по возможности устранять соответствующим расположением и назначением необходимого числа устройств для раздачи и вытяжки вентиляционного воздуха.

В жилых и общественных зданиях устраивается общеобменная вентиляция. В помещениях, где выделение теплоты и влаги обусловливает естественный подъем воздуха, вытяжку обычно осуществляют из верхней зоны. вентиляция пожароопасность материал радиационный

Приточный воздух целесообразно подавать так, чтобы он доходил до людей возможно более чистым и свежим, не нарушая комфортных условий.

Классификация вентиляционных систем по назначению

Вентиляционные системы можно по назначению разделить на приточные и вытяжные. Приточные системы служат для подачи в вентилируемые помещения чистого воздуха взамен загрязнённого. При этом в необходимых случаях приточный воздух может подвергаться обработке, например, очистке, нагреванию и увлажнению.

Система приточной вентиляции состоит из воздухоприёмного устройства, приточной камеры, сети воздуховодов и устройств подачи воздуха в помещение.

Рис.

  • 1. Устройство забора.
  • 2. Устройство очистки.
  • 3. Система воздуховодов.
  • 4. Вентилятор.
  • 5. Устройство подачи на раб. место.

К устройствам местной приточной вентиляции относятся воздушные души, воздушные завесы и воздушное отопление.

Воздушный душ - устройство в системе местной приточной вентиляции, обеспечивающее подачу сосредоточенного потока воздуха. Подаваемый воздух создаёт в зоне непосредственного воздействия этого потока на человека условия воздушной среды, соответствующие гигиеническим требованиям.

Воздушные и воздушно-тепловые завесы устраивают для того, чтобы холодный воздух в зимнее время не проникал через открытые двери в общественные здания через открытые двери в общественные здания и через ворота в производственные помещения промышленных сооружений. Воздушная завеса - это плоская струя воздуха, которая подаётся с боков ворот или дверей под некоторым углом навстречу наружному холодному воздуху. Для воздушно-тепловой завесы подаваемый вентилятором воздух дополнительно подогревается.

В системах воздушного отопления воздух нагревается в калориферах до определённой температуры, а затем подаётся в помещение. В калориферах воздух нагревается горячей или перегретой водой, паром или горячими газами.

Вытяжная вентиляция служит для удаления из помещения загрязненного или нагретого отработанного воздуха. К вытяжным вентиляционным системам промышленной вентиляции относят системы аспирации или пневматического транспортирования сыпучих материалов, а также отходов производства - пыли, стружек, опилок и пр. Эти материалы перемещают по трубам и каналам потоком воздуха.


Рис.

  • 1. Устройство для удаления воздуха.
  • 2. Вентилятор.
  • 3. Система воздуховодов.
  • 4. Пыле- и газоулавливающие устройства.
  • 5. Фильтры.
  • 6. Устройство для выброса воздуха.

В системах аспирации применяют специальные вентиляторы, очистные устройства, пылеприёмники и другое оборудование. Системы аспирации широко применяют на деревообрабатывающих предприятиях для удаления стружек и опилок от станков, на элеваторах для погрузки зерна в транспортные средства, на цементных заводах при погрузке цемента, в литейных цехах для транспортирования песка и горелой земли.

В общем случае в помещении предусматриваются как приточные, так и вытяжные системы. Их производительность должна быть сбалансирована с учетом возможности поступления воздуха в смежные помещения или из смежных помещений. В помещениях может быть также предусмотрена только вытяжная или только приточная система. В этом случае воздух поступает в данное помещение снаружи или из смежных помещений через специальные проемы или удаляется из данного помещения наружу, или перетекает в смежные помещения.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4

Тема

«РАСЧЁТ ПОТРЕБНОГО ВОЗДУХООБМЕНА ПРИ ОБЩЕОБМЕННОЙ ВЕНТИЛЯЦИИ»

Цель: Ознакомиться на практике с методикой расчёта потребной кратности воздухообмена для проектирования общеобменной вентиляции в производственных помещениях.

    Общие сведения

В целях поддержания в цехах оптимальных условий микроклимата и предотвращения чрезвычайных ситуаций, (массовые отравления, взрывы), для удаления вредных газов, пыли и влаги устанавливается вентиляция. Вентиляцией называется организованный регулируемый воздухообмен, обеспечивающий удаление из помещения загрязнённого воздуха и подачу на его место свежего. В зависимости от способа движения воздуха вентиляция может быть естественная и механическая.

Естественная – вентиляция, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давлений снаружи и внутри здания.

Механическая – вентиляция, с помощью которой воздух подаётся в производственное помещение или удаляется из него по системе вентиляционных каналов за счёт работы вентилятора. Она позволяет поддерживать в рабочих помещениях постоянную температуру и влажность.

В зависимости от способа организации воздухообмена вентиляция подразделяется на местную, общеобменную, смешанную и аварийную.

Общеобменная вентиляция предназначена для удаления избыточной теплоты, влаги и вредных веществ во всём объёме рабочей зоны помещений. Она создаёт условия воздушной среды, одинаковые по всему объёму вентилируемого помещения, и применяется в том случае, если вредные выделения поступают непосредственно в воздух помещения, рабочие места не фиксированы, а располагаются по всему помещению.

В зависимости от требований производства и санитарно - гигиенических правил приточный воздух можно нагреть, охладить, увлажнить, а удаляемый из помещений воздух очистить от пыли и газа. Обычно объём воздуха L пр, подаваемого в помещение при общеобменной вентиляции, равен объёму воздуха L в, удаляемого из помещения.

Существенное влияние на параметры воздушной среды в рабочей зоне оказывают правильная организация и устройство приточных и вытяжных систем.

  1. Методика расчёта потребного воздухообмена при общеобменной вентиляции.

При общеобменной вентиляции потребный воздухообмен определяется из условий отвода избыточного тепла, удаления избыточной влаги, удаления ядовитых и вредных газов, а также пыли.

При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции принимают в зависимости от объёма помещения, приходящегося на одного работающего. Отсутствием вредных выделений считается такое их количеств в технологическом оборудовании, при одновременном выделении которых в воздухе помещения концентрация вредных веществ не превысит предельно допустимую. При этом предельно допустимые концентрации вредных и ядовитых веществ в воздухе рабочей зоны должны соответствовать ГОСТ 12.1.005 – 91.

Если в производственном помещении объём воздуха на каждого работающего составляет V пр i < 20м 3 , то расход воздуха L i должен быть не менее 30м 3 на каждого работающего. Если V пр i = 20 … 40м 3 , то L i ≥ 20м 3 / ч. В помещениях с V пр i > 40м 3 и при наличии естественной вентиляции воздухообмен не рассчитывают. При отсутствии естественной вентиляции расход воздуха на одного работающего должен быть не менее 60м 3 / ч.

Для качественной оценки эффективности воздухообмена принимают понятие кратности воздухообмена К – отношение объёма воздуха, поступающего в помещение в единицу времени L (м 3 /ч), к свободному объёму вентилируемого помещения V с (м 3). При правильной организации вентиляции кратность воздухообмена должна быть значительно больше единицы.

Необходимый воздухообмен для всего производственного помещения в целом:

L пп = n · L i ; (1)

Где n – число работающих в данном помещении.

В данной практической работе рассчитаем потребную кратность воздухообмена для случаев отвода избыточного тепла и удаления вредных газов.

а. Необходимый воздухообмен для отвода избыточного тепла .

Где L 1 – воздухообмен, необходимый для отвода избыточного тепла (м 2 / ч);

Q – избыточное количество тепла, (кДж / ч);

с – теплоёмкость воздуха, (Дж / (кг · 0 С), с = 1кДж/кг·К;

ρ – плотность воздуха, (кг / м 3);

(3)

Где t пр – температура приточного воздуха, (0 С); Она зависит от географического расположения завода. Для Москвы – принимается равной 22,3 0 С.

T ух – температура воздуха, уходящего из помещения, принимается равной температуре воздуха в рабочей зоне, (0 С), которая принимается на 3 – 5 0 С выше расчётной температуры наружного воздуха.

Избыточное количество тепла, подлежащего удалению из производственного помещения, определяется по тепловому балансу:

Q = Σ Q пр – Σ Q расх; (4)

Где Σ Q пр – тепло, поступающее в помещение от различных источников, (кДж / ч);

Σ Q расх – тепло, расходуемое стенами здания и уходящие с нагретыми материалами, (кДж / ч), рассчитывается согласно методики, изложенной в СниП 2.04.05 – 86.

Так как перепад температур воздуха внутри здания и снаружи в тёплый период года небольшой (3 – 5), то при расчёте воздухообмена по избытку тепловыделений, потери тепла через конструкции зданий можно не учитывать. А несколько увеличившийся воздухообмен благоприятно повлияет на микроклимат рабочего помещения в наиболее жаркие дни.

Основными источниками тепловыделения в производственных помещениях являются:

    Горячие поверхности (печи, сушильные камеры, системы отопления и т.д.);

    Остывшие массы (металл, масла, вода и т.д.);

    Оборудование с приводом от электродвигателей;

    Солнечная радиация;

    Персонал работающий в помещении.

Для упрощения расчётов в данной практической работе избыточное количество тепла определяется только с учётом тепловыделений электрооборудования и работающего персонала.

Таким образом: Q = ΣQ пр; (5)

ΣQ пр = Q э.о. + Q р; (6)

Где Q э.о. – тепло, выделяемое при работе оборудования с приводом от электродвигателей, (кДж / ч);

Q р – тепло, выделяемое работающим персоналом, (кДж / ч).

(7)

Где β – коэффициент, учитывающий загрузку оборудования, одновременность его работы, режим работы. Принимается равным 0,25 … 0,35;

N – общая установочная мощность электродвигателей, (кВт);

Q р – определяется по формуле: Q р = n · q р (8)

300 кДж / ч – при лёгкой работе;

400 кДж /ч – при работе ср. тяжести;

500 кДж / ч – при тяжёлой работе.

Где n – число работающего персонала, (чел);

q р – тепло, выделяемое одним

человеком, (кДж / ч);

б. Необходимый воздухообмен для поддержания концентрации вредных веществ в заданных пределах.

При работе вентиляции, когда существует равенство масс приточного и удаляемого воздуха можно принять, что вредные вещества не накапливаются в производственном помещении. Следовательно, концентрация вредных веществ в удаляемом из помещения воздухе q уд не должна превышать ПДК.

Расход приточного воздуха, м 3 ч, необходимый для поддержания концентрации вредных веществ в заданных пределах рассчитывается по формуле:
,(9)

где G – количество выделяемых вредных веществ, мг/ч, q уд – концентрация вредных веществ в удаляемом воздухе, которая не должна превышать предельно допустимую, мг/м 3 , т.е. q уд q пдк ; q пр – концентрация вредных веществ в приточном воздухе, мг/м 3 . Концентрация вредных веществ в приточном воздухе не должна превышать 30% ПДК, т.е. q пр  0,3q уд.

в. Определение потребной кратности воздухообмена.

Величина, показывающая во сколько раз потребный воздухообмен больше объёма воздуха, находящегося в производственном помещении (определяющая кратность смены воздуха), называется потребной кратностью воздухообмена. Она вычисляется по формуле:

К = L / V с; (10)

Где К – потребная кратность воздухообмена;

L – потребный воздухообмен, (м 3 /ч). Определяется сравнением величин L 1 и L 2 и выбором наибольшей из них;

V с – внутренний свободный объём помещения, (м 3). Он определяется, как разность между объёмом помещения и объёмом, занимаемым производственным оборудованием. Если свободный объём помещения определить невозможно, то его допускается принимать условно равным 80% геометрического объёма помещения.

Кратность воздухообмена производственных помещений обычно составляет от 1 до 10 (большие значения для помещений со значительными выделениями теплоты, вредных веществ или небольших по объему). Для цехов литейных, кузнечно-прессовых, термических, сварочных, химических производств кратность воздухообмена составляет 2-10, для цехов машиностроения и приборостроения – 1-3.

В обычных условиях человек выделяет около 18 литров углекислого газа в час. Избыток, как и недостаток, углекислого газа вредно воздействует на состояние человека. Допустимые значения концентрации углекислого газа в помещении составляют: 0,03-0,07% – для пребывания детей и больных; 0,07-0,1% – для продолжительного пребывания людей.

При проектировании систем вентиляции и кондиционирования воздуха предусматривают технические решения, обеспечивающие перечисленные выше нормируемые параметры воздушной среды. Конкретные требования к воздушной среде для объектов различного назначения излагаются в строительных нормах и правилах. Перечень основных стандартов в области вентиляции и кондиционирования воздуха, действующих в Украине, приведен в Приложении 1.

1.2. Классификация систем вентиляции.

Нормативной классификации СКВ не существует, но на практике и в технической литературе сложились определенные терминология и классификация, которой мы будем придерживаться.

    В зависимости от способа, вызывающего движение воздуха, системы вентиляции подразделяются на естественные (гравитационные) и исксственные (с механическим побуждением).

    По назначению – на приточные, вытяжные и смешанные.

    По зоне обслуживания – на общеобменные и местные.

    По конструктивному исполнению – на канальные и бесканальные.

Воздухообмен при естественной вентиляции (аэрация) происходит за счет разности плотностей внутреннего и наружного воздуха или разности температур атмосферного воздуха и воздуха в помещении.

В помещениях с большими тепловыделениями воздух всегда теплее наружного. Более тяжелый наружный воздух, поступая в помещение, вытесняет из него менее плотный воздух, Вледствие этого в помещении возникает циркуляция воздуха, аналогичная той, которую искусствено создают вентилятором.

В системах с естественной вентиляцией , в которых перемещение воздуха создается за счет разности давлений воздушного столба, минимальный перепад по высоте между уровнем забора воздуха из помещения и его выбросом через дефлектор должен быть не менее 3 м. При этом рекомендуемая длина горизонтальных участков не должна превышать 3 м, а скорость воздуха в воздуховодах – 1 м/с.

Аэрацию применяют в цехах, если концентрация пыли и вредных газов в приточном воздухе не превышает 30 % от предельно допустимой в рабочей зоне. Если требуется предварительная обработка приточного воздуха, аэрацию не используют.

Иногда для организации потока воздуха в помещении используется явление ветрового давления , которое заключается в том, что на стороне здания, обращенной к ветру, образуется повышенное давление, а на противоположной – разрежение.

Системы с естественной вентиляцией просты, не требуют сложного дорогостоящего оборудования и эксплуатационных затрат. Однако зависимость эффективности этих систем от внешних факторов (температуры наружного воздуха, направления и скорости ветра), а также небольшое давление не позволяют решать с их помощью все сложные и многообразные задачи в области вентиляции. Поэтому применяют системы с механическим побуждением.

В системах с механическим побуждением используется оборудование (вентиляторы), позволяющие перемещать воздух на нужные расстояния. При необходимости воздух подвергают различным видам обработки: очистке, нагреванию, охлаждению, увлажнению, осушке. Вентиляцию с механическим побуждением можно разделить на местную и общеобменную.

Местной вентиляцией называется такая, которая обеспечивает подачу воздуха на определенные места (местная приточная вентиляция) и загрязненный воздух удаляют только от мест образования вредных выделений (местная вытяжная вентиляция).

Местная вентиляция обеспечивает воздухообмен только в рабочей зоне, а общеобменная – во всем помещении.

К местной вентиляции относятся воздушные души (сосредоточенный приток воздуха с повышенной скоростью). Они должны подавать чистый воздух к постоянным рабочим местам, снижать в их зоне температуру воздуха и обдувать рабочих, подвергающихся тепловому облучению.

К местной приточной вентиляции относятся воздушные оазисы – участки помещений, отгороженные от остального помещения перегородками высотой 2-2,5 м, в которые нагнетается воздух с пониженной температурой. Местную приточную вентиляцию применяют также в виде воздушных завес (у ворот, входов, печей и пр.), которые создают как бы воздушные перегородки или изменяют направление потоков воздуха. Местная вентиляция требует меньших затрат, чем общеобменная. В производственных помещениях при наличии вредных выделений (газов, влаги, тепла и пр.) обычно применяют смешанную систему вентиляции: общую – для устранения вредных выделений во всем объеме помещения и местную (местные отсосы и приток) – для обслуживания рабочих мест.

Местную вытяжную вентиляцию применяют, когда места вредных выделений в помещении локализованы и нельзя допускать их распространения по всему помещению. Местная вытяжная вентиляция в производственных помещениях обеспечивает улавливание и отвод вредных выделений: газов, дыма, пыли и тепла. Для удаления вредных выделений применяют местные отсосы (укрытия в виде шкафов, зонты, ботовые отсосы и пр.).

Вредные выделения необходимо удалять от места образования в направлении их естественного движения: горячие газы и пары следует удалять вверх, а холодные тяжелые газы и пыль – вниз. При устройстве местной вытяжной вентиляции для улавливания пылевыделений удаляемый из помещения воздух перед выбросом в атмосферу должен быть очищен с помощью фильтров. Если местной вентиляцией не удается обеспечить санитарно-гигиенические или технологические требования, применяют общеобменные системы вентиляции .

Общеобменные вытяжные системы равномерно удаляют воздух из всего помещения, а общеобменные приточные – подают воздух и распределяют по всему объему вентилируемого помещения. При одновременной работе приточной и вытяжной вентиляции они должны быть сбалансированы по расходу воздуха.

Если воздух, подаваемый в помещение, образуется путем смешивания наружного воздуха и воздуха, забираемого из помещения, то такая система называется приточно-рециркуляционной .

Системы вентиляции, подающие и удаляющие воздух по каналам или воздуховодам, называют канальными , а не имеющие каналов – бесканальными .

Система, предназначенная для удаления пыли, которая образуется при технологических процессах, называется аспирационной .

Аспирационные системы подразделяются на:

    индивидуальные, когда каждое рабочее место имеет отдельную вытяжную установку;

    центральные , когда одна установка обслуживает группу рабочих мест.

Для перемещения легковесных материалов (древесная стружка, отходы текстильных материалов, хлопок и др.) создают вентиляционные системы, называемые пневмотранспортом.

1.2.1. Естественная вентиляция

Воздухообмен в производственных помещениях осуществляется с помощью естественной вентиляции или механических вентиляционных установок.

Организованный воздухообмен при естественной вентиляции (аэрации) обеспечивается вследствие разности температур (плотности) воздуха, а также в результате действия ветрового напора.

Под действием тепла, выделяемого машинами и механизмами, нагретым углем (при сушке), людьми, а также нагретыми поверхностями повышается температура воздуха в производственных помкщениях и становится выше температуры наружного воздуха.

Нагретый воздух в производственных помещениях поднимается кверху и через отверстия в перекрытиях (крыше) выходит наружу.

Холодный наружный воздух поступает в помещение через открытые проемы в нижней или средних зонах. В результате создается естественный воздухообмен, называемый тепловым напором.

Значение теплового напора определяется по формуле

Н m = h (ρ н – ρ в) g , Н/м 2 , (1)

где h высота между центрами вытяжных и приточных отверстий, м; ρ н и ρ в – плотность наружного и внутреннего водуха, кг/м 3 ; g – ускорение свободного падения, равное 9,81 м/с 2 .

Естественная вентиляция может быть неорганизованной и организованной. При неорганизованной вентиляции неизвестные объемы воздуха поступают и удаляются из помещения, а сам воздухообмен зависит от случайных факторов (направления и силы ветра, температуры внешнего и внутреннего воздуха). Неорганизованная естественная вентиляция включает инфильтрацию просачивание воздуха через неплотности в окнах, дверях, перекрытиях и проветривание, которое осуществляется при открывании окон и форточек.

Организованная естественная вентиляция называется аэрацией. Для аэрации в стенах здания делают отверстия для поступления внешнего воздуха, а на крыше или в верхней части здания устанавливают специальные устройства (фонари) для удаления отработанного воздуха. Для регулирования поступления и удаления воздуха предусмотрены перекрытия на необходимую величину аэрационных отверстий и фонарей. Это особенно важно в холодное время года.

1.2.2. Искусственная вентиляция.

Искусственная (механическая) вентиляция, в отличие от естественной, дает возможность очищать воздух перед его выбросом в атмосферу, улавливать вредные вещества непосредственно возле мест их образования, обрабатывать притекаемый воздух (очищать, подогревать, увлажнять), более целенаправленно подавать воздух в рабочую зону. Кроме того, механическая вентиляция дает возможность организовать забор воздуха в наиболее чистой зоне территории предприятия и даже за ее пределами.

Обще-обменная искусственная вентиляция .

Обще-обменная вентиляция обеспечивает создание необходимого микроклимата и чистоты воздушной среды во всем объеме рабочего помещения. Она применяется для удаления избыточного тепла при отсутствии токсичных выделений, а также в случаях, если характер технологического процесса и особенности производственного оборудования исключают возможность использования местной вытяжной вентиляции.

Различают четыре основных схемы организации воздухообмена при обще-обменной вентиляции: сверху вниз, сверху вверх, снизу вверх, снизу вниз (рис. 1).

Рис. 1 Схема организации воздухообмена при общеобменной вентиляции

Схемы сверху вниз (рис.) и сверху вверх (рис.16 ) целесообразно применять в случае, если приточный воздух в холодный период года имеет температуру ниже температуры в помещении. Приточный воздух, прежде чем достичь рабочей зоны, нагревается за счет воздуха в помещении. Другие две схемы (рис. и ) рекомендуется использовать в тех случаях, когда приточный воздух в холодный период года нагревается, и его температура выше температуры внутреннего воздуха в помещении.

Если в производственных помещениях выделяются газы и пары с плотностью, которая превышает плотность воздуха (например, пары кислот, бензина, керосина), то обще-обменная вентиляция должна обеспечить до 60% воздуха из нижней зоны помещения и 40% из верхней.

Если плотность газов меньше плотности воздуха, то удаление загрязненного воздуха осуществляется в верхней зоне.

Приточная вентиляция. Схема приточной механической вентиляции, (рис.2.) включает: воздухосборник 1; фильтр для очищения воздуха 2; воздухонагреватель (калорифер) 3; вентилятор 5; сеть воздуховодов 4 и приточные патрубки с насадками 6. Если нет, необходимости подогревать приточный воздух, то его пропускают непосредственно в производственные помещения через обводный канал 7.

Рис. 2 – Схема приточной вентиляции

Воздухозаборные устройства необходимо располагать в местах, где воздух не загрязняется пылью и газами. Они должны находиться не ниже 2 м от уровня земли, а от выбросных каналов вытяжной вентиляции по вертикали ниже 6 м и по горизонтали не более 25 м.

Приточный воздух подается в помещения, как правило, рассеянным потоком для чего используются специальные насадки.

Вытяжная и приточно-вытяжная вентиляция. Вытяжная вентиляция (рис.3) состоит из очистительного устройства 1, вентилятора 2, центрального 3 и отсасывающих воздуховодов 4.

Рис. 3 Схема вытяжной вентиляции

Воздух после очищения необходимо выбрасывать на высоте не менее чем 1 м над гребнем крыши. Запрещается делать выкидные отверстия непосредственно в окнах.

В условиях промышленного производства наиболее распространена приточно-вытяжная система вентиляции с общим притоком воздуха в рабочую зону и местной вытяжкой вредных веществ непосредственно из мест образования.

В производственных помещениях, где выделяется значительное количество вредных газов, паров и пыли вытяжка должна быть на 10% больше чем притока, чтобы вредные вещества не вытеснялись в смежные помещения с меньшей вредностью.

В системе приточно-вытяжной вентиляции возможно использование не только внешнего воздуха, но и воздух самих помещений после его очищения. Такое повторное использование воздуха помещений называется рециркуляцией и осуществляется в холодный период года для экономии тепла, израсходованного на подогревание приточного воздуха. Однако возможность рециркуляции обуславливается целым рядом санитарно-гигиенических и противопожарных требований.

Местная вентиляция.

Местная вентиляция может быть приточной и вытяжной .

Местная приточная вентиляция , при которой осуществляется концентрированное представление приточного воздуха заданных параметров (температуры, влажности, скорости движения), выполняется в виде воздушных душей, воздушных и воздушно-тепловых завес.

Воздушные души используются, для предотвращения перегревания рабочих в горячих цехах, а также для образования так называемых воздушных оазисов (участков производственной зоны, которые резко отличаются своими физико-химическими характеристиками от остальных помещений).

Воздушные и воздухо-тепловые завесы предназначены для предотвращения поступления в помещения значительных масс холодного наружного воздуха и необходимости частого открывания дверей или ворот. Воздушная завеса генерируется струей воздуха, которая подается из узкой длинной щели, Д под некоторым углом навстречу потоку холодного воздуха. Канал со щелью размещают сбоку или сверху ворот (двери).

Местная вытяжная вентиляция осуществляется с помощью местных вытяжных зонтов, всасывающих панелей, вытяжных шкафов, бортовых насосов (рис.4).

Рис. 2.5 - Примеры местной вытяжной вентиляции:

а вытяжной зонт, б всасывающая панель, в вытяжной шкаф с комбинированной вытяжкой, г бортовой насос с обдувом.

Конструкция местной вытяжной вентиляции должна обеспечивать максимальное улавливание вредных веществ при минимальном количестве удаляемого воздуха. Кроме того, она не должна быть громоздкой и мешать обслуживающему персоналу работать и присматривать за технологическим процессом.

Основными факторами при выборе типа местной вытяжной вентиляции являются характеристики вредных факторов (температура, плотность газов и паров, токсичность), положение рабочего при выполнении работы, особенности технологического процесса и оборудования.

В случаях, если источник производственных помещений можно поместить внутри просторного, ограниченного стенками, местную вытяжную вентиляцию устраивают в виде вытяжных шкафов, кожухов, ветровых насосов. Если по условиям технологии или обслуживания источник происшествий нельзя изолировать, тогда устанавливают вытяжной зонт или всасывательную панель. При этом поток воздуха, который удаляется, не должен проходить через зону дыхания рабочего

Частным случаем местной вытяжной вентиляции являются бортовые насосы, которыми оборудуют ванны (гальванические, травильные) или другие емкости с токсичными жидкостями, поскольку необходимость использовать при их загрузке подъемно-транспортного оборудования делает невозможное использование вытяжных зонтов и всасывательных панелей. При ширине ванны 1 м и более необходимо устанавливать бортовой насос с обдувом (рис. 2.6г), у которого с одной стороны ванны воздух отсасывается, а с другой нагнетается. При этом подвижный воздух будто бы экранирует поверхность испарения токсичных жидких веществ.

2.3. Основные требования к системам вентиляции.

Естественная и искусственная вентиляции должны отвечать следующим санитарно-гигиеническим требованиям:

– создавать в рабочей зоне помещений нормальные климатические условия труда (температуру, влажность и скорость движения воздуха);

– полностью устранять из помещений вредные газы, пары, пыль и аэрозоли или разжижать их до предельно-допустимых концентраций;

– не допускать поступления в помещения загрязненного воздуха извне или путем притока загрязненного воздуха из смежных помещений;

– не создавать на рабочих местах сквозняков или резкого охлаждения воздуха;

– быть доступными для управления и ремонта во время эксплуатации;

– не создавать во время эксплуатации дополнительных неудобств (например, шума, вибраций, попадание дождя, снега).

Наиболее полно, выше перечисленным требованиям, отвечает система кондиционирования воздуха, которая также широко применяется на предприятиях. С помощью кондиционеров создаются и автоматически поддерживаются в производственном помещении заданные параметры воздушной среды. При решении вопроса о целесообразности применения кондиционирования воздуха следует учитывать и экономические факторы.

Необходимо отметить, что к вентиляционным системам, установленным в пожаро-и взрывоопасных помещениях, выдвигается целый ряд дополнительных требований, которые в этом разделе не рассматриваются.

1.3. Классификация систем кондиционирования воздуха.

Системы кондиционирования могут быть классифицированы следующим образом:

1. По степени обеспечения метеорологических условий в обслуживаемом помещении системы кондиционирования подразделяются на три класса: первого, второго и третьего.

2. По давлению, развиваемому вентиляторами, низкого (до 1000 Па), среднего (до 3000 Па) и высокого (свыше 3000 Па) давления.

3. По назначению объекта применения – комфортные и технологические.

4. По наличию источников тепла и холода – автономные и неавтономные.

5. По принципу расположения системы кондиционирования относительно обсслуживаемого объекта – центральные и местные.

6. По количеству обслуживаемых помещений – однозональные и многозональные.

7. По типу обслуживаемых объектов – бытовые , полупромышленные и промышленные .

Системы кондиционирования первого класса обеспечивают требуемые для технологического процесса параметры в соответствии с нормативными документами.

Системы второго класса обеспечивают санитарно-гигиенические нормы или требуемые технологические нормы.

Системы третьего класса обеспечивают допустимые нормы, если они не могут быть обеспечены вентиляцией в теплый период года без применения искусственного охлаждения воздуха.

Оптимальные параметры воздуха представляют собой совокупность условий, наиболее благоприятных для самочувствия людей (область комфортного кондиционирования воздуха), или условий для правильного протекания технологического процесса (область технологического кондиционирования). Оптимальные параметры внутреннего воздуха на промышленных предприятиях устанавливают, исходя из положения, что если количество и качество продукции зависит от соблюдения точного режима технологического процесса, а не от интенсивности труда, то определяющим фактором являются требования технологического процесса, Если же на выпуск продукции в основном влияет интенсивность труда, устанавливаются комфортные условия для работающих в цехе людей.

Допустимые параметры воздуха устанавливаются в случае, когда по технологическим требованиям или техническим и экономическим причинам не обеспечиваются оптимальные нормы (СНиП 2.04.05-91 ).

Автономные СКВ в своем составе имеют весь комплекс оборудования, позволяющий провести необходимую обработку воздуха в соответствии с нормативными требованиями по очистке, нагреванию, охлаждению, осушке, увлажнению, перемещению и распределению воздуха, а также средства автоматического и дистанционного управления и контроля. Для работы автономной СКВ необходимо подать только электрическую энергию. К автономным СКВ относятся моноблочные оконные, шкафные кондиционеры, сплит-системы.

Неавтономные СКВ не имеют встроенных агрегатов, являющихся источниками тепла и холода. К этим СКВ от других источников тепло- и холодоснабжения подаются холодные или горячие хладагенты(вода, фреоны).

Центральные СКВ представляют собой неавтономные кондиционеры, располагаемые вне обслуживаемых помещений, в которых производится подготовка воздуха с последующим его распределением по помещениям с помощью воздуховодов. Современные центральные кондиционеры выпускаются в секционном исполнении из унифицированных типовых моделей.

Местные СКВ выпускаются на базе автономных и неавтономных кондиционеров и устанавливаются в обслуживаемом помещении.

Однозональныые СКВ применяются для обслуживания одного помещения с равномерным распределением тепло- и влаговыделений, например, выставочные залы, кинотеатры и пр.

Многозональные СКВ применяются для обслуживания нескольких помещений или помещения с неравномерным распределением тепло- и влаговыделений.

Бытовые кондиционеры предназначены для установки в жилых домах, офисах и аналогичных объектах. Особенностью бытовых кондиционеров является питание от однофазной сети и потребляемая мощность не более 3 кВт. Это та мощность, которую допускают потреблять стандартные электрические розетки, устанавливаемые в жилых и административных помещениях. Как следствие этого. Холодо- и теплопроизводительность бытовых кондиционеров не превышает 7 кВт.

И кондиционирование воздухаЗадача >> Безопасность жизнедеятельности

Микроклимата воздуха рабочей зоны является промышленная вентиляция . Вентиляцией называется организованный и регулируемый воздухообмен... применяют наиболее совершенный вид вентиляции кондиционирование воздуха. Кондиционированием воздуха называется его...

  • Основы организации строительства систем вентиляции и кондиционирования воздуха зданий различного назначения

    Реферат >> Строительство

    Или к одной шахте. 2.3 Промышленные здания Промышленные здания имеют системы вентиляции со своими специфическими... я ознакомился с основами организации строительства систем вентиляции и кондиционирования воздуха зданий различного назначения. Сохранение...

  • Вентиляция в многоквартирных домах

    Реферат >> Строительство

    Отопления, вентиляции и кондиционирования воздуха.М.: Стройиздат, 1986.- 62 с. Справочник проектировщика промышленных ,жилых... проектировщика. Внутренние санитарно-технические устройства. Ч.2. Вентиляция и кондиционирование воздуха. /Под ред. И.Г.Староверова. ...

  • Кондиционирование воздуха в гражданских зданиях

    Курсовая работа >> Физика

    Технологические. Системы комфортного кондиционирования применяются в жилых, общественных и промышленных зданиях с целью обеспечения... СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование» в обслуживаемой зоне общественных и административно-бытовых...

  • Принудительная (механическая) вентиляция осуществля-ется тремя способами. Она бывает вытяжная, приточная и приточно-вытяжная.

    При вытяжной вентиляции вентилятором откачивается воздух из помещения. В результате разрежения чистый воз-дух из окружающей среды или подсобных помещений (через неплотности в окнах, дверях, воздуховодов) поступает внутрь помещения. Этот вид вентиляции применяется, когда загряз-нитель воздуха в помещении не является токсичным или по-жаровзрывоопасным (избыточное тепло, продукты дыхания людей или животных, избыточная влажность).

    При приточной вентиляции свежий воздух нагнетается вентилятором в помещение, создавая в нем избыточное дав-ление. При этом загрязненный воздух через окна, двери, воз-духоводы выдавливается в окружающую среду. Применяется в случае незначительной концентрации в воздухе вредных веществ, но требуется дополнительная обработка свежего воздуха (подогрев, охлаждение, осушение, увлажнение, аро-матизация и т. д.).

    Приточно-вытяжная вентиляция предполагает наличие в одном помещении двух вентиляторов, один из которых ра-ботает в вытяжном режиме, а другой - в приточном. Приме-няется в случае, когда загрязнитель воздуха токсичен, по жаровзрывоопасен или когда загрязнитель имеет большую концентрацию в воздухе.

    Оптимальные комфортные параметры воздуха, удовлет-воряющие санитарно-гигиеническим требованиям, регламен-тированы в СНиП III-А, 10-85 "Приемка в эксплуатацию за-конченных строительством предприятий, зданий, сооруже-ний" и Основными положениями СНиП П-М, 3-83 "Вспомога-тельные здания и помещения промышленных предприятий.

    В отдельных производственных помещениях, в которых существует опасность прорыва большого количества вредных веществ за короткое время, устанавливают дополнительную аварийную вентиляцию, для чего используют высокопроиз-водительные осевые вентиляторы с автоматическим включе-нием с одновременной подачей звукового сигнала. Для обеспечения необходимых условий труда важное значение имеет кратность воздухообмена, мощность венти-ляционных систем и выбор их типа.

    Воздухообменом принято называть количество воздуха, которое необходимо подавать в помещение и удалять из него (м 3 /ч). Основным показателем является кратность обмена (ко-эффициент вентиляции К), которая показывает, сколько раз весь воздух помещения заменяется наружным воздухом в течение часа, и рассчитывается по формуле

    K = Y (1/4) "

    где W - объем удаляемого воздуха из помещения, м 3 /ч;

    V - объем помещения, из которого удаляется воздух, м 3 .

    При определении воздухообмена в торговом зале магази-на исходят из следующего:

    температуру воздуха в торговом зале принимают на 5 °С выше наружной;

    количество посетителей в торговом зале магазина оп-ределяется на основе наблюдений и рассчитывается как сред-няя величина;

    количество тепла, выделяемого одним работником, при-нимают равным 80 ккал/ч, а посетителем - 75 ккал/ч;

    относительная влажность воздуха - 80%.

    Необходимо иметь в виду, что высокая подвижность воз-духа вызывает сквозняки, мешающие работе и вызывающие простудные заболевания.

    Кондиционирование воздуха - это создание и поддер-жание в закрытых помещениях определенных параметров воздушной среды по температуре, влажности, чистоте, со-ставу, скорости движения и давлению воздуха. Параметры воздушной среды должны быть благоприятными для челове-ка и устойчивыми.

    Современные автоматические кондиционерные установ-ки очищают воздух, подогревают или охлаждают его, увлаж-няют или высушивают в зависимости от времени года и дру-гих условий, подвергают ионизации или озонированию, а так-же подают его в помещения с определенной скоростью.

    Основные элементы систем кондиционирования указаны на рис. 2. Установки для кондиционирования воздуха подраз-деляют на местные (для отдельных помещений) и централь-ные (для всех помещений здания).

    Кондиционирование воздуха все чаще применяют в жи-лых помещениях, общественных зданиях, лечебных учреж-дениях и торговых предприятиях.

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНИ

    КРАСНОДОНСКИЙ ГОРНИЙ ТЕХНИКУМ

    Реферат по предмету «БЕЗОПАСНОСТЬ

    ТЕХНОЛОГИЧЕСКИХ

    ПРОЦЕССОВ И ПРОИЗВОДСТВ»

    на тему: «ПРОИЗВОДСТВЕННАЯ ВЕНТИЛЯЦИЯ»

    Студента группы 1ЕП-06

    Урюпова Олега

    Проверила: Дрокина Т.М

    Краснодон 2010


    Вентиляцией называется комплекс взаимосвязанных устройств и процессов для создания требуемого воздухообмена в производственных помещениях. Основное назначение вентиляции - удаление из рабочей зоны загрязненного или перегретого воздуха и подача чистого воздуха, в результате чего в рабочей зоне создаются необходимые благоприятные условия воздушной среды. Одна из главных задач, возникающих при устройстве вентиляции,- определение воздухообмена, т. е. количество вентиляционного воздуха, необходимого для обеспечения оптимального санитарно-гигиенического уровня воздушной среды помещений.

    В зависимости от способа перемещения воздуха в производственных помещениях вентиляция делится на естественную и искусственную (механическую).

    Применение вентиляции должно быть обосновано расчетами, при которых учитываются температура, влажность воздуха, выделение вредных веществ, избыточное тепловыделение. Если в помещении нет вредных выделений, то вентиляция должна обеспечивать воздухообмен не менее 30 м 3 /ч на каждого работающего (для помещений с объемом до 20 м 3 на одного работающего). При выделении вредных веществ в воздух рабочей зоны необходимый воздухообмен определяют исходя из условий их разбавления до ПДК, а при наличии тепловых избытков - из условий поддержания допустимой температуры в рабочей зоне.

    Естественная вентиляция производственных помещений осуществляется за счет разности температур в помещении наружного воздуха (тепловой напор) или действия ветра (ветровой напор). Естественная вентиляция может быть организованной и неорганизованной.

    При неорганизованной естественной вентиляции воздухообмен осуществляется за счет вытеснения внутреннего теплового воздуха наружным холодным воздухом через окна, форточки, фрамуги и двери. Организованная естественная вентиляция , или аэрация , обеспечивает воздухообмен в заранее рассчитанных объемах и регулируемый в соответствии с метеорологическими условиями. Бесканальная аэрация осуществляется при помощи проемов в стенах и потолке и рекомендуется в помещениях большого объема со значительными избытками теплоты. Для получения расчетного воздухообмена вентиляционные проемы в стенах, а также в кровле здания (аэрационные фонари) оборудуют фрамугами, которые открываются и закрываются с пола помещения. Манипулируя фрамугами, можно регулировать воздухообмен при изменении наружной температуры воздуха или скорости ветра (рис. 4.1). Площадь вентиляционных проемов и фонарей рассчитывают в зависимости от необходимого воздухообмена.

    Рис. 4.1. Схема естественной вентиляции здания: а - при безветрии; б - при ветре; 1 - вытяжные и приточные отверстия; 2 - тепловыделяющий агрегат

    В производственных помещениях небольшого объема, а также в помещениях, расположенных в многоэтажных производственных зданиях, применяют канальную аэрацию, при которой загрязненный воздух удаляется через вентиляционные каналы в стенах. Для усиления вытяжки на выходе из каналов на крыше здания устанавливают дефлекторы - устройства, создающие тягу при обдувании их ветром. При этом поток ветра, ударяясь о дефлектор и обтекая его, создает вокруг большей части его периметра разрежение, обеспечивающее подсос воздуха из канала. Наибольшее распространение получили дефлекторы типа ЦАГИ (рис. 4.2), которые представляют собой цилиндрическую обечайку, укрепленную над вытяжной трубой. Для улучшения подсасывания воздуха давлением ветра труба оканчивается плавным расширением - диффузором. Для предотвращения попадания дождя в дефлектор предусмотрен колпак.

    Рис. 4.2. Схема дефлектора типа ЦАГИ: 1 - диффузор; 2 - конус; 3 - лапки, удерживающие колпак и обечайку; 4 - обечайка; 5 - колпак

    Расчет дефлектора сводится к определению диаметра его патрубка. Ориентиро-вочно диаметр патрубка d дефлектора типа ЦАГИ можно вычислить по формуле:

    ,

    где L - объем вентиляционного воздуха, м 3 /ч; - скорость воздуха в патрубке, м/с.

    Скорость воздуха (м/с) в патрубке при учете только давления, создаваемого действием ветра, находят по формуле

    ,

    где - скорость ветра, м/с; - сумма коэффициентов местного сопротивле-ния вытяжного воздуховода при его отсутствии e = 0,5 (при входе в патрубок); l - дли-на патрубка или вытяжного воздуховода, м.

    С учетом давления, создаваемого ветром, и теплового давления скорость воздуха в патрубке вычисляют по формуле

    ,

    где - тепловое давление Па; здесь - высота дефлектора, м; - плотность, соответственно, наружного воздуха и воздуха внутри помещения, кг/м 3 .

    Скорость движения воздуха в патрубке составляет примерно 0,2...0,4 скорости ветра, т. е. . Если дефлектор установлен без вытяжной трубы непосредственно в перекрытии, то скорость воздуха несколько больше .

    Аэрация применяется для вентиляции производственных помещений большого объема. Естественный воздухообмен осуществляется через окна, световые фонари с использованием теплового и ветрового напоров (рис. 4.3). Тепловое давление, в результате которого воздух поступает в помещение и выходит из него, образуется за счет разности температур наружного и внутреннего воздуха и регулируется различной степенью открытия фрамуг и фонарей. Разность этих давлений на одном и том же уровне называется внутренним избыточным давлением . Оно может быть как положительным, так и отрицательным.

    Рис. 4.3. Схема аэрации здания


    При отрицательном значении (превышении наружного давления над вну-тренним) воздух поступает внутрь помещения, а при положительном значении (превышении внутреннего давления над наружным) воздух выходит из помещения. При = 0 движения воздуха через отверстия в наружном ограждении не будет. Ней-тральная зона в помещении (где = 0) может быть только при действии одних те-плоизбытков; при ветре с теплоизбытками она резко смещается вверх и исчезает. Рас-стояния нейтральной зоны от середины вытяжного и приточного отверстий обратно пропорциональны квадратам площадей отверстий. При , где - площади, соответственно, входных и выпускных отверстий, м 2 ; -высоты расположения уровня равных давлений, соответственно, от входного до вы-пускного отверстий, м.

    Расход воздуха G , который протекает через отверстие, имеющее площадь F , вычисляют по формуле:

    где G - массовый секундный расход воздуха, т/с; m - коэффициент расхода, зависящий от условий истечения; r - плотность воздуха в исходном состоянии, кг/м 3 ; - разность давлений внутри и снаружи помещения в данном отверстии, Па.

    Ориентировочное количество воздуха, выходящего из помещения через 1 м 2 площади отверстия, с учетом только теплового давления и при условии равенства площадей отверстий в стенках и фонарях и коэффициенте расхода m = 0,6 можно определить по упрощенной формуле:


    где L - количество воздуха, м 3 /ч; Н - расстояние между центрами нижних и верхних отверстий, м; - разность температур: средней (по высоте) в помещении и наружной, ° С.

    Аэрация с использованием ветрового давления основана на том, что на наве-тренных поверхностях здания возникает избыточное давление, а на заветренных сторо-нах разрежение. Ветровое давление на поверхности ограждения находят по формуле:

    где k - аэродинамический коэффициент, показывающий, какая доля динамического давления ветра преобразуется в давление на данном участке ограждения или кровли. Этот коэффициент можно принять в среднем равным для наветренной стороны + 0,6, а для подветренной - -0,3.

    Естественная вентиляция дешева и проста в эксплуатации. Основной ее недостаток заключается в том, что приточный воздух вводится в помещение без предварительной очистки и подогрева, а удаляемый воздух не очищается и загрязняет атмосферу. Естественная вентиляция применима там, где нет больших выделений вредных веществ в рабочую зону.

    Искусственная (механическая) вентиляция устраняет недостатки естественной вентиляции. При механической вентиляции воздухообмен осуществляется за счет напора воздуха, создаваемого вентиляторами (осевыми и центробежными); воздух в зимнее время подогревается, в летнее-охлаждается и кроме того очищается от загрязнений (пыли и вредных паров и газов). Механическая вентиляция бывает приточной, вытяжной, приточно-вытяжной, а по месту действия - общеобменной и местной.

    При приточной системе вентиляции (рис. 4.4, а ) производится забор воздуха извне с помощью вентилятора через калорифер, где воздух нагревается и при необходимости увлажняется, а затем подается в помещение. Количество подаваемого воздуха регулируется клапанами или заслонками, устанавливаемыми в ответвлениях. Загрязненный воздух выходит через двери, окна, фонари и щели неочищенным.

    При вытяжной системе вентиляции (рис. 4.4, б ) загрязненный и перегретый воздух удаляется из помещения через сеть воздуховодов с помощью вентилятора. Загрязненный воздух перед выбросом в атмосферу очищается. Чистый воздух подсасывается через окна, двери, неплотности конструкций.

    Приточно-вытяжная система вентиляции (рис. 4.4, в ) состоит из двух отдельных систем - приточной и вытяжной, которые одновременно подают в помещение чистый воздух и удаляют из него загрязненный. Приточные системы вентиляции также возмещают воздух, удаляемый местными отсосами и расходуемый на технологические нужды: огневые процессы, компрессорные установки, пневмотранспорт и др.

    Для определения требуемого воздухообмена необходимо иметь следующие исходные данные: количество вредных выделений (тепла, влаги, газов и паров) за 1 ч, предельно допустимое количество (ПДК) вредных веществ в 1 м 3 воздуха, подаваемого в помещение.

    Рис. 4.4. Схема приточной, вытяжной и приточно-вытяжной механической вентиляции: а - приточная; 6 - вытяжная; в - приточно-вытяжная; 1 - воздухоприемник для забора чистого воздуха; 2 - воздуховоды; 3 - фильтр для очистки воздуха от пыли; 4 - калориферы; 5 - вентиляторы; 6 - воздухораспределительные устройства (насадки); 7 - вытяжные трубы для выброса удаляемого воздуха в атмосферу; 8 - устройства для очистки удаляемого воздуха; 9 - воздухозаборные отверстия для удаляемого воздуха; 10 - клапаны для регулирования количества свежего вторичного рециркуляционного и выбрасываемого воздуха; 11 - помещение, обслуживаемое приточно-вытяжной вентиляцией; 12 - воздуховод для системы рециркуляции

    Для помещений с выделением вредных веществ искомый воздухообмен L, м 3 /ч, определяется из условия баланса поступающих в него вредных веществ и разбавления их до допустимых концентраций. Условия баланса выражаются формулой:

    где G - скорость выделения вредного вещества из технологической установки, мг/ч; G пр - скорость поступления вредных веществ с притоком воздуха в рабочую зону, мг/ч; G уд - скорость удаления разбавленных до допустимых концентраций вредных веществ из рабочей зоны, мг/ч.

    Заменив в выражении G пр и G уд на произведение и , где и - соответственно концентрации (мг/м 3) вредных веществ в приточном и удаленном воздухе, a и объем приточного и удаляемого воздуха в м 3 за 1 час, получим

    Для поддержания нормального давления в рабочей зоне должно выполняться равенство , тогда


    Необходимый воздухообмен, исходя из содержания в воздухе водяных паров, определяют по формуле:

    ,

    где - количество удаляемого или приточного воздуха в помещении, м 3 /ч; G п - масса водяного пара, выделяющегося в помещении, г/ч; - влагосодержание удаляемого воздуха, г/кг, сухого воздуха; - влагосодержание приточного воздуха, г/кг, сухого воздуха; r - плотность приточного воздуха, кг/м3.

    где - соответственно массы (г) водяного пара и сухого воздуха. Необходимо иметь в виду, что значения и принимаются по таблицам физической характеристики воздуха в зависимости от значения нормируемой относительной влажности вытяжного воздуха.

    Для определения объема вентиляционного воздуха по избыточному теплу необходимо знать количество тепла, поступающего в помещение от различных источников (приход тепла), , и количество тепла, расходуемого на возмещение потерь через ограждения здания и другие цели, , разность и выражает количество тепла, которое идет на нагревание воздуха в помещении и которое должно учитываться при расчете воздухообмена.

    Воздухообмен, необходимый для удаления избыточного тепла, вычисляют по формуле:

    где - избыточное количество тепла, Дж/с, -температура удаляемого воздуха, ° К; -температура приточного воздуха, ° К; С - удельная теплоемкость воздуха, Дж/(кг×К); r - плотность воздуха при 293° К, кг/м 3 .

    Местная вентиляция бывает вытяжная и приточная? Вытяжную вентиляцию устраивают, когда загрязнения можно улавливать непосредственно у мест их возникновения. Для этого применяют вытяжные шкафы, зонты, завесы, бортовые отсосы у ванн, кожухи, отсосы у станков и т.д. К приточной вентиляции относятся воздушные души, завесы, оазисы.

    Вытяжные шкафы работают с естественной или механической вытяжкой. Для удаления из шкафа избытков тепла или вредных примесей естественным путем необходимо наличие подъемной силы, которая возникает, когда температура воздуха в шкафу превышает температуру воздуха в помещении. Удаляемый воздух должен иметь достаточный запас энергии для преодоления аэродинамического сопротивления на пути от входа в шкаф до места выброса в атмосферу.

    Объемный расход воздуха, удаляемого из вытяжного шкафа при естественной вытяжке (рис. 4.5), (м 3 /ч)

    где h - высота открытого проема шкафа, м; Q - количество тепла, выделяемого в шкафу, ккал/ч; F - площадь открытого (рабочего) проема шкафа, м 2 .


    Рис. 4.5. Схема вытяжного шкафа с естественной вытяжкой: 1 - уровень нулевых давлений; 2 - эпюра распределения давлений в рабочем отверстии; Т 1 - температура воздуха в помещении; T 2 - температура газов внутри шкафа

    Необходимая высота вытяжной трубы (м)

    ,

    где - сумма всех сопротивлений прямой трубы на пути движения воздуха; d - диаметр прямой трубы, м (предварительно задается).

    При механической вытяжке

    где v - средняя скорость всасывания в сечениях открытого проема, м/с.

    Бортовые отсосы устраивают у производственных ванн для шкафа удаления вредных паров и газов, которые выделяются из растворов ванн. При ширине ванны до 0,7 м устанавливают однобортовые отсосы с одной из продольных ее сторон. При ширине ванны более 0,7 м (до 1 м) применяют двухбортовые отсосы (рис. 4.6).

    Объемный расход воздуха, отсасываемого от горячих ванн одно- и двухбортовыми отсосами, находят по формуле:

    ,

    где L - объемный расход воздуха, м 3 /ч, k 3 - коэффициент запаса, равный 1,5...1,75, для ванн с особо вредными растворами 1,75...2; k Т - коэффициент для учета подсоса воздуха с торцов ванны, зависящий от отношения ширины ванны В к ее длине l ; для однобортового простого отсоса ; для двухбортового - ; С - безразмерная характеристика, равная для однобортового отсоса 0,35, для двухбортового - 0,5; j -угол между границами всасывающего (рис. 4.7); (в расчетах имеет значение 3,14); Т в и Т п - абсолютные температуры, соответственно, в ванне и воздуха в помещении, °К; g=9,81 м/с 2 .

    Вытяжные зонты применяют, когда выделяющиеся вредные пары и газы легче окружающего воздуха при незначительной его подвижности в помещении. Зонты могут быть как с естественной, так и с механической вытяжкой.

    Рис. 4.6. Двухбортовой отсос от ванны

    При естественной вытяжке начальный объемный расход воздуха в тепловой струе, поднимающейся над источником, определяют по формуле:


    ,

    где Q - количество конвективного тепла, Вт; F - площадь горизонтальной проекции поверхности источника тепловыделений, м 2 ; Н - расстояние от источника тепловыделений до кромки зонта, м.

    При механической вытяжке аэродинамическая характеристика зонта включает скорость по оси зонта, которая зависит от угла его раскрытия; с увеличением угла раскрытия увеличивается осевая скорость по сравнению со средней. При угле раскрытия 90° скорость по оси составляет l,65v (v - средняя скорость, м/с), при угле раскрытия 60° скорость по оси и по всему сечению равна v .

    В общем случае расход воздуха, удаляемого зонтом,

    где v - средняя скорость движения воздуха в приемном отверстии зонта, м/с; при удалении тепла и влаги скорость может быть принята 0,15...0,25 м/с; F - площадь расчетного сечения зонта, м 2 .

    Приемное отверстие зонта располагают над тепловым источником; оно должно соответствовать конфигурации зонта, а размеры принимают несколько большими, чем размеры теплового источника в плане. Зонты устанавливают на высоте 1,7...1,9 м над полом.

    Для удаления пыли от различных станков применяют пылеприемные устройства в виде защитно-обеспыливающих кожухов, воронок и т.д.


    Рис. 4.7. Угол между границами всасывающего факела при различном расположении ванны: а - у стены (); б - рядом с ванной без отсоса (); в - отдельно (); 1 - ванна с отсосом; 2 - ванна без отсоса.

    В расчетах принять p = 3,14

    Объемный расход воздуха L (м 3 /ч), удаляемого от заточных, шлифовальных и обдирочных станков, рассчитывают в зависимости от диаметра круга d к p (мм), а именно:

    при < 250 мм L = 2,

    при 250...600 мм L = 1,8 ;

    при > 600 мм L = 1,6.

    Расход воздух (м 3 /ч), удаляемого воронкой, определяют по формуле:

    ,

    где V H -начальная скорость вытяжного факела (м/с), равная скорости транспортирова-ния пыли в воздуховоде, принимается для тяжелой наждачной пыли 14...16 м/с и для легкой минеральной 10...12 м/с; l - рабочая длина вытяжного факела, м; k - коэффи-циент, зависящий от формы и соотношения сторон воронки: для круглого отверстия k = 7,7 для прямоугольного с соотношением сторон от 1:1 до 1:3 k = 9,1; V k - необходимая конечная скорость вытяжного факела у круга, принимаемая равной 2 м/с.


    ЛИТЕРАТУРА

    1. Безопасность жизнедеятельности/Под ред. Русака О.Н.- С.-Пб.: ЛТА, 1996.

    2. Белов С.В. Безопасность жизнедеятельности - наука о выживании в техносфере. Материалы НМС по дисциплине «Безопасность жизнедеятельности». - М.: МГТУ, 1996.

    3. Всероссийский мониторинг социально-трудовой сферы 1995 г. Статистический сборник.- Минтруд РФ, М.: 1996.

    4. Гигиена окружающей среды./Под ред. Сидоренко Г.И .- М.: Медицина, 1985.

    5. Гигиена труда при воздействии электромагнитных полей./Под ред. Ковшило В.Е. - М.: Медицина, 1983.

    6. Золотницкий Н.Д., Пчелиниев В.А.. Охрана труда в строительстве.- М.: Высшая школа, 1978.

    7. Кукин П.П., Лапин В.Л., Попов В.М., Марчевский Л.Э., Сердюк Н.И. Основы радиационной безопасности в жизнедеятельности человека.- Курск, КГТУ, 1995.

    8. Лапин В.Л., Попов В.М., Рыжков Ф.Н., Томаков В.И. Безопасное взаимодействие человека с техническими системами.- Курск, КГТУ, 1995.

    9. Лапин В.Л., Сердюк Н.И. Охрана труда в литейном производстве. М.: Машиностроение, 1989.

    10. Лапин В.Л., Сердюк Н.И. Управление охраной труда на предприятии.- М.: МИГЖ МАТИ, 1986.

    11. Левочкин Н.Н. Инженерные расчеты по охране труда. Изд-во Красноярского ун-та, -1986.

    12. Охрана труда в машиностроении./Под ред. Юдина Б.Я., Белова С.В. М.: Машиностроение, 1983.

    13. Охрана труда. Информационно-аналитический бюллетень. Вып. 5.- М.: Минтруд РФ, 1996.

    14. Путин В.А., Сидоров А.И., Хашковский А.В. Охрана труда, ч. 1.-Челябинск, ЧТУ, 1983.

    15. Рахманов Б.Н., Чистов Е.Д. Безопасность при эксплуатации лазерных установок.- М.: Машиностроение, 1981.

    16. Саборно Р.В., Селедцов В.Ф., Печковский В.И. Электробезопасность на производстве. Методические указания.- Киев: Вища Школа, 1978.

    17. Справочная книга по охране труда/Под ред. Русака О.Н., Шайдорова А.А. - Кишинев, Изд-во «Картя Молдовеняскэ», 1978.

    18. Белов С.В., Козьяков А.Ф., Партолин О.Ф. и др. Средства защиты в машиностроении. Расчет и проектирование. Справочник./Под ред. Белова С.В.-М.: Машиностроение, 1989.

    19. Титова Г.Н. Токсичность химических веществ.- Л.: ЛТИ, 1983.

    20. Толоконцев Н.А. Основы общей промышленной токсикологии.- М.: Медицина, 1978.

    21. Юртов Е.В., Лейкин Ю.Л. Химическая токсикология.- М.: МХТИ, 1989.