Энергосберегающие

Синтетическая биология: от наблюдения к вмешательству. Революция в области синтетической биологии: перспективы и риски

Синтетическая биология: от наблюдения к вмешательству. Революция в области синтетической биологии: перспективы и риски


План:

    Введение
  • 1 Исследования и учёные
  • 2 Этические вопросы
  • 3 Источники и примечания

Введение

Синтетическая биология (Synthetic Biology) - термин, долго использовавшийся для описания подходов в биологии, стремящихся интегрировать различные области исследования для того, чтобы создать более целостный подход к пониманию концепции жизни.

В последнее время термин используется в другом значении, сигнализируя о новой области исследования, которая объединяет науку и инженерию с целью проектирования и построения новых (несуществующих в природе) биологических функций и систем.

Синтетическая биология - это новое направление генной инженерии. Развивается небольшой плеядой учёных. Главные цели следующие:

  1. Узнать о жизни больше, строя её из атомов и молекул, а не разбирая на части, как это делалось ранее.
  2. Сделать генную инженерию достойной её названия - превратить её из искусства в строгую дисциплину, которая непрерывно развивается, стандартизируя предыдущие искусственные создания и повторно комбинируя их, чтобы делать новые, более сложные живые системы, которых раньше не существовало в природе.
  3. Стереть границу между живым и машинами, чтобы прийти к действительно программируемым организмам.

Более 100 лабораторий по всему миру занимаются синтетической биологией. Работы в этой области разобщены; над их систематизацией работает биолог Дрю Энди из Массачусетского технологического института. Это позволит проектировать живые системы, которые ведут себя предсказуемым (и заказанным по желанию) образом и используют взаимозаменяемые детали из стандартного набора генов. Учёные стремятся создать обширный генетический банк, позволяющий создавать любой нужный организм (по аналогии с созданием электронной схемы из промышленных транзисторов и диодов). Банк составляют биокирпичи (BioBrick) - фрагменты ДНК, чья функция строго определена и которые можно внедрить в геном клетки для синтеза заранее известного белка. Все отобранные биокирпичи спроектированы так, чтобы хорошо взаимодействовать со всеми другими на двух уровнях:

  • механическом - чтобы их легко было изготовить, хранить и включать в генетическую цепочку;
  • программном - чтобы каждый кирпич посылал определённые химические сигналы и взаимодействовал с другими фрагментами кода.

Сейчас в Массачусетском технологическом институте создали и систематизировали уже более 140 биокирпичей. Сложность заключается в том, что очень многие сконструированные фрагменты ДНК при внедрении в генетический код клетки-реципиента уничтожают её.

Синтетическая биология способна создать генинженерные бактерии, которые могут производить сложнейшие и дефицитные лекарства дёшево и в промышленных объёмах. Спроектированные геномы могут привести к появлению альтернативных источников энергии (синтез биотоплива) или к бактериям, которые помогут удалять излишний углекислый газ из атмосферы.


1. Исследования и учёные

Корни синтетической биологии уходят в 1989 год, когда команда биологов из Цюриха под руководством Стивена Беннера (Steven Benner) синтезировала ДНК, содержащую две искусственных генетических буквы помимо четырёх известных (аденин, цитозин, гуанин и тимин), используемых всеми живыми организмами Земли.

Большинство учёных придерживается природных моделей; они пробуют создать клетки, которые окружены двухслойными мембранами и наполнены генетическим материалом в виде ДНК или РНК.

  • Биолог Дрю Энди (Drew Endy, Массачусетский технологический институт) работает над созданием биодетектора скрытых мин: в бактерии внедряется нужный генетический код, затем бактерии распыляются на местности. Там, где есть тротил в почве (а он неизбежно просачивается из мины наружу) - бактерии синтезируют флуоресцентный белок, после чего в тёмное время суток мины можно обнаружить.
  • Группа учёных из университета Принстона (Princeton University) создала светящиеся бактерии кишечной палочки.
  • Биологи из университета Бостона (Boston University) наделили бактерию кишечной палочки элементарной цифровой бинарной памятью (соединили в бактерии два новых гена, активирующихся в противофазе - в зависимости от химических компонентов на входе эти бактерии «переключаются» между двумя устойчивыми состояниями, словно триггер на транзисторах).
  • Осенью 2003 года группа учёных из американского института биологических энергетических альтернатив (Institute for Biological Energy Alternatives) всего за две недели собрала живой вирус-бактериофаг phiX174, синтезировав его ДНК - 5 тысяч 386 нуклеотидных пар. Синтезированный вирус в поведении аналогичен природным вирусам.
  • Крейг Вентер - глава института имени себя (J. Craig Venter Institute - JCVI), является одним из самых ярких сторонников синтетической биологии. Он намерен получить простой базовый организм, на котором в дальнейшем можно проверять работу самых разнообразных искусственных или заимствованных генов. Причём в этом универсальном коде присутствуют кусочки от разных организмов, подобранные таким образом, чтобы обеспечивать базовые функции клетки, включая рост и размножение. Такой «минимальный» организм предоставлял бы идеальные условия для опытов с генами, поскольку в нём не будет содержаться ничего лишнего. Группа учёных из JCVI оформила американский патент на «минимальный бактериальный геном», которого достаточно для поддержания жизни одноклеточного организма, и подала заявку на аналогичный международный патент, где перечислены более 100 стран, в которых он должен защищать права института на данный код.
  • Стин Расмуссен (Steen Rasmussen) совместно с коллегами из американской Национальной лаборатории в Лос-Аламосе (Los Alamos National Lab) намерен создать принципиально новую форму жизни. Химики и физики намерены создать протоклетку, которая пусть и будет примитивнее бактерии - должна будет обладать главными особенностями жизни: производить собственную энергию, давать потомство и даже развиваться. Эти поиски могут дать ответ на вопрос, является ли возникновение жизни случайностью или неизбежностью. Протоклетка, по задумке автора, должна представлять из себя наиболее простую живую систему: жирные кислоты, некоторый сурфактант и искусственную нуклеиновую кислоту ПНК (PNA, пептидную нуклеиновую кислоту).
  • Стивен Беннер (Steven A. Benner) из американского Фонда прикладной молекулярной эволюции (Foundation for Applied Molecular Evolution - FfAME) - один из пионеров синтетической биологии. В начале 2009 года он выпустил книгу «Жизнь, Вселенная и научный метод» (Life, the Universe and the Scientific Method), в которой высказал свою точку зрения на то, как современные учёные пытаются понять происхождение жизни и тем самым представить на что могла бы быть похожа жизнь в других мирах.

2. Этические вопросы

Некоторые сторонники синтетической биологии полагают, что все новые геномы, созданные учёными, должны становиться достоянием всего человечества и использоваться совершенно свободно, без прав какой-то отдельной группы на данные коды жизни.

Пэт Муни (Pat Mooney), директор канадской организации ETC Group, занимающейся вопросами биоэтики и опасности некоторых научных достижений для природы и общества, считает, что подобные исследования опасны, патент JCVI должен быть отозван, а все данные по этому геному закрыты.


3. Источники и примечания

  • Синтетическая биология
  • Геном из пробирки обещает миру блага и бедствия
  • В колыбели атомной бомбы рождается новая форма жизни
  • Небывалая жизнь в колбе намекает на инопланетян
  • После нефти: биотопливо
скачать
Данный реферат составлен на основе

Индикаторные бактерии, которые меняют цвет в присутствии определенных веществ, появились в 2010 году. Поначалу «живые датчики» применялись для обнаружения ртутного загрязнения в воде, но вскоре начали использоваться повсеместно. С 2015 года стала востребованной профессия охотника за пигментами, находящего редкие краски и их гены у экзотических растений и животных. Около 2040-го в моду вошли йогурты с молочнокислыми ГМ-бактериями E. chromi, которые помогают диагностировать болезни кишечника по оттенку выделений. Десять лет спустя на политической сцене появился «Фронт освобождения апельсина» (OLF) — террористическая организация, выступающая за сохранение естественного оранжевого цвета фрукта. На рубеже 2070-х климатическое подразделение Google наполнило атмосферу микробами, которые окрашивают воздух, когда уровень углекислого газа достигает опасного уровня. «Если утро стало красным, Google говорит: «Опасно!»» — объясняет популярный детский стишок. И хотя первые предсказания Дейзи Гинзберг не сбылись, именно такое будущее подготавливают для нас синтетическая биология и возможность создавать новые формы жизни.


Синтетические организмы для восстановления баланса естественных экосистем в эпоху массового вымирания. На иллюстрации — самовоспроизводящаяся биопленка, удаляющая загрязнения воздуха.

Современная биология, тем более такая сложная область, как биология синтетическая, не кажется подходящим увлечением для дизайнера и архитектора. Но за этим видна ясная концепция: по мнению Дейзи Гинзберг, сам базовый принцип дизайна состоит в изменении естественной природы под человека и для него. Поэтому как минимум начиная с промышленной революции XVIII века дизайн занят «переводом» с языка новых технологических решений и научных концепций на язык вещей, продуктов массового производства, которые окружают нас повсюду. Двигатель внутреннего сгорания — это инженерия, автомобиль — уже дизайн; пьезоэлемент — физика, зажигалка — дизайн.

Для Гинзберг дизайн — то, что отличает природное от культурного, естественные предметы — от созданных человеком; то, что мы контролируем, от бесконтрольного. В этом смысле ГМ-комары, разработанные британской компанией Oxitec, тоже дизайнерский продукт. Не дающие жизнеспособного потомства, в природе они успешно конкурируют за спаривание со своими дикими собратьями и снижают численность разносчиков малярии и других опасных инфекций. Дизайнерским продуктом стоит назвать и «золотой рис», содержащий значительное количество бета-каротина и способный решить проблему дефицита витамина А в некоторых странах третьего мира. И уж точно результат дизайна — синтетический штамм Mycoplasma laboratorium с искусственно полученным геномом. Новые организмы с новыми функциями — результат приложения дизайнерского мышления, только в области синтетической биологии.


Synthetic Pathologies (2009−2010) Тревожный вариант: искусственные гены оказываются в обычных микробах и приводят к появлению новых странных болезней. Дейзи Гинзберг: «Это новый вид — гибрид бактерий, производящих стекловолокно, и бактерий, реагирующих на загрязнение воздуха».

Прогресс против эволюции

Если дизайн — это граница, разделяющая естественное и культурное, то не стоит считать, что области по обеим ее сторонам конфликтуют. Культурное вырастает из естественного и улучшает его — по крайней мере с точки зрения человека. Естественное — продукт эволюции, которая всегда отвечает на вызовы текущего момента и неспособна к разумному планированию или замыслу. Эволюции незнакомо понятие «лучше», современные медведи не лучше динозавров, просто лучше приспособлены к сегодняшним условиям. Культурный же мир развивается, подчиняясь законам человеческого прогресса: лампа накаливания лучше свечей и лучины, светодиод лучше вольфрамовой нити.



Емкость для выращивания электросинтетических организмов: искусственные клетки на разных стадиях роста.

Однако в области дизайна живых существ вплоть до недавнего времени человек мог разве что соучаствовать эволюции, направляя действие искусственного отбора, — пока в наших руках не появились средства манипуляции геномом, мощные инструменты прогресса, что можно сравнить с возникновением точного машинного производства. Сегодня эти технологии готовы изменить саму «природу природы», в очередной раз преобразить мир — а тем временем Дейзи Гинзберг пытается понять, как он будет выглядеть.

Как и многие специалисты-биологи, происходящее в этой области художница считает новой революцией: «Стоимость секвенирования и синтеза ДНК быстро падает. Технологии генетической модификации CRISPR увеличили спектр доступных возможностей. Каждый год что-нибудь меняется, — сказала Дейзи, выступая с лекцией на форуме PopTech. — Наверняка появятся ГМ-микробы для очистки нефтяных загрязнений или для нормализации кислотности почвы. Использование модифицированных комаров — уже реальность».


Alexandra Daisy Ginsberg, Sascha Pohflepp, Andrew Stellitano ГМ-организмы, созданные для дальних космических миссий и способные обеспечить космонавтов деликатесами. Дейзи Гинзберг: «Слой за слоем искусственные фрукты производятся бактериями, которые способны использовать энергию электричества, а не солнечного света».

Синтетическое царство

Полностью синтетические организмы — продукты технологического прогресса, а не биологической эволюции и вовсе не обязаны подражать природным существам. Имея с ними лишь общую биохимическую основу, уже скоро они готовы выделиться в собственную ветвь на древе жизни. Надцарство — наравне с бактериями, археями и эукариотами, развивающееся по собственным законам, которые заданы как природой, так и людьми. Действие этих законов и служит предметом главного интереса для Дейзи Гинзберг. Как будет выглядеть растение, превращенное в живую фабрику? На это ответит разумный дизайн: как специализированный цех, производящий деталь из биополимера. Созревшая, она выпадает из раскрывшегося плода и готова к сборке с другими плодами синтетических растений, чтобы дать цельное полезное устройство.


Знаменательно, что в серии эскизов Growth Assembly, созданных в 2009 году, таким устройством оказывается распылитель гербицидов — инструмент, жизненно важный для человека, живущего в мире полной свободы биотехнологий. Художница вовсе не закрывает глаза на потенциальные опасности такого будущего, и в проекте Synthetic Kingdom представила ряд довольно пугающих последствий, о предупреждении которых стоит позаботиться заранее. В представлении Гинзберг, горизонтальный перенос генов между синтетическими и природными организмами может привести к тому, что микробы на зубах будут производить, например, пигменты, окрашивая их в яркие цвета, а «генетическая утечка» с фабрики биоэлектроники — к эпидемии развития фосфоресцирующих камней в почках.



Устройство — разбрызгиватель гербицида — выращивается в ГМ-растениях в виде отдельных деталей. Дейзи Гинзберг: «Товары больше не нужно развозить по всему миру, достаточно доставить на место семена».

Впрочем, и этим биотехнологии не слишком выделяются в ряду достижений человека: ни одна из бывших или существующих технологий не лишена негативных побочных эффектов. Рост современной цивилизации уже привел к такому стремительному сокращению биоразнообразия, которое ученые уверенно называют Шестым глобальным вымиранием в истории жизни на Земле. Но подобно тому, как предыдущие шаги в развитии позволяли решить многие проблемы, порожденные прежними технологиями, и синтетическая биология готова «вылечить» биосферу планеты. Искусственные слизни для восстановления кислотно-щелочного баланса почвы, искусственные ежи для распространения семян и даже странные полупрозрачные организмы, заражающие растения и фильтрующие их соки для удаления патогенов, — еще один проект Дейзи Гинзберг и еще один штрих биотехнологичного будущего. Если верить, что прогресс действительно ведет от хорошего к лучшему, то можно согласиться, что именно таким оно и будет.

Александра Дейзи Гинзберг, Лондон

Образование: Кембриджский университет (архитектура), Стэнфордский университет (дизайн), Королевский колледж искусств (интерактивный дизайн)

"Развитие технологий ведет к тому,
что различие между природным и
рукотворным, между организмом и
механизмом начнет постепенно
размываться. Человек будет
по-всякому перестраивать первые
и частично выращивать вторые;
граница между ними станет
условной вплоть до невозможности
узнать происхождение объекта"

"В 2010 году американский инженер
и биолог Крейг Вентер (Craig Venter)
с группой синтезировал первую клетку с
искусственным геномом, собранном
на суперкомпьютере"

"В 1975 г. ведущие биологи мира приняли
решение наложить запрет на использование
технологии рекомбинантных ДНК, а затем
выработали правила работы с ними"

" «Химический синтез жизни - одна из задач,
всегда стоявших перед синтетической
органической химией» Крейг Вентер.

"Вентер движется к роли Бога: создает
искусственную жизнь, которая никогда
бы не возникла в природных условиях"

"Синтетическая биология – это программи-
рование жизни. Клетки – это живые
компьютеры, а ДНК – язык программирования"
Эндрю Хессель

Синтетическая биология (Синбио) – бурно развивающаяся теоретическая область биологии и практика, новое направление в генной инженерии. Более 100 лабораторий по всему миру занимаются синтетической биологией. Работы в этой области разобщены. Над их систематизацией работает биолог Дрю Энди из Массачусетского технологического института.
Термин синтетическая биология был употреблен в 1980 году. Его использовала Барбара Хобом во время описания бактерий, которая была генетически модифицирована с помощью рекомбинантных ДНК. Этот термин был вновь предложен в 2000 году Эриком Колом и рядом других докладчиков во время собрания Американского химического общества, которое проходит каждый год в городе Сан-Франциско.
Началом синтетической биологии стала работа Стивена Беннера (Steven Benner) и Питера Шульца (Peter Schultz). В 1989 г. Беннер из ETH (Eidgenssische Technische Hochschule) в Цюрихе создал ДНК, содержащую кроме четырёх известных букв генетического алфавита ещё две. С тех пор были получены несколько вариантов подобных ДНК, но пока никому не удалось добиться функционирования их генов, т. е. транскрипции и трансляции (синтеза белков).

ОПРЕДЕЛЕНИЕ

Их несколько. Вот ряд из них:

* Синтетическая биология связана с конструированием или реконструированием биологических систем или их компонентов и их созданием путем кодирования ДНК желаемой системы или компонента. Синтетическая биология обеспечивает эффективные технологии для воспроизводства природных организмов и создания «синтетического» биологического материала, которого не существует в природе.

* Синтетическая биология - это новое направление генной инженерии. Термин СИНТЕТИЧЕСКАЯ БИОЛОГИЯ (Synthetic Biology) долго использовался для описания подходов в биологии, стремящихся интегрировать различные области исследования для того, чтобы создать более целостный подход к пониманию концепции жизни. В последнее время термин «синтетическая биология» используется в другом значении, сигнализируя о новой области исследования, которая объединяет науку и инженерию с целью проектирования и построения новых (несуществующих в природе) биологических функций и систем.

* Проектирование и строительство биологических устройств и биологически[ систем для полезных целей.

* Синтетическая биология является новой биологической областью исследований, которая сочетает в себе науку и технику. Она охватывает целый ряд различных подходов, методологий и дисциплин и различных определений. У них общего, однако, тот факт, что они рассматривают синтетическую биологию новых биологических функций и систем проектирования и строительства, которые не встречается в природе.

* Область исследования, которая объединяет науку и инженерию с целью проектирования и построения новых (не существующих в природе) биологических функций и систем. Синтетическая биология - это новое направление генной инженерии.

* Синтетическая биология представляет собой конвергенцию достижений в области химии, биологии, информатики и техники. Эксперты в этих областях работают вместе, чтобы создать многоразовые, систематические методы для увеличения скорости, масштаба и точности в инженерии биологических систем. В некотором смысле, синтетическая биология может рассматриваться как развитие биологии на основе "инструментария", что позволяет улучшить продукцию во многих отраслях промышленности, в том числе медицине, энергетики и окружающей среды.

* Синтетическая биология - новейшее направление промышленной технологии на стыке информатики, электроники, химии и биологии, которое объединяет передовые области исследований с целью проектирования, синтеза и построения новых, в том числе, несуществующих в природе, биологических функций и живых систем. Современная синтетическая (системная) биология представляет собой инженерный инструментарий для проектирования функциональных и управляемых живых систем с заданными свойствами – энергетического, промышленного и производственного характера.

* «Синбио» занимается такими вещами, как вставкой машинно-генерируемых последовательностей ДНК в живые клетки, т.е., создание новых организмов в целом.

ЦЕЛИ СИНТЕТИЧЕСКОЙ БИОЛОГИИ

Главные цели следующие :
*Узнать о жизни больше, строя её из атомов и молекул, а не разбирая на части, как это делалось ранее.
*Сделать генную инженерию достойной её названия - превратить её из искусства в строгую дисциплину, которая непрерывно развивается, стандартизируя предыдущие искусственные создания и повторно комбинируя их, чтобы делать новые, более сложные живые системы, которых раньше не существовало в природе.
*Стереть границу между живым и машинами, чтобы прийти к действительно программируемым организмам.
* Cоздать обширный генетический банк, позволяющий создавать любой нужный организм (по аналогии с созданием электронной схемы из промышленных транзисторов и диодов). Банк составляют биокирпичи (BioBrick) - фрагменты ДНК, чья функция строго определена и которые можно внедрить в геном клетки для синтеза заранее известного белка. Все отобранные биокирпичи спроектированы так, чтобы хорошо взаимодействовать со всеми другими на двух уровнях:
механическом - чтобы их легко было изготовить, хранить и включать в генетическую цепочку; программном - чтобы каждый кирпич посылал определённые химические сигналы и взаимодействовал с другими фрагментами кода.
* Колонии бактерий смогут синтезировать несметные объемы пищи, лекарств, нужных веществ. При этом затраты будут минимальными, человек будет сыт, здоров, а больше ничего и не надо.
* Синтезировать живые организмы, которые будут производить большое количество топлива. В такой ситуации природную нефть и газ добывать не будет необходимости.
* Ближайшей целью пионеров этой отрасли науки является создание организма с минимальным геномом, то есть способного питаться, расти и размножаться.
* Целью синтетической биологии является рациональное создание биологических организмов с требуемыми свойствами. Это, конечно, очень похоже на генную инженерию, которая активно развивалась с 70-х годов прошлого века. Но синтетическая биология основана на более высоком уровне понимания биологических объектов, полученном благодаря развитию так называемой «системной» биологии.

ЗАДАЧИ СИНТЕТИЧЕСКОЙ БИОЛОГИИ

* Изучение организмов через их создание, а не через разложение на части.
* Развитие самой генной инженерии, с тем чтобы она соответствовала своему названию и стала дисциплиной, способной последовательно развиваться и создавать всё более сложные биологические системы.
* Расширение границ живого и неживого миров, чтобы в результате их пересечения появились программируемые живые существа.

ДОСТИЖЕНИЯ СИНТЕТИЧЕСКОЙ БИОЛОГИИ

* В 1989 г. Беннер из ETH (Eidgenssische Technische Hochschule) в Цюрихе создал ДНК, содержащую кроме четырёх известных букв генетического алфавита ещё две.

* В 2010 году американский инженер и биолог Крейг Вентер синтезировал первую клетку с искусственным геномом, собранном на суперкомпьютере.

* В мае 2010 года известный американский генетик Джон Крейг Вентер объявил о создании первой в мире частично синтетической живой клетки, способной к размножению (дрожжи, в геноме которых одна из хромосом заменена аналогом, полностью синтезированным в лаборатории).

* В фирме одного из отцов геномики К. Вентера был синтезирован из отдельных нуклеотидов геном бактерии-микоплазмы, который не похож ни на один из существующих микоплазменных геномов. Эту ДНК заключили в «готовую» бактериальную оболочку убитой микоплазмы и получили работающий, т.е. живой организм с полностью синтетическим геномом.

* Эволюция «запрограммировала» дрожжи на переработку сахара и производство различных биохимических веществ. В этот уже функционирующий организм инженер-химик из Беркли Кислинг добавил разработанную в лаборатории генетическую программу, составленную из 12 новых генов. Она изменила метаболизм дрожжей, и те стали производить артемизинин.

* Крейг Вентер и Джордж Черча создают самоподдерживающиеся, высокоэффективные организмы, которые преобразует солнечный свет непосредственно в чистое биотопливо с минимальным ущербом для окружающей среды и нулевым выходом парниковых газов. Эти организмы «заменят нефтехимическую промышленность, большую часть пищи, будут участвовать в биоочистке почвы и выработке экологически чистой энергии.

* Компании под названием «Evolva» удалось создать соединение, называемое ванилином, которое в отличии от ванили выросло не на лиане а на синтетических дрожжах.

ПЕРСПЕКТИВЫ СИНТЕТИЧЕСКОЙ БИОЛОГИИ

* Уже созданы СОЗДАНЫ ИСКУССТВЕННЫЕ НУКЛЕИНОВЫЕ КИСЛОТЫ, КОТОРЫЕ МОГУТ САМОРЕПЛИЦИРОВАТЬСЯ И ЭВОЛЮЦИОНИРОВАТЬ, ЧТО ОТКРЫВАЕТ НОВУЮ ЭРУ В СИНТЕТИЧЕСКОЙ БИОЛОГИИ. Реплика;ция (от лат. replicatio - возобновление, повторение)

* Назревает грандиозный кризис с антибиотиками. И если новых антибиотиков в ближайшее время не появится, то мы вернемся в XIX век, когда мы будем помирать от туберкулеза, холеры и прочей дряни.Производить новые антибиотики будут с использованием подходов синтетической биологии.

КОНФЕРЕНЦИИ ПО СИНТЕТИЧЕСКОЙ БИОЛОГИИ

* В июне 2004 г. Массачусетский технологический институт провел первую конференцию по синтетической биологии.

* Synthetic Biology - Gordon Research Conferences (New Gordon) - состоится 28 июня - 3 июля 2015
Научно-практическая конференция на синтетической биологии в Нью-Гордоне представит передовые исследования в этой быстро развивающейся области и обеспечит углубленное обсуждение на форуме практиков, из академических кругов и промышленности в различных областях, способствующих синтетической биологии.

* Школа-конференция "Синтетическая биология и проектирование биоинженерных устройств" 11 июля 2012 года в Московском корпусе МФТИ.
1. Совершенствование инженерной биологии для проектирования живых машин
2. Проектирование функционала промышленных микроорганизмов на АРМ с использованием комплекса программного обеспечения университетов США и Европы.
3. Высокопроизводительное моделирование компонентов промышленной биосистемы in silico для протеомного проектирования, разработки конфигурации, загрузки и ресурса клеточных органелл и др.
4. Испытания и отладка характеристик спроектированного кода в виртуальной среде (виртуальный стенд) на основе характеристик протеома, метаболома, транскриптома и эпигенома.
5. Синтез и трансфекция разработанного генетического кода в модельный микроорганизм in vitro.

* 6-я международной конференции по синтетической биологии в Лондоне - июль 2013
Большинство докладов и сообщений были посвящены модификациям молекулы ДНК.

ЗАКЛЮЧЕНИЕ

За последние сто лет наука, а вместе с ней и медицина развивались рекордными темпами. Однако победить главных врагов человечества - голод и болезни - так и не удалось. Синтетическая биология находиться на очередном этапе развития и скоро без неё будет трудно представить современный мир.
Cинтетическая биология, представляющая собой «очень мощный набор инструментов», приведет к созданию вакцины против гриппа, а, возможно, и против СПИДа. И недалёк тот день, когда микроорганизмы, способные потреблять углекислый газ и выделять энергию, создадут безопасную альтернативу традиционному ископаемому топливу. Теперь, когда синтетическая биология начинает прочно укореняться, наша задача состоит в том, чтобы будущие поколения считали ее скорее благом, чем проклятьем.
Однако синтетическая биология может создавать продукты двойного назначения, поэтому она должна находиться под строгим контролем государства.

Источники

1. Синтетическая биология (Synthetic Biology)
Синтетическая биология(Synthetic Biology) (синбио) - это зарождающаяся область естествознания, которая, однако, основана на принципах инженерного дела. По своей сути синтетическая биология связана с конструированием или реконструированием биологических систем или их компонентов и их созданием путем кодирования ДНК желаемой системы или компонента. Синтетическая биология обеспечивает эффективные технологии для воспроизводства природных организмов и создания «синтетического» биологического материала, которого не существует в природе. Синтетическая биология может использоваться для проведения коренных преобразований в в области естественных наук и их применении в здравоохранении, энергетике и многих других секторах, однако в этом контексте также возникает ряд серьезных вопросов этического характера и проблем, связанных с обеспечением биозащищенности.
2. Революция в области синтетической биологии: перспективы и риски
(http://ria.ru/science/20131126/979860591.html)
Джон Крейг Вентер вместе со специалистами из принадлежащей ему компании начал с ДНК и построил генетическую последовательность нуклеотидов, объем которой превышает один миллион бит информации. Семь лет назад Вентер стал первым в мире ученым, которому удалось создать биологический объект на основе имеющейся генетической информации.
Группа Вентера создала искусственную клетку бактерии, вставив в нее искусственно синтезированную ДНК, после чего ученые стали наблюдать за тем, как клетки бактерии движутся, питаются, и воспроизводят себя. Свою новую технологию Вентер назвал «синтетической геномикой», которая «появится сначала в цифровом компьютерном мире на базе цифровой биологии, а затем научится создавать новые модификации ДНК для вполне конкретных целей. … Это может означать, что по мере познания законов существования различных форм жизни, человек сможет создавать самообучающиеся робототехнические и вычислительные системы.
Синтетическая геномика в сочетании с другим прорывным направлением в биологии – так называемыми исследованиями неоморфных мутаций (или как их еще называют мутациями приобретения функции или GOF-исследованиями) – не только открывает огромное количество новых перспектив, но вместе с этим задает множество трудных вопросов и создает угрозы для национальной безопасности.
Кое-кто уже называет работу Вентера по созданию новых искусственных бактерий “4-D печатью”. Напомню, что 2-D печать – это самый обычный процесс печати, который начинается после нажатия на клавиатуре клавиши “Print”, в результате чего самый обыкновенный принтер выдает вам распечатанную статью и т.п. Однако промышленные компании, дизайнерские бюро и другие потребители уже переходят на 3-D печать – в этом случае сигнал подается к устройствам, содержащим всякие материалы типа пластмассы, графита и даже продукты питания, а на выходе мы получаем трехмерные продукты. В случае 4-D печати добавляются две важные операции: самосборка и самовоспроизведение. Сначала идея формализуется и попадает в компьютер, затем отправляется на 3-D принтер, и на выходе мы получаем конечный продукт, способный себя копировать и трансформировать. Вентер и еще несколько сотен специалистов в области синтетической биологии утверждают, что 4D-печать особенно хорошо подходит для конструирования живых объектов с помощью кирпичиков, из которых состоят сами живые объекты, то есть из ДНК.
Синтетическая геномика в сочетании с другим прорывным направлением в биологии – так называемыми исследованиями неоморфных мутаций (или как их еще называют мутациями приобретения функции или GOF-исследованиями) – не только открывает огромное количество новых перспектив, но вместе с этим задает множество трудных вопросов и создает угрозы для национальной безопасности.
Теперь биолог стал инженером, который программирует новые формы жизни как ему вздумается. Биологи теперь все больше способны управлять эволюцией, т.е. мы являемся свидетелями “конца дарвинизма”. Как только информационные макромолекулы получат возможность наследовать полезные мутации путем самоподдерживающейся дарвиновской эволюции, они могут начать порождать новые формы жизни”.
Синтетическая биология в ближайшем будущем породит экономический и технологический бум, как в самом начале нынешнего века это сделали Интернет и социальные медиатехнологии.
Генная инженерия существующих в природе форм жизни и создающая новые – это передний край биологии.

Вентер ничуть не сомневался в том, что синтетическая биология, представляющая собой «очень мощный набор инструментов», приведет к созданию вакцины против гриппа, а, возможно, и против СПИДа. И недалёк тот день, когда микроорганизмы, способные потреблять углекислый газ и выделять энергию, создадут безопасную альтернативу традиционному ископаемому топливу. Теперь, когда синтетическая биология начинает прочно укореняться, наша задача состоит в том, чтобы будущие поколения считали ее скорее благом, чем проклятьем.

3. Что такое синтетическая биология?
Синтетическая биология - это новое направление генной инженерии. Термин СИНТЕТИЧЕСКАЯ БИОЛОГИЯ (Synthetic Biology) долго использовался для описания подходов в биологии, стремящихся интегрировать различные области исследования для того, чтобы создать более целостный подход к пониманию концепции жизни. В последнее время термин «синтетическая биология» используется в другом значении, сигнализируя о новой области исследования, которая объединяет науку и инженерию с целью проектирования и построения новых (несуществующих в природе) биологических функций и систем.

4.Synthetic biology WIKI en.
Синтетическая биология является междисциплинарной ветвь биологии, сочетая такие дисциплины, как биотехнологии, эволюционной биологии, молекулярной биологии, системной биологии andbiophysics, и во многом связанных с генной инженерией.
Определение синтетической биологии является сильно обсуждается не только среди ученых-естественников, но и в гуманитарных науках, искусстве и политике. Один из популярных определение "Проектирование и строительство биологических устройств, и биологические системы для полезных целей." Тем не менее, функциональные аспекты этой стебля определения молекулярной биологии и биотехнологии.

5.Synteettinen biologia
Синтетическая биология (эсперанто)
Синтетическая биология является новой областью исследований биологического который сочетает в себе науку и in;enierarton. Синтетическая биология включает в себя несколько различных подходов, методологий и дисциплин, и существуют различные определения. Какие они все разделяют, однако, является то, что они рассматривают синтетическую биологию в качестве проектирования и строительства новых биологических функций и систем, которые не встречаются в природе.
Работа по restriktonucleases не только позволяет с легкостью создавать rekombinado-ДНК-молекул и анализировать отдельные гены, но и привел нас в новую эру синтетической биологии, где не только существующие гены описаны и проанализированы, но и новые механизмы ген может быть построен и оценены.

6.Синтетическая биология (с финского)
Синтетическая биология является новой биологической областью исследований, которая сочетает в себе науку и технику. Она охватывает целый ряд различных подходов, методологий и дисциплин и различных определений. Что у них общего, однако, тот факт, что они рассматривают синтетическую биологию новых биологических функций и систем проектирования и строительства, которые не встречается в природе.

7. Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology
Volume 2, Issue 1, Синтетические биологи инженер сложные искусственные биологические системы, чтобы исследовать естественный биологический феномен и для различных применений. Мы опишем основные черты синтетической биологии в качестве нового инженерных дисциплин, охватывающих примеры из новейшей литературы и размышляя о особенностей, которые делают его уникальным среди всех других существующих инженерных областях. Мы обсудим методы для проектирования и строительства инженерных клетки с новыми функциями в рамках абстрактной иерархии биологических устройств, модулей, клеток и многоклеточных систем. Классические инженерные стратегии стандартизации, развязки, и абстракция придется быть продлен с учетом собственных характеристик биологических устройств и модулей. Для достижения предсказуемости и надежности, стратегии технического биологии должна включать в себя понятие клеточного контекста в функциональном определении устройств и модулей, рационального использования редизайн и направленной эволюции для оптимизации системы, и сосредоточиться на решении задач с использованием клеточных популяций, а не отдельных клеток. Обсуждение выявляет вопросов на сердце проектировании сложных живых систем и обеспечивает траекторию будущего развития.

8. Five hard truths for synthetic biology Пять жестких истины для синтетической биологии
Published online 20 January 2010 | Nature 463, 288-290 (2010) | doi:10.1038/463288a
(http://www.nature.com/news/2010/100120/full/463288a.html)

9.Синтетическая биология Наука
(http://ru.science.wikia.com/wiki/ Синтетическая_биология)
Синтетическая биология (англ. Synthetic Biology) - термин, долго использовавшийся для описания подходов в биологии, стремящихся интегрировать различные области исследования для того, чтобы создать более целостный подход к пониманию концепции жизни.
В последнее время термин используется в другом значении, сигнализируя о новой области исследования, которая объединяет науку и инженерию с целью проектирования и построения новых (несуществующих в природе) биологических функций и систем.
Синтетическая биология - это новое направление генной инженерии. Развивается небольшой плеядой учёных. Главные цели следующие:
Узнать о жизни больше, строя её из атомов и молекул, а не разбирая на части, как это делалось ранее.
Сделать генную инженерию достойной её названия - превратить её из искусства в строгую дисциплину, которая непрерывно развивается, стандартизируя предыдущие искусственные создания и повторно комбинируя их, чтобы делать новые, более сложные живые системы, которых раньше не существовало в природе.
Стереть границу между живым и машинами, чтобы прийти к действительно программируемым организмам.
Более 100 лабораторий по всему миру занимаются синтетической биологией. Работы в этой области разобщены; над их систематизацией работает биолог Дрю Энди из Массачусетского технологического института. Это позволит проектировать живые системы, которые ведут себя предсказуемым (и заказанным по желанию) образом и используют взаимозаменяемые детали из стандартного набора генов. Учёные стремятся создать обширный генетический банк, позволяющий создавать любой нужный организм (по аналогии с созданием электронной схемы из промышленных транзисторов и диодов). Банк составляют биокирпичи (BioBrick) - фрагменты ДНК, чья функция строго определена и которые можно внедрить в геном клетки для синтеза заранее известного белка.
Все отобранные биокирпичи спроектированы так, чтобы хорошо взаимодействовать со всеми другими на двух уровнях:
механическом - чтобы их легко было изготовить, хранить и включать в генетическую цепочку;
программном - чтобы каждый кирпич посылал определённые химические сигналы и взаимодействовал с другими фрагментами кода.
Синтетическая биология способна создать генинженерные бактерии, которые могут производить сложнейшие и дефицитные лекарства дёшево и в промышленных объёмах. Спроектированные геномы могут привести к появлению альтернативных источников энергии (синтез биотоплива) или к бактериям, которые помогут удалять излишний углекислый газ из атмосферы.

10.Синтетическая теория эволюции
ВИКИ ру.

Синтетическая теория эволюции (также современный эволюционный синтез) - современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.
Таким образом, сущность синтетической теории составляет преимущественное размножение определённых генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов.
для осуществления эволюции необходимо наличие трёх процессов:
мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;
рекомбинационного, создающего новые фенотипы особей;
селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.
синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.
Эволюция далеко не всегда носит дивергентный характер.
Эволюция не обязательно идет постепенно. Не исключено, что в отдельных случаях внезапный характер могут иметь и отдельные макроэволюционные события.
Макроэволюция может идти как через микроэволюции, так и своими путями.
Согласно неодарвинизму, все признаки живых существ полностью определяются генотипом и характером отбора. Поэтому параллелизм (вторичное сходство родственных существ) объясняется тем, что организмы унаследовали большое количество одинаковых генов от своего недавнего предка, а происхождениеконвергентных признаков целиком приписывается действию отбора.
Авторы пунктуализма противопоставляют свой взгляд градуализму - представлению Дарвина о постепенной эволюции путем мелких изменений - и считают прерывистое равновесие достаточным поводом для отрицания всей синтетической теории.

11.Программируемая материя ВИКИ ру.

Синтетическая биология (раздел)
Синтетическая биология - это область исследований, направленных на создание клеток с «новыми биологическими функциями». Такие клетки обычно используются для создания больших систем (например, биоплёнки), которые могут быть «запрограммированы» на использование синтетических генных сетей (таких, как генетические бистабильные переключатели), чтобы они могли изменять свой цвет, форму и т. д.
Ссылки
Программируемая материя
Boston University’s Programmable Matter Group (англ.)
Claytronics Project at Carnegie Mellon University (англ.)
Universally Programmable Intelligent Matter Project (англ.)

12.Искусственный геном ВИКИ ру.
Искусственный геном - направление в биологических исследованиях, связанное с генетической модификацией существующих организмов с целью создания организмов с новыми свойствами. В отличие от генной инженерии, искусственный геном состоит из генов, синтезированных химическим путём.
Предполагается, что в перспективе могут быть созданы искусственные геномы не на основе ДНК или с использованием другого набора нуклеотидов и других принципов кодирования, чем в естественных геномах. Таким образом, создание искусственных геномов - одно из направлений синтетической биологии.
Биологическая безопасность
предотвращение широкомасштабной потери биологической целостности, которая может иметь место в результате:-
внедрения чужеродных форм жизни в сложившуюся экосистему;
введения чуждых вирусных или трансгенных генов или прионов;
бактериального загрязнения пищи;
воздействия генной терапии или инженерии или вирусов на органы и ткани;
загрязнения природных ресурсов (воды, почвы);
возможного внедрения чужеродных микроорганизмов из космоса.
В синтетической биологии (имеется в виду риски, связанные с этим типом лабораторных практике)

In synthetic biology (referring to the risks associated with this type of lab practice)

13.Синтетическая биология Традиция
http://traditio-ru.org/wiki/
Область биологии создающая/трансформирующая живые организмы.
XIX век
Расцвет, бурное развитие СБ пришлось на середину XIX века - начало XX века :

Витализм
Успехи синтеза сопровождались в это время экспериментальными успехами виталистов (см. Дриш Embryo Encyclopedia)

Современные работы[править]
Современные работы характеризуются неверотно большими объемами оперируемой био-информации (см. системная биология) и (супер/ультра) тонким физическим инструментрием:
трехмерный (био)принтер органов запрос в Гугл.
синтез живой клетки living cell synthesis - запрос картинок в Гугл
Паралелльность создания жизни и искусственного интеллекта.

Философия/онтология
Философско-онтологические вопросы СБ:
Принцип Рэди - живое от живого (в програмах DARPA - это проявилось вживлением электронных систем в насекомых и крыс)
Различие био и зое
сведена к минимуму, когда главенствует "биос". Валентин Томберг. Старшие арканы Таро

14.Синтетическая биология
http://positime.ru/synthetic-biology
Как известно, термин синтетическая биология был употреблен в далеком 1980 году. Его использовала Барбара Хобом во время описания бактерий, которая была генетически модифицирована с помощью рекомбинантных ДНК. Этот термин был вновь предложен в 2000 году неким Эриком Колом и рядом других докладчиков во время собрания Американского химического общества, которое проходит каждый год в городе Сан-Франциско
Стоит отметить, что этот термин в 2000 году был использован для того, чтобы описать процесс синтеза искусственных органических молекул, которые играю очень важную роль в живых системах.
Эта область является новой в биологии. Она была созданная для того, чтобы проектировать и создавать совершенно новые биологические системы, которые не встречаются в природе. Синтетическая биология добавляет к существующим организмам новые свойства, например, бактерии, могут получить новые свойства или пройти определенный этап модификации. Ожидается, что в будущем они смогут самостоятельно существовать и заниматься воспроизводством.
Синтетическию биологию создали для того, чтобы узнать о жизни намного больше и при этом не заниматься разборкой молекул и атомов на части. Превратить генную инженерию в что-то новое, в строгую дисциплину, которая постоянно находится в развитии. Также одной из целей является стирание граней между машинами и людьми, и добиться возможности осуществления программирования человеческого организма.
Одним словом, синтетическая биология находиться на очередном этапе развития и скоро без неё будет трудно представить современный мир.

15.Синтетическая биология меняет мир
http://www.inventor.perm.ru/news_2011/2010_05_02_01.htm
За последние сто лет наука, а вместе с ней и медицина развивались рекордными темпами. Однако победить главных врагов человечества - голод и болезни - так и не удалось.
Тем временем, на горизонте появились и другие серьезные проблемы, например, энергетический кризис, связанный с сокращением запасов нефти и газа. Решить все эти проблемы обязуются адепты нового направления в науке - синтетической биологии. В конце 2010 года, в американском Институте Крейга Вентера была создана первая бактерия с полностью синтетическим геномом. Теперь от исследователей в буквальном смысле ждут чудес. Сам Крейг Вентер, а также его конкуренты заявляют о том, что человечеству необходимы новые подходы в обеспечении себя пищей и энергетическими ресурсами. И эти подходы они готовы предоставить.
Появление первой синтетической бактерии буквально взорвало научный мир. Оно и понятно - Вентеру и его коллегам удалось невероятное - создать из мертвой материи жизнь.
Когда ученые допустили всего лишь одну ошибку в молекуле, состоящей из 1,08 млн пар нуклеотидных оснований, клетка не ожила. Но в итоге работу удалось выполнить безупречно, и на свет явилась искусственно созданная, но вполне живая клетка. Ее название - Mycoplasma mycoides JCVI-syn 1.0.
Синтетическая биология очень перспективное направление в генной инженерии. Если обычно ученые вмешиваются в уже существующий ДНК животных и растений, присваивая им невиданные доселе свойства, то синтетическая биология занимается созданием принципиально новых живых систем. Ближайшей целью пионеров этой отрасли науки является создание организма с минимальным геномом, то есть способного питаться, расти и размножаться.
Бактерия с минимальным геномом станет основой, к которой можно добавлять новые участки геномов с заданными качествами. Будут получаться микробы, например, генерирующие в процессе жизнедеятельности спирт или молекулы полимеров, из которых потом можно делать пластмассу. Таким образом, синтетическая биология стирает грань между Жизнью и машинами, программируемыми на определенную деятельность.
Один из основных инвесторов Крейга Вентера- Министерство энергетики США. Это ведомство ежегодно в 2008-2010 годах вкладывало по 115 млн долларов в разработки Вентера. Интерес базируется на ожидании чудес в области альтернативной энергетики. Эксперты верят в то, что уже через 15-20 лет наработки исследователей можно будет использовать в создании альтернативных источников энергии.
Еще в 2009 году Крейг Вентер и его компания заключили договор с нефтегазовым гигантом ExxonMobil по разработке дешевого и экологически безопасного топлива. Цена вопроса - 600 млн долларов. Согласно проекту, источником биотоплива станут водоросли с измененным геномом, который позволит им производить углеводороды, похожие по составу на органические вещества нефти. Все что нужно водорослям - солнечный свет и вода, их биомасса увеличивается очень быстро, и выращивать их можно в неограниченных количествах.
сотрудники Йельского университета разработали прямой метод получения электричества с помощью бактерий. Всего две живые клетки могут превращать энергию химических реакций в электричество с КПД в 10%. Однако осложнения вызывает возможность промышленного использования такого метода. Колония бактерий просто уничтожит себя тем же электричеством, которое выделит.
Миллионные колонии бактерий смогут синтезировать несметные объемы пищи, лекарств, нужных веществ. Будет тот "вечный хлеб", о котором мечтали химики в XIX веке. При этом затраты будут минимальными, человек будет сыт, здоров, а больше ничего и не надо.
От малярии в Африке умирает ежегодно около 2 млн человек. Эффективное средство против малярии - артемизинин. Его изготовляют из корня сладкой полыни. Такое производство обходится "в копеечку", и жителям Африки не по карману. В 2004 году химик Калифорнийского университета Джей Кизлинг провел ряд экспериментов, которые показали, что путь к удешевлению лекарства есть. Изготовлять артемизинин ученый придумал с помощью дрожжей.
Одно из направлений синтетической биологии, которым мы занимаемся - конструирование искусственных молекул, обладающих свойствами ДНК, но состоящих из 6 молекул. Разработки, которые применяются в медицине приносят нам 100 млн долларов в год." - говорит профессор химии Флоридского университета Стивен Беннер. По словам ученого такой подход более амбициозен, чем наработки Крейга Вентера, который использует участки природной ДНК.

Кристофер Войт и Кристина Смолке пошли еще дальше. Они создают бактерии-симбионты, которые смогут жить в человеческом организме, при этом отыскивая в нем раковые клетки. В планах получение бактерий-убийц, которые могли бы уничтожать раковые клетки.
Астробиологи NASA в декабре 2010 года сумели получить бактерии, которые функционируют без фосфора - одного из стандартных элементов, на которых держится земная форма жизни. В качестве замены был использован мышьяк. Утверждение о том, что в клеточной структуре должен быть фосфор, а без него жизнь невозможна, являлось догмой для биологов всего мира. Этот эксперимент подрывает устои традиционной биологии, заставляет людей понять, что их знания об этом мире ничтожны. Стин Расмуссен пытается вовсе отойти от ДНК, заменив ее пептидно-нуклеиновой кислотой(ПНК). Эта молекула будет расположена не внутри клетки, а снаружи. Так клетке будет легче питаться и дышать, утверждают ученые.

16.синтетическая биология
(http://ru.knowledgr.com/00519961/синтетическая биология)
Синтетическая биология - новая область биологического исследования и технологии, которая объединяет науку и разработку. Это охватывает множество разных подходов, методологий, и дисциплинирует со множеством определений. Общая цель - проектирование и строительство новых биологических функций и систем, не найденных в природе.
Биологические системы - физические системы, которые составлены из химикатов. Вокруг начала XX века наука о химии прошла переход от изучения естественных химикатов к попытке проектировать и построить новые химикаты. Этот переход привел к области синтетической химии. В той же самой традиции некоторые аспекты синтетической биологии могут быть рассмотрены как расширение и применение синтетической химии к биологии, и включать работу в пределах от создания полезных новых биохимикатов к изучению происхождения жизни.
Исследования в синтетической биологии могут быть подразделены на широкие классификации согласно подходу, который они проявляют к проблеме под рукой: дизайн фотоэлемента, биомолекулярная разработка, разработка генома и биомолекулярный дизайн. Подход фотоэлемента включает проекты сделать системы самомультиплицирования из полностью синтетических компонентов. Биомолекулярная разработка включает подходы, которые стремятся создавать набор инструментов функциональных единиц, которые могут быть введены, чтобы представить новые ортогональные функции в живых клетках. Разработка генома включает подходы, чтобы построить синтетические хромосомы для целых или минимальных организмов. Подход биомолекулярного дизайна отсылает к общему представлению о de novo дизайн и комбинацию биомолекулярных компонентов. Задача каждого из этих подходов подобна: создать более синтетический вход в более высоком уровне сложности, управляя частью продолжающегося уровня.

17.Синтетическая биология
(http://www.sci-lib.net/index.php?showtopic=3905)
20.08.2007, 13:16
Биологи намерены создать первый живой организм в течении предстоящего десятилетия
Ученые всего мира в настоящее время активно занимаются новым, но крайне перспективным направлением науки - синтетической биологией, основная задача которой состоит в искусственном создании живых организмов. По прогнозу специалистов, первые синтетические, но тем не менее живые организмы будут созданы через 3 - 10 лет, сообщает AP.

"Это будет очень большое достижение и всем необходимо об этом знать. Мы говорим о технологии, которая может фундаментально изменить наши мир, на самом деле даже сложно предсказать, как именно он изменится" - говорит Марк Бедоу, операционный директор итальянской компании ProtoLife, которая также занимается синтетической биологией.

Естественно, что первые искусственно созданные живые организмы будут самыми примитивными - бактерии, созданные на основе генно-моделированных ДНК и всех органических компонентов, без которых невозможно существование живого организма. Основная задача, стоящая на сегодня в данных исследованиях, заключается в создании так называемых протоклеток, то есть "строительных материалов" из которых будут созданы будущие живые организмы.

"Создание протоклеток важно не только с точки зрения получения искусственных бактерий, но и для понимания того, как во Вселенной зарождалась жизнь в естественных условиях" - говорит он.

Ученые отмечают, что уже на протяжении нескольких лет они бьются над загадкой, насколько минимальным и в то же время универсальным должен быть набор генов, чтобы обеспечить организму выживание. Знание этого позволит генетикам в буквальном смысле слова стать "творцами жизни".

Однако мнения по поводу данных исследований даже в научной среде расходятся. Часть ученых полагают, что синтетическая биология - это источник решения многих проблем современного мира, таких как загрязнение воздуха, создание топлива, борьба с различными заболеваниями и другие области. Другие же говорят о том, что если эти разработки попадут в руки злоумышленников, то последствия этого могут быть по-настоящему страшными, так станет можно создавать бактерии, вирусы и прочие микроорганизмы, способные вызывать страшнейшие эпидемии и мутации.

И тем не менее, на сегодня исследования идут. По словам Бедоу, перед тем как будут созданы синтезированные живые организмы, мировой науке еще предстоит решить ряд задач:

18.О синтетической биологии
(http://novostinauki.ru/news/61245/)
Генная инженерия распахивает ручищи до размеров, которые называются синтетическая биология. Это вовсе не формальный союз генетиков, ботаников и физиков с химиками. Это генетическая инженерия, которая не отдельные гены туда-сюда переносит, а изучает строение целых геномов, принципы их функционирования и приближается к тому, чтобы клепать совершенно новые организмы на свое усмотрение.
Вопросами синтетической биологии занимается преимущественно фундаментальная биохимия, молекулярка, химия, физика, информатика, а прикладная сфера ограничена микробиологией, возможно еще фармакологией. Растительная синтетическая биология еще в загоне, а в пищевой технологии и сельском хозяйстве только первое приближение.

19.Перспективы синтетической биологии
(http://novostinauki.ru/news/49977/)
СОЗДАНЫ ИСКУССТВЕННЫЕ НУКЛЕИНОВЫЕ КИСЛОТЫ, КОТОРЫЕ МОГУТ САМОРЕПЛИЦИРОВАТЬСЯ И ЭВОЛЮЦИОНИРОВАТЬ, ЧТО ОТКРЫВАЕТ НОВУЮ ЭРУ В СИНТЕТИЧЕСКОЙ БИОЛОГИИ –
Синтетические нуклеиновые кислоты, которые назвали ксенонуклеиновыми кислотами, ведут себя так же, как их природные аналоги, генетические полимеры ДНК и РНК. То есть это спиральные молекулы, которые способны удваиваться, а также эволюционировать, т.е. производить замены отдельных элементов в своей цепочке. О создании таких нуклеиновых кислот сообщили исследователи из Лаборатории молекулярной биологии Совета по медицинским исследованиям (MRC Laboratory of Molecular Biology) в Кембридже, Великобритания, опубликовав статью в Science (20 April, 2012). Это достижение найдет применение не только в биотехнологии и конструировании новых лекарственных препаратов, но также в изучении вопроса о происхождении жизни – на Земле и за ее пределами, пишет The Scientist. По словам эксперта издания Эрика Кула (Eric Kool) (Stanford University, California), получение ксенонуклеиновых кислот говорит о том, что "не нужно привязываться к рибозному или дезоксирибозному скелету РНК или ДНК для того, чтобы располагать передаваемой, наследуемой и эволюционирующей информацией". Ученые пытались создавать всевозможные ксенонуклеиновые кислоты последние лет 20, манипулируя различными сахарами в качестве замены рибозным и дезоксирибозным остаткам. В частности, при создании подобия ДНК под названием ТНК (TNA) использовалась треоза, а ангидрогекситол дал название искусственному биополимеру ГНК (HNA). Эти молекулы изучались с целью применения в биотехнологии и медицине. Однако они не были аналогами ДНК и РНК в биологическом смысле – не самореплицировались и не эволюционировали.

20.Синтетическая биология изменит наш мир
(http://oagb.ru/info.php?txt_id=17&nid=15667&page=0)
Тридцать лет назад геолог Дугал Диксон обрел известность благодаря своей книге «После человека: зоология будущего». В ней автор фантазирует о том, как преобразится животный мир далеких времен, где уже не будет людей.

21. Мыши-миноискатели
В 2012 году группа ученых из Хантер-колледжа Городского университета Нью-Йорка вывели мышей, гиперчувствительных к запаху взрывчатки.
У мыши MouSensor с помощью генной инженерии удалось значительно увеличить (до 1 млн) количество нейронов обонятельной луковицы, реагирующих на молекулы конкретного вещества - 2,4-динитротолуола (ДНТ, запах его похож на запах ТНТ - тротила).
Комары против малярии

Например, группой ученых из Калифорнийского университета в Ирвине и французского Центра Пастера уже созданы трансгенные комары, обладающие повышенной сопротивляемостью Plasmodium falciparum (возбудителю самого смертоносного типа малярии). Технические возможности сегодня позволяют распространить крупные популяции модифицированных насекомых в главных очагах заражения и тем самым сдержать размножение диких особей, несущих инфекцию.
Резать по живому

Совсем недавно биологи разработали новую технологию геномного редактирования - CRISPR, которая позволяет вырезать и вставлять фрагменты ДНК с высочайшей точностью. Это открывает совершенно новые перспективы в генной инженерии. Нас уже не удивляют овцы с повышенным содержанием в мясе жирных кислот Омега-3, созданные китайскими учеными из Института генетики и биологии развития в Пекине, или модернизированные биологами из Университета Вайоминга козы, в молоке которых содержится белок паучьего шелка. В настоящее время молекулярный генетик Скотт Фаренкруг из Университета Миннесоты воплощает свою идею - выращивает безрогих коров. Для этого он вырезал из генома молочной коровы десять генетических букв и вставил 212 от другой породы. И все же генные инженеры пока заняты мелкими правками, сводящимися к получению нужного вещества или снижению риска болезней у животного. Если же заглянуть в завтрашний день, мы увидим совсем иную картин
Принципы синтетической биологии позволяют получать значительно больший контроль над процессом конструирования, открывая перед учеными новые возможности быстрого оперирования нужными свойствами организмов на принципиально новом - генетическом - уровне»
Теперь же развитие технологий ведет к тому, что различие между природным и рукотворным, между организмом и механизмом начнет постепенно размываться. Человек будет по-всякому перестраивать первые и частично выращивать вторые; граница между ними станет условной вплоть до невозможности узнать происхождение объекта.

22. Интервью с микробиологом Константином
(http://postnauka.ru/talks/27769)
Что такое синтетическая биология?
- В широком смысле целью синтетической биологии является рациональное создание биологических организмов с требуемыми свойствами. Это, конечно, очень похоже на генную инженерию, которая активно развивалась с 70-х годов прошлого века. Но синтетическая биология основана на более высоком уровне понимания биологических объектов, полученном благодаря развитию так называемой «системной» биологии.


Системная биология возникла в связи с развитием ряда высокопроизводительных «high throughput» аналитических технологий. На основе этих технологий возникли новые области знаний, их часто суммарно называют «омиками». Это геномика, которая позволяет определить все гены организма; транскриптомика, которая позволяет количественно определить уровень активности всех генов, работающие в конкретном типе клеток в данной ткани в данное время; протеомика, которая позволяет определить все белки, имеющиеся в том или ином типе клеток, ткани, и т. д. Есть еще метаболомика - это определение всех малых молекул, метаболитов, которые есть в клетке, в ткани или в каком-то другом природном образце.
С точки зрения синтетической биологии микробиология впереди планеты всей, поскольку микробы - это идеальные модельные объекты. Они очень простые по сравнению с нами, поэтому многие вещи с ними делать гораздо удобнее и легче. Формально первый (и пока единственный) полностью синтетической организм - это микроб, сделанный несколько лет назад группой Крейга Вентера. Это тот самый человек, который первым определил геном человека (свой собственный)
Новые антибиотики будут получать за счет использования методов синтетической биологии. У нас назревает грандиозный кризис с антибиотиками. И если новых антибиотиков в ближайшее время не появится, то мы вернемся в XIX век, когда мы будем помирать от туберкулеза, холеры и прочей дряни.
Производить новые антибиотики будут с использованием подходов синтетической биологии.

23. What is synthetic biology?
(http://www.synberc.org/what-is-synbio)
Синтетическая биология представляет собой конвергенцию достижений в области химии, биологии, информатики и техники. Эксперты в этих областях работают вместе, чтобы создать многоразовые, систематические методы для увеличения скорости, масштаба и точности в инженерии биологических систем. В некотором смысле, синтетическая биология может рассматриваться как развитие биологии на основе "инструментария", что позволяет улучшить продукцию во многих отраслях промышленности, в том числе медицине, энергетики и окружающей среды.
Прогресс на пути к синтетической биологии только был практически достигнут практические с появлением двух основополагающих технологий, секвенирование ДНК и синтеза. С секвенированием возросло наше понимание компонентов и в организации естественных биологических систем и синтез предоставил возможность начать тестировать проекты новых, синтетических биологических частей и систем.

24. Synthetic Biology - Gordon Research Conferences (New Gordon Conference)
(http://www.grc.org/programs.aspx?id=15842)
28 июня - 3 июля 2015
2015 Гордон научно-практическая конференция на синтетической биологии представит передовые исследования от этой быстро развивающейся области и обеспечит углубленное обсуждение на форуеме практиков, из академических кругов и промышленности в различных областях, способствующих синтетической биологии.
Синтетическая биология - дизайн более сложных биологических систем в соответствии с принципами, набранных из классических инженерных дисциплин - переживает быстрый рост с момента ее основания областях - таких, как разработка биологических схем - в широком области научных и промышленных биотехнологий.
Коллегиальная атмосфера, с запрограммированными дискуссионными заседаниями, а также возможности для неформальных встреч во второй половине дня и вечером, дает возможность для мозгового штурма и способствует междисциплинарному сотрудничеству в различных областях исследований.

25. Школа-конференция "Синтетическая биология и проектирование биоинженерных устройств" 11 июля 2012 года в Московском корпусе МФТИ.
(http://synbio2012.ru/)
Синтетическая биология - новейшее направление промышленной технологии на стыке информатики, электроники, химии и биологии, которое объединяет передовые области исследований с целью проектирования, синтеза и построения новых, в том числе, несуществующих в природе, биологических функций и живых систем. Современная синтетическая (системная) биология представляет собой инженерный инструментарий для проектирования функциональных и управляемых живых систем с заданными свойствами – энергетического, промышленного и производственного характера.
Достижения последнего десятилетия в области геномных и клеточных технологий по своему значению для индустрии и экономики государств мира, сравнимо с открытием полупроводников в середине прошлого века и развитием радиоэлектронной промышленности в Кремниевой долине.
В 2010 году американский инженер и биолог Крейг Вентер синтезировал первую клетку с искусственным геномом, собранном на суперкомпьютере. С тех пор крупнейшими заказчиками исследований в этой области являются Министерство обороны США, Министерство энергетики США, компании оборонно-промышленного комплекса (Raytheon, Lockheed-Martin и др.).

26. W: Ксено-нуклеиновые кислоты - синтетические конкуренты ДНК

На прошедшей в Лондоне 6-й международной конференции по синтетической биологии подавляющее большинство докладов и сообщений были посвящены тем или иным модификациям молекулы ДНК.

27. Уэйт Гиббс Синтетическая жизнь
(http://wsyachina.narod.ru/biology/handmade_life_2.html)
Новое направление в генной инженерии - синтетической биологии.
Три основные задачи синтетической биологии:
Во-первых, это изучение организмов через их создание, а не через разложение на части. Во-вторых, развитие самой генной инженерии, с тем чтобы она соответствовала своему названию и стала дисциплиной, способной последовательно развиваться и создавать всё более сложные биологические системы. В-третьих, расширение границ живого и неживого миров, чтобы в результате их пересечения появились программируемые живые существа.
Началом синтетической биологии стала работа Стивена Беннера (Steven Benner) и Питера Шульца (Peter Schultz). В 1989 г. Беннер из ETH (Eidgenssische Technische Hochschule) в Цюрихе создал ДНК, содержащую кроме четырёх известных букв генетического алфавита ещё две. С тех пор были получены несколько вариантов подобных ДНК, но пока никому не удалось добиться функционирования их генов, т. е. транскрипции и трансляции (синтеза белков).
Основу всех организмов составляют одинаковые молекулы: пять нуклеотидов - мономеры, из которых состоят ДНК и РНК,и 20 аминокислот - строительных блоков белковых молекул.(У небольшого числа видов есть ещё по крайней мере две дополнительные аминокислоты.)
Дэвис подумывает о создании лейкоцитов, которые синтезируют необычные белки, мгновенно разрушающие патогенные микроорганизмы или раковые клетки.
Приоритетной сферой применения искусственных живых систем станут работы, где приходится иметь дело с опасными для жизни химическими веществами.
Слегка модифицировав бактерию, можно будет получать дорогостоящие химические соединения, использующиеся в косметической промышленности, а самое главное - противораковый препарат таксол.
В 1975 г. ведущие биологи мира приняли решение наложить запрет на использование технологии рекомбинантных ДНК, а затем выработали правила работы с ними.

28. Эпохальное достижение: Ученые добились успеха в синтезе дрожжей
В мае 2010 года известный американский генетик Джон Крейг Вентер объявил о создании первой в мире частично синтетической живой клетки, способной к размножению.
В отличие от бактерий, дрожжи являются эукариотами, то есть их клетки содержат ядра, и именно в них находятся хромосомы, являющиеся носителями наследственной информации.
В журнале Science исследователи представили свое, можно считать, эпохальное достижение на этом пути: дрожжи, в геноме которых одна из хромосом заменена аналогом, полностью синтезированным в лаборатории.
Всего в дрожжевой клетке содержится 16 хромосом, и хромосома номер 3 - одна из самых маленьких: на ее долю приходится всего лишь 2,5 процента наследственного материала, состоящего из 12 миллионов пар нуклеотидных оснований.
Сперва спроектировали всю хромосому в компьютере, а затем в строгом соответствии с этим планом синтезировали ее в химической лаборатории.
Особое значение этой работе придает тот факт, что искусственная хромосома не в полной мере идентична природной.
Руководитель проекта "Синтетические дрожжи 2.0" Джеф Бука (Jef Boeke), профессор молекулярной биологии и генетики университета Джонса Хопкинса и директор Института системной геномики при Лангонском медицинском центре Нью-Йоркского университета.
Синтетическая биология переходит от теории к практике. Другие группы исследователей уже работают над синтезом других хромосом, а потому профессор Бука уверен, что дрожжи с полностью синтезированным геномом удастся получить уже через четыре года.

29. Десять крупнейших достижений десятилетия в биологии и медицине
(http://sciencefirsthand.ru/pdf/sfh_43_48-51.pdf)
Синтетическая биология и синтетическая геномика – как просто стать Богом Информация, накопленная за полвека развития молекулярной биологии, сегодня позволяет ученым создавать живые системы, никогда не существовавшие в природе. Как оказалось, сделать это совсем нетрудно, особенно если начать с чего-то уже известного и ограничить свои притязания такими несложными организмами, как бактерии. В наши дни в США даже проводится специальный конкурс iGEM (International Genetically Engineered Machine), в котором студенческие команды соревнуются в том, кто сможет придумать наиболее интересную модификацию обычных бактериальных штаммов, используя набор стандартных генов. Например, пересадив в широко известную кишечную палочку (Escherichia coli) набор из одиннадцати определенных генов, можно заставить колонии этих бактерий, растущие ровным слоем на чашке Петри, стабильно менять цвет там, где на них падает освещение. В результате можно получить их своеобразные «фотографии» с разрешением, равным размеру бактерии, т. е. около 1 мкм. Создатели этой системы дали ей имя «Колироид», скрестив видовое имя бактерии и название знаменитой фирмы «Поляроид». В этой области есть и свои мегапроекты. Так, в фирме одного из отцов геномики К. Вентера был синтезирован из отдельных нуклеотидов геном бактерии-микоплазмы, который не похож ни на один из существующих микоплазменных геномов. Эту ДНК заключили в «готовую» бактериальную оболочку убитой микоплазмы и получили работающий, т.е. живой организм с полностью синтетическим геномом.

30. Впервые появилась живая клетка, полностью управляемая искусственно синтезированной хромосомой
Вентер слегка приоткрыл самую важную дверь в истории человечества. Он не просто делает искусственные копии живых существ или подвергает их генетической модификации, он движется к роли Бога: создает искусственную жизнь, которая никогда бы не возникла в природных условиях.
Американец Крейг Вентер сделал себе имя, расшифровав человеческий геном быстрее и дешевле, чем кто-либо в мире.
руководящий принцип синтетической биологии - представление живых клеток сложными компьютерными механизмами, способными к самовоспроизводству.
«Химический синтез жизни - одна из задач, всегда стоявших перед синтетической органической химией», - говорит самый известный адепт SynBio Крейг Вентер.
С июня 2004 г., когда Массачусетский технологический институт провел первую конференцию по синтетической биологии, исследователи разработали и выпустили тысячи программируемых биоустройств - деталей генетического механизма, который, если его собрать, сможет выполнять более сложные задачи.
Эти живые устройства, как предполагается, будут иметь огромные преимущества. Они смогут производить любые фармацевтические препараты, какие только можно себе представить, включая такие, которые невозможно создать с помощью традиционной химии, или слишком дорогостоящие на данный момент. Подобным же образом они могут создавать любое другое химическое вещество или полимер для производства пластмасс, натуральное дерево или шелк - и все это будет обходиться в несколько раз дешевле, чем сейчас.
Проект Билла Гейтса и Джея Кислинга по созданию организма, который будет производить мощный противомалярийный препарат.
В 2004 г. Кислинг, инженер-химик из Беркли, убедил Фонд Билла и Мелинды Гейтс выделить $42 млн на его проект. Кислинг начинал с обыкновенных хлебопекарных дрожжей. Эволюция «запрограммировала» дрожжи на переработку сахара и производство различных биохимических веществ. В этот уже функционирующий организм Кислинг добавил разработанную в лаборатории генетическую программу, составленную из 12 новых генов. Она изменила метаболизм дрожжей, и те стали производить артемизинин.
Медицинский аспект SynBio увлек и калифорнийских ученых Кристофера Войта и Кристину Смолке. Сейчас они находятся на ранних стадиях разработки микробов, которые, циркулируя вместе с током крови по всему организму человека, находили бы раковые опухоли. Этих микробов можно будет снарядить биоустройствами, одно из которых выявляло бы низкие уровни кислорода, характерные для опухоли, другое - проникало бы в клетки, третье вырабатывало токсин, убивающий эти клетки, а четвертое оставалось «дежурить» на случай, если рак вернется. Со временем эти клеточные «караульные» смогли бы контролировать и регулировать уровень в крови различных жизненно-важных субстанций, включая глюкозу и холестерол.
самыми громкими должны стать проекты тех же Крейга Вентера и Джорджа Черча. Они замахнулись на создание самоподдерживающегося, высокоэффективного организма, который преобразует солнечный свет непосредственно в чистоебиотопливо. «Наиболее устойчивый источник энергии - солнечный свет, и наиболее доступные продукты - нефтепродукты, пригодные к транспортировке трубопроводом, - говорит Черч. - Так что я буду стремиться к созданию долговечной системы предприятий, которые синтезировали бы чистые химикаты - октан, дизель и т. д. - и могли бы поставлять их прямо в трубы без дополнительного очищения»
его «детища» должны будут преобразовывать солнечный свет непосредственно в биотопливо с минимальным ущербом для окружающей среды и нулевым выходом парниковых газов. Эти организмы, говорит он, «заменят нефтехимическую промышленность, большую часть пищи, будут участвовать в биоочистке почвы и выработке экологически чистой энергии».
Энди уже сконструировал свой первый синтетический вирус, построенный по модели хорошо изученного натурального вируса Т7. В отличие от T7 новый вирус, получивший имя T7.1, был избавлен от ненужной сложности. Несмотря на то что его код - лишь приблизительный слепок с творения природы, T7.1 тем не менее ведет себя как вирус, инфицируя бактериальные клетки и воспроизводясь внутри их.

31. Вирусы для мозгов и "подсадка" на антивирусы - наше светлое будущее?
(http://specnazspn.livejournal.com/221640.html)
В недалеком будущем хакеры смогут взламывать не только наши компьютеры, но и мозги. Вредоносные программы, от которых сегодня страдают владельцы компьютеров и мобильных устройств, в недалеком будущем станут настоящим биологическим оружием. Такого мнения придерживаются эксперты в области синтетической биологии – новейшего направления современной генетики.
Синтетическая биология – это программирование жизни. Клетки – это живые компьютеры, а ДНК – язык программирования». Эндрю Хессель
Биокибернетика позволит программировать вирусы и бактерии таким образом, что, попадая в человеческий мозг, они станут проводниками чужой воли.

32. Синтетическая биология незаметно внедряется в продукты питания
Синтетическая биология или сокращенно «синбио» является плодом научной фантастики воплощенной в жизнь. В то время как обыденная биотехнология занимается вставкой гена из одного организма в другой (результат – ГМО), «синбио» занимается такими вещами, как вставкой машинно-генерируемых последовательностей ДНК в живые клетки, т.е., создание новых организмов в целом. Эта технология сделала значительный прорыв: компании под названием «Evolva» удалось создать соединение, называемое ванилином, которое в отличии от ванили выросло не на лиане а на синтетических дрожжах.
Таким образом «Evolva» и его волшебный ванилин – «это будет первой главной пищевой добавкой синтетической биологии поступившей в супермаркеты», сообщает «Nature». И мы должны ожидать большего:
«Этот продукт станет сдвигом для отрасли, которая, как правило, сосредоточена на синтезе лекарственных препаратов и товаров, таких как биотопливо и резина. Теперь, компании синтетической биологии обращаются к «чистым реактивам»: пище и ароматическим ингредиентам, которые диктуют высокие цены при малых партиях поставки. Для получения этих продуктов потребуется меньше времени и денег, и они будут гораздо менее опасными», говорит Голдсмит».

Есть такая область биологии -- синтетическая биология . Вообще, ей уже лет десять, она развивается очень бурно, время от времени какие-то новости прорываются в научно-популярные издания, но что-то это всё мимо меня проскакивало. А тут вдруг наткнулся, почитал несколько статей -- и очень впечатлился.

Главная идея синтетической биологии -- синтезировать на генетическом уровне вещи, которые то ли не появились, то ли не закрепились в эволюции жизни на Земле.
Под словом "вещи" может иметься в виду как функция, так и что-то материальное -- например, новые белки или даже новые аминокислоты, из которых можно строить совершенно новые типы белков. И из этих новых "кирпичиков" биологи-синтетики пытаются построить, нет, даже так -- запрограммировать -- новые варианты жизни. Это как бы генетический инженеринг, но на совершенно новом уровне -- здесь не пересаживают ген одного организма другому, здесь пытаются с нуля "рассчитать" новый способ жизнедеятельности и внедрить его в реально живущую клетку.

Какие функции тут можно реализовать и как? Пока самой распространенной "игрой" является программирование новых, не существовавших в природе молекулярно-генетических "часов" в клетках (чаще всего, это бактерии E.coli ). Вот классический пример (Nature, 2000): в клетку запускают три белка (A, B, C), которые могут вырабатываться самой клеткой, но которые подавляют экспрессию друг друга по цепочке: A подавляет B, B подавляет C, C подавляет A. В результате возникает петля обратной связи -- но с задержкой по времени. И этого уже достаточно, чтобы в размножающейся колонии бактерий начались колебания концентрации этих молекул, что можно отслеживать напрямую по зеленому флуоресцентному белку (побочному продукту на одной из стадий цикла). Получается такая картинка :

Обратите внимание -- период колебаний здесь составляет часы, что в несколько раз больше периода деления клеток. Получается, информация о том, в какой фазе колебания мы находимся, генетически передается из поколения в поколение .

Поначалу у таких работ были недостатки -- далеко не все клетки вовлекались в колебание, наблюдался сильный разброс откликов по всей популяции, да и с течением времени разные клетки сбивались с ритма или начинали подзабывать фазу. Однако с этими проблемами постепенно справились. В 2008 году в работе A fast, robust and tunable synthetic gene oscillator отклик был сильный, устойчивый и однородный, а буквально месяц назад была опубликована работа A synchronized quorum of genetic clocks , в которой клетки, общаясь друг с другом, успешно синхронизировали по всей популяции свои новоприобретенные генетические часы.

Отдельно подчеркну роль теорфизики. За 6 лет до работы 2008 года в Phys.Rev.Lett. была публикована работа Synthetic Gene Network for Entraining and Amplifying Cellular Oscillations , в которой строилась модель подобных осцилляций и изучалась их фазовая диаграмма (например, при изменении силы петель обратной связи). В работе 2008 года опыт этого моделирования был принят к сведению (один из авторов, кстати, участвовал в обоих работах).

Это, конечно, только одна из возможностей. Сейчас из набора таких транскприпционных факторов уже умеют создавать элементы логических схем и вроде бы недавно даже внедрили в ту же E.coli настоящий цифровой регистр, который "считал" количество событий деления. В общем, тут открываются головокружительные перспективы -- см. например (довольно старую) популярную статью Синтетическая жизнь . Правда, это всё делать не так просто -- о технических трудностях этих работ см. недавний материал из Nature: Пять горьких истин синтетической биологии .

Это конечно впечатляет, но это еще далеко не всё. Дальше -- круче.

Предположим, нам хочется создать новые белки, построенные не только на стандартных 22-х, но и на каких-то новых аминокислотах. В принципе, другие аминокислоты есть, только в природе не предусмотрена возможность их кодирования в РНК. Как сделать так, чтоб рибосома их всё же использовала при синтезе белка?

Один из вариантов -- заставить рибосому мутировать так, чтоб она на каком-то не сильно важном триплете "ошибалась" -- вставляла другую аминокислоту. В принципе, такие работы были, но как-то вяло всё шло. А неделю назад была опубликована статья Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , в которой реализовано совершенно радикальное решение этой проблемы. Авторы этой работы целенаправлено добились такой мутации рибосом, чтобы они считывали генетический код не триплетами, а квадруплетами -- т.е. по четыре "буквы" РНК сразу. При этом открывается огромный простор для кодирования сразу кучи новых аминокислот (квадруплет может закодировать 256 комбинаций вместо 64 у триплета).

Для примера авторы смогли встроить в белок кальмодулин парочку новых аминокислот, которые затем в пространстве дополнительно соединились друг с другом (образовали циклический кросс-линк), что значительно укрепило трехмерную пространственную структуру белка (см.

Синтетическая биология – это новое направление науки, объединяющее инженеров, физиков, молекулярных биологов и химиков с целью использования инженерных принципов для соединения биомолекулярных компонентов: генов, белков и других составных частей в новые структуры и сети. Эти обновленные структуры предполагается использовать с целью перепрограммирования живых организмов, придавая им новые свойства, необходимые для решения задач в области здравоохранения, энергетической безопасности, производства продуктов питания и развития окружающей среды. Это междисциплинарное направление науки появилось благодаря интересу к геному человека. В середине 1990-х гг. проект «Геном человека» начал публиковать данные по частям геномов различных организмов. Ведущие ученые в данной области пришли к выводу, что следующей задачей будет определить, как эти части генома функционируют, взаимодействуют друг с другом и объединяются в сети и пути. Это может дать понимание того, как эти пути определяют биологические процессы и заболевания.

Основной проблемой данного исследования было отсутствие у нас необходимых данных и соответствующих технологий для так называемой обратной инженерии и воспроизводства структуры естественных сетей. Несмотря на это многие инженеры, в том числе я и мои коллеги по лаборатории, были чрезвычайно заинтересованы в работе в области геномики и молекулярной биологии. Но вместо того, чтобы разрабатывать методы обратной инженерии и воспроизводства структуры естественных сетей, мы подумали в манере обычной для инженеров, а именно: могли бы мы сами что-то построить, объединяя структуры, которые в данном случаи были «влажными», а не «сухими» в смысле, которые применяется в электроинженерии. Совместно с Тимом Гарднером, одним из моих студентов на тот момент, вводя этот подход мы основали новую сферу. Тогда мы сели и стали думать, могли бы мы создать инженерную схему, математически смоделировать ее, чтобы понять, как она будет функционировать, а далее найти частицы, которые будут биологическим эквивалентом компонентов электронной схемы. Далее, используя методы молекулярной биологии, чтобы собрать в единое целое частицы в плазмиды или ДНК, внедрить в клетку и посмотреть, будет ли эта конструкция работать как надо.

Тим и я разрабатывали разные подходы и составляли различные цепи в течение 9 месяцев, а далее мы решили сконцентрироваться на тумблер. Эта идея была мотивирована работой в области электронной инженерии, где есть тумблеры или переключатели. Тумблер в электронной инженерии – это форма памяти, очень простая цепь, которая имеет две позиции: 0 и 1, или состояния включено-выключено, переключаемых импульсом, например, электрическим импульсом или световым. Гаджеты, которыми мы постоянно пользуемся: iPhone, iPad, персональные компьютеры - состоят из миллионов, если не миллиардов, таких тумблеров. Мы с Тимом задались вопросом, как мы можем сделать подобную конструкцию в клетке, в бактерии? Итоговая схема, которую мы придумали, была крайне простой. У нас было 2 взаимосвязанных гена, организованных таким образом, что они оба стремились к «включенному» состоянию. Их поведение определяли так называемые конститутивные промоторы, играющие роль включателей для генов и являющиеся участками ДНК. Мы организовали их в цепь, протеин вырабатываемый для белка А стремится привязаться к тумблеру белка Б, выключая его. Белок, производимый геном Б, стремится привязаться к тумблеру гена А, выключая его. Таким образом каждый хочет быть включенным, и пытается выключить второй. Получилась взаимно тормозящая сеть.

В принципе, можно настроить эту цепь так, что она стремится существовать в одном из двух устойчивых состояний - либо состояние А (ген А включен, ген Б выключен), либо Б (Гена Б включен,ген А выключен). Также возможно менять состояние путем доставки химического стимула или изменения окружающей среды, который отключит активный ген. Допустим, цепь находится в состоянии А. Если вы могли бы ввести химическое вещество, которое бы временно инактивировало ген A или его белок, и обеспечили достаточное время пребывания там этого химического вещества, ген Б, который стремится быть включенным, но удерживается в выключенном состоянии активностью гена А, сможет произвести свой белок, и когда его концентрация станет достаточно высокой – выключит ген А, и вы сможете удалить из системы химическое вещество, которое деактивировало ген А. Таким образом можно менять положение цепи из состояния А в состояние Б и так далее. Это основной принцип работы.

Мы с Тимом начали работу в 1999 году с математического моделирования процесса, что позволило нам говорить о его потенциальной работоспособности. Затем подключился Чарльз Кантор, наш коллега из университета Бостона – биоинженер, он позволил нам работать в его лаборатории. Тим на тот момент достаточно разобрался в молекулярной биологии и генной инженерии, чтобы создать бактерию E. coli. Он создал несколько подобных бактерий, одна отвечала на воздействия со стороны двух разных химических веществ, а другая – на воздействия одного химического вещества и тепловой шок. Тим оказался настолько талантливым биоинженером, что в течение 9 месяцев смог активировать тумблероподобное поведение в квазистабильном состоянии внутри E. coli. Параллельно нашей работе над этой же проблемой работали Майк Эловитц и Стэн Либлер, которые создали репрессивную генераторную схему с тремя генами: ген А пытался выключить ген Б, ген Б пытался выключить ген С, а ген С – ген А. В принципе это кольцевой генератор, в котором должна быть мигающая схема. Майк и Стэн сконструировали свою схему также внутри бактерии E. Coli. Работы были опубликованы в январе 2000 г. в журнале «Nature» и положиле начало развитию сферы синтетической биологии.

Теперь можно представить, что можно создать цепь, обеспечивающую клетку памятью, и это вдохновило людей из области биопрограммирования. Они предположили, что возможно запрограммировать клетку, так же как цепь. И хотя был огромный интерес к биопрограммированию, думать об этой работе как о замене электронных цепей в наших компьютерах было бы неправильно. Правильнее думать о программировании клеток как о возможности присваивать клеткам разнообразные функции и задачи. И это основная тема синтетической биологии. Например, мы используем тумблеры для создания полноклеточных биосенсеров, что позволит запрограммировать организмы, давая им способность определять присутствие тяжелых металлов, таких как свинец, или опасных химикатов, вроде тех, что разрушают структуру ДНК, или патогенов. Можно было бы отпустить эти организмы в окружающую среду или запустить внутрь чьего-либо тела, или проверять с их помощью импортированные товары – присутствует ли в краске на импортной игрушке свинец; нет ли вспышки сибирской язвы в здании правительства? Прелесть тумблеров в том, что можно воспроизводить память, хранить информацию о событиях, чтобы проверить, были ли подобные случаи ранее.

Также мы уже использовали подобные включатели, основанные на РНК, что позволяет динамично включать и выключать несколько генов внутри клетки для реорганизации метаболического процесса. Теперь мы также работаем с несколькими биотехнологическими компаниями, чтобы определить, как можно использовать полученные нами результаты на практике, повысить эффективность использования созданных организмов. Например, превращать биомассу в энергетические ресурсы, топливо – включая, возможно, дизель, этанол, бутанол.

Так же очень интересно, как можно использовать методы синтетической биологии и программировать организмы для решения задач в области здравоохранения. Например, мы создали бактериофаг, который будет бороться с бактериальными биопленками. Биопленки – это колонии бактерий, прикрепленные к поверхности. Это налет на зубах, налет на раковине, налет на подводной части кораблей. Мы заинтересованы в борьбе с биопленками, так как бактерии внутри таких колоний в несколько раз более резистентны к антибиотикам, нежели одиночные бактерии. Когда проводят операции по трансплантации искусственных органов – костных вставок, сердечных клапанов, мозговых стимуляторов и т.д. основной риск не в проведении самой операции, а в потенциальном заражении биопленочной инфекцией. Мы приняли этот вызов и решили попытаться решить проблему с помощью бактериофагов. Бактериофаги – вирусы, атакующие исключительно бактерий, мы создаем их, чтобы внедрять в бактерий или бактериальные колонии. Они пройдут литическую фазу, создавая многочисленные копии себя, и запуская процессы, ведящие к нарушению цельности клетки, а затем миллионы дубликатов будут охотиться на другие бактерии. Основная сложность в том, что нельзя проникнуть под основной слой биопленки, так что мы создаем бактериофагов, которые смогу постепенно разрушать слои биопленки, выводя на поверхность все больше и больше бактерий. Таким способом мы смогли сделать процедуру борьбы с биопленками на 99,99% эффективнее по сравнению с существующими методами как на искусственных имплантах, так и на промышленных объектах.

Мой студент Тим Лу, который возглавлял исследования, совместно с другим студентом Майком Каррасом хотел найти данным разработкам коммерческое применение, начав с области здравоохранения. Но затем их заинтересовало использование технологии в промышленной области. Ведь на любых механизмах, долго подвергающихся воздействию влаги, появляются такие биопленки. Биопленки появляются на системах кондиционирования, трубопроводах, бумажных комбинатах. Тим и Майк начали создавать бактериофагов для борьбы с биопленками на промышленных объектах. Но в этой области возникли сложности и фокус их исследований сместился на поиск и распознавание патогенов в больницах и на пищевом производстве. Цель, которой они уже почти достигли – для подобной работы необходимо создать всего лишь 10 бактерий за период временнее менее часа, затратив на процедуру менее 10 долларов.

Мы не хотим останавливаться на достигнутом и стараемся искать другие пути применения наших технологий для борьбы с инфекционными заболеваниями. Теперь с финансовой поддержкой фонда Гейтса, мы создаем пробиотики, распознающие и борющиеся с разнообразными инфекциями. Например, мы разрабатываем лактобактерии для борьбы с инфекционной холерой. Мы создали их таким образом, чтобы они отвечали на два разных сигнала от возбудителя холеры и производили антимикробные пептиды специфичные для холеры. Прелесть данного решения в том, что лекарства от холеры очень дорогостоящие и могут быть достаточно токсичными. Теперь, по сути, можно добавить наш противохолерный организм в йогурт, чтобы противостоять всплеску холеры, такому, как был на Гаити после землетрясения, или запаковать этот организм в таблетку. Любой из двух способов будет гораздо более дешевым и менее токсичным, чем разработка лекарства. Единственная группа людей, которая испытают действие этого лекарства, будут те, кто подвергся воздействия со стороны холерных бактерий.

Я считаю, что в ближайшие десятилетия мы будем свидетелями того, как синтетическая биология меняет нашу жизнь в разнообразных областях: производстве энергии или продуктов питания, здравоохранении, или даже решении проблем с окружающей средой. Один из самых интригующих научных вопросов – это вопрос о том, как создаются естественные цепи и функционируют естественные процессы. Мы многому можем научится у естественных организмов, которые эволюционировали миллионы, а в некоторых случаях - миллиарды лет, создали функционирующие цепи и сети и выполняют довольно сложные задачи, иногда - в очень агрессивных средах. И я считаю, что синтетическая биология, хотя я концентрируюсь в основном на первичных способах применения, может быть очень полезна и в области фундаментальной науки, позволяя нам понять, как в общем функционируют организмы

Биоинженер Джеймс Коллинз о программировании живых клеток, биопленках и создании пробиотиков: