Энергосберегающие

Как сделать индуктивный датчик для осциллографа. Практические схемы включения датчиков

Как сделать индуктивный датчик для осциллографа. Практические схемы включения датчиков

Работа на производственных предприятиях требует частичной или полной автоматизации системы. Для этого используются различные приспособления, обеспечивающие бесперебойное функционирование. Приспособления из металла довольно часто контролируют индуктивные бесконтактные датчики, имеющие свои преимущества и недостатки. Они имеют небольшой размер и хорошо выполняют свою функцию при условии правильного подключения.

Общие сведения

Индукционный датчик представляет собой специальное приспособление, относящееся к бесконтактным. Это значит, что для определения местоположения объекта в пространстве ему не требуется непосредственный контакт с ним. Благодаря такой технологии, возможна автоматизация производственного процесса.

Как правило, приспособление применяется в различных линиях и системах на крупных заводах и фабриках. Его также можно использовать в качестве конечного выключателя. Прибор отличается высоким качеством и надежностью , работает даже в сложных условиях. Оказывает воздействие только на металлические предметы, поскольку другие материалы к нему нечувствительны.

Приспособление довольно устойчиво к агрессивным химическим веществам, широко применяется в машиностроительной, пищевой и текстильной промышленности. Аэрокосмическая, военная и железнодорожная отрасль также не обходится без этих датчиков.

Важность прибора делает его востребованным, поэтому множество компаний по всему миру выпускает различные модели со стандартным и расширенным набором функций, в разной ценовой категории.

Устройство прибора

Индуктивный датчик состоит из нескольких взаимосвязанных между собой узлов, которые и обеспечивают его бесперебойную работу. Основные детали приспособления следующие:

Все элементы расположены в корпусе, изготовленном из латуни или полиамида. Эти материалы считаются очень прочными для того, чтобы защитить сердцевину от отрицательного воздействия условий производства. Благодаря надежности конструкции, датчик способен выдержать значительную нагрузку и при этом корректно функционировать.

Принцип работы

Благодаря специальному генератору, выдающему особые колебания, осуществляется работа устройства. При попадании в поле его действия предмета, сделанного из металла, подается сигнал на блок управления.

Работа приспособления начинается после включения, которое даёт толчок к образованию магнитного поля. Это поле в свою очередь оказывает влияние на вихревые токи, меняющие амплитуду колебаний генератора, который первым реагирует на любые изменения.

Как только поступает сигнал, начинается обработка его в других узлах устройства. Сила этого сигнала во многом зависит от размера предмета, попавшего в поле действия приспособления, а также расстояния, на котором он находится. Следующим этапом будет преобразование аналогового сигнала в логический. Только так возможно точно определить его значение.


Особую роль играют такие датчики на производстве , где металлические детали должны идти по линии в определенном положении. Прибор может фиксировать его и при обнаружении любого, даже незначительного отклонения сигнализирует на главный пульт управления.

Как правило, чтение результатов функционирования устройства осуществляет специалист, выполняющий также роль контролера, наблюдающего за бесперебойной работой всей системы.

Основные определения

Для контроля работы устройства и чтения его сигналов существует несколько определений. Наиболее важными считаются следующие:

Благодаря этим определениям, возможно настроить приспособление для получения максимально точных данных, играющих важную роль в производственном процессе.

Преимущества и недостатки

Индукционные датчики имеют свои достоинства и недостатки, как и любое другое устройство. Главным преимуществом считается простота конструкции, не требующая сложной настройки и не нуждающаяся в особых условиях для монтирования. Приспособление не имеет скользящих контактов, сделано из прочного материала и может на протяжении длительного времени работать без перерыва.

Стоит также отметить, что прибор очень редко выходит из строя, и ремонт его не представляет сложности. Именно поэтому его часто устанавливают на предприятиях, где необходим почти круглосуточный контроль за производственным процессом. Бесконтактное подключение позволяет без проблем осуществлять соединение с промышленной системой напряжения.

Важным преимуществом считается высокая чувствительность, позволяющая устанавливать датчики на производстве, где работают с металлическими предметами из разных сплавов.

Несмотря на все достоинства приспособления, существуют и некоторые недостатки. Наиболее важным считаются погрешности, которые прибор выдает в работе. Нелинейный тип погрешности проявляется вследствие того, что прибор имеет свой показатель индуктивной величины, который может отличаться от значения тех предметов, на которые он реагирует. Именно поэтому датчик может реагировать на металл некорректно и подавать неверные сигналы.

Часто встречается температурная погрешность, связанная со значительным понижением или повышением температуры в производственном помещении. Инструкция к прибору предполагает его правильное функционирование при показателе +25 градусов. При отклонении значения в ту или иную сторону нарушается работа приспособления.

Одной из случайных погрешностей считается изменение показаний датчика вследствие воздействия на него электромагнитного поля других приборов. Для того чтобы избежать подобных ситуаций, на всех производствах установлен стандарт частоты электроустановок, составляющий 50 Гц. В этом случае риск возникновения погрешности из-за постороннего электромагнитного излучения снижается к минимуму. Исключить любые нарушения в работе устройства можно путем предварительной проработки деталей.

Способы подключения

В зависимости от типа устройства, отличаются и способы его подключения, поскольку определенные разновидности имеют разное количество проводов. Двухпроводные считаются наиболее простым, но и самым проблематичным вариантом. Включаются непосредственно в цепь токовой нагрузки. Для правильного проведения манипуляции необходимо номинальное сопротивление нагрузке. В случае его снижения или повышения приспособление начинает функционировать неправильно. Важным моментом будет подключение к сети, при котором необходимо соблюдать полярность.

Трехпроводные считаются наиболее популярными и простыми в подключении. Одни провода подсоединяются к нагрузке, а два других к источнику напряжения. Благодаря этому исключается вероятность реакции прибора на номинальное сопротивление в виде некорректной работы.

Существуют также датчики с четырьмя и пятью проводами. При их установке подключение двух проводов осуществляется к источнику напряжения, два - к нагрузке. Если присутствует пятый шнур, то есть возможность выбора подходящего режима работы.

Обычно провода обозначаются разными цветами с целью облегчения монтажа и последующего обслуживания датчика. Минус и плюс обозначены синим и красным цветом соответственно. Выход всегда маркируется черным цветом. Существуют устройства, в которых два выхода. Второй обычно белый и может служить также для входа. Эти нюансы указаны в инструкции по эксплуатации индуктивного датчика.

Корпус устройства может быть изготовлен из разного материала, иметь цилиндрическую, квадратную или прямоугольную форму. Наиболее распространенным считается первый вариант.

Правила выбора

Индукционный датчик считается важным элементом на многих предприятиях, поэтому к его выбору следует подойти очень ответственно. Рекомендуется соблюдать следующие правила:

Важный параметр - стоимость прибора. Зависит она чаще всего от фирмы-производителя и некоторых дополнительных функций, которые встроены в датчик. Однако существенной разницы в работе у устройств из разной ценовой категории не отмечается.

Популярные модели

Сегодня на рынке представлено множество моделей индуктивных датчиков. Наиболее востребованными считаются различные приборы от российской компании ТЕКО. Они отличаются хорошим качеством, отличными техническими характеристиками, простотой монтажа и эксплуатации. Главное достоинство устройств компании - демократичная цена.

Стоимость простых моделей начинается с 850 рублей, и за эти деньги прибор работает без нареканий. Выпускаются и более дорогие датчики с ценой от 2 до 5 тысяч рублей. Они обычно устанавливаются на крупных производствах, где необходима высокая точность и бесперебойная работа.

Индукционный датчик считается одним из лучших бесконтактных устройств, применяемых на различных заводах, фабриках и других предприятиях. Высокое качество и точность прибора делает его востребованным и необходимым.

Что такое емкостные датчики? Это самое обычное электронное реле, срабатывающее при изменении емкости. Чувствительным элементом многих рассмотренных здесь схем являются генераторы высокой частоты от сотен килогерц или больше. Если параллельно контуру этого генератора подсоединить дополнительную емкость, то либо поменяется частота генератора, либо его колебания прекращаются совсем. В любом варианте сработает пороговое устройство, которое включает звуковой или световой сигнализатор. Эти схемы можно применять в различных моделях, которые при встрече с различными препятствиями будут изменять свое движение, в быту - сел в компьютерное кресло включился ноутбук или заиграл музыкальный центр, устройства можно также использовать для включения света в помещениях для построения систем сигнализации и т.п.

Схема работает на звуковых частотах. Для увеличения чувствительности в контур генератора низкой частоты добавлен полевой транзистор.

Генератор прямоугольных импульсов с частотой следования последних 1 кГц выполнен на элементах DD1.1 и DD1.2 . В качестве выходного каскада предназначен DD1.3 , нагрузкой которого является телефонный динамик.

С целью увеличения чувствительности схемы можно добавить количество радиокомпонентов, введенных в RC - цепь .

Схема должна начать работать сразу после включения. Иногда нужно подстроить сопротивление R1 на пороговую чувствительность.

При регулировке реле возможны два варианта его функционирования: срыв или возникновение генерации при появлении емкости. Установка нужного нам схемотехнического варианта выбирается подбором номинала переменного сопротивления R1. При приближении руки к Е1 подстройкой сопротивления R1 делают так, чтобы расстояние, с которого запускалась схема, составляло 10 - 20 сантиметров.

Для включения различных исполнительных механизмов в емкостном реле используем сигнал с выхода элемента DD1.3 .

Для включения света проходят рядом со вторым емкостным преобразователем, а для отключения освещения в помещении с первым.

Срабатывание преобразователя приводит к переключению RS триггера построенного на логических элементах. Емкостные датчики сделаны из отрезков коаксиального кабеля, с конца которых на длину около 50 сантиметров снят экран. Край экрана требуется изолировать. Датчики устанавливают на дверном каркасе. Длину неэкранированной части датчиков и номиналы сопротивлений R5 и R6 подбирают при отладки схемы так, чтобы триггер надежно срабатывал при прохождении биологического объекта на расстоянии 10 сантиметров от датчика.

Пока емкость между датчиком и корпусом мала, на сопротивлении R2, и на входе элемента DD1.3 формируются короткие импульсы положительной полярности, а на выходе элемента такие же импульсы но уже инвертированные. Емкость С5 медленно заряжается через сопротивление R3, когда на выходе элемента имеется уровень логической единицы, и быстро разряжается через диод VD1 при логическом нуле. Т.к разрядный ток выше зарядного, напряжение на емкости С5 имеет уровень логического нуля, и элемент DD1.4 заперт для сигнала звуковой частоты.

При приближении к элементу любого биологического объекта его емкость относительно общего провода возрастает, амплитуда импульсов на сопротивлении R2 падает ниже порога включения DD1.3. На его выходе будет постоянная логическая единица, до этого уровня осуществится наполнение емкостью конденсатор С5. Элемент DD1.4 начнет пропускать сигнал звуковой частоты, и в динамике раздастся звуковой сигнал. Чувствительность емкостного реле можно регулировать подстроечной емкостью С3.

Датчик изготавливается своими руками с использованием металлической сетки с размерами 20 х 20 сантиметров, для хорошего уровня чувствительности реле.


В этой схеме емкостного реле к логическому элементу DD1.4 подсоединен транзистор VT1, в коллекторную цепь которого включен тиристор VS1 управляющий мощной нагрузкой.

Устройство, собранное по схеме ниже, реагирует на присутствие любого проводящего объекта, в том числе и человека. Чувствительность датчика можно регулировать потенциометром. Схема не позволяет обнаруживать движение объектов, но она хороша именно в роли датчика присутствия. Одним из очевидным решением использования в быту емкостного датчика присутствия является самодельная схема автоматическое открывания дверей. Для этих целей схема устройства должна быть размещена с передней части двери.


Основой этого емкостного устройства являются осциллятор с T1 и одновибратор. Осциллятор это типовой генератор Клаппа стабильной частоты. Поверхность емкостного датчика действует как конденсатор для колебательного контура, и в этой конфигурации частота будет около 1 МГц.

Время переключения схемы можно изменять в широком диапазоне с помощью переменного резистора Р2. Не надо подносить металлические предметы близко к датчику, т.к емкостное реле останется в закрытом состоянии. Эта схема также может быть применена в роли детектора агрессивных жидкостей. Главное достинство здесь заключается в том, что поверхность емкостного датчика не вступает в прямой контакт с жидкостью.

На полевом транзисторе выполнен маломощный генератор с частотой следования импульсов 465 кГц, а на биполярном транзисторе электронный ключ для срабатывания реле К1, контактами которого включается исполнительный механизм. Диод используется в схеме при случайном изменении полярности подсоединяемого источника питания.

Радиус действия емкостного реле и чувствительность, зависит от регулировки С1 и конструкции датчика, если вас заинтересовала это разработка то вы можете скачать журнал моделист конструктор по ссылке чуть выше.

Основа схемы маломощный генератор ВЧ. К колебательному контуру L1C4 подсоединена металлическая пластина. Поднесенная к ней ладонь руки или другая часть тела человека представляет собой вторую обкладку конденсатора C д . тем выше, чем больше площадь его обкладок и меньше расстояние между ними. L1 намотайте на каркасе 8-9 мм, склеенном из бумаги. Катушка СОСТОИТ ИЗ 22-25 витков провода ПЭВ-1 0,3-0,4, намотанных виток к витку. Отвод необходимо сделать от 5-7-го витка, считая от начала.

Настройка реле

Подсоедините в коллекторную цепь биполяярного транзистора V1 миллиамперметр на 10 мА и между точкой соединений миллиамперметра с катушкой L1 и эмиттером второго транзистора подсоединить конденсатор 0,01-0,5 мкФ. Металлическую пластину временно отключите от генератора. Следя за показаниями миллиамперметра, кратковременно замыкаем L1C4 . Коллекторный ток V1 дрезко падает: с 2,5-3 до 0,5-0,8 мА. Максимальные показания соответствуют генерации, наименьшие - ее отсутствию. Если генератор возбуждается, присоедините к нему пластину и медленно поднесите ладонь. Коллекторный ток должен снизиться до уровня 0,5-0,8 мА.

Слабые изменения тока усиливается с помощью двухкаскадного УНЧ на V2 , V3 . А для того чтобы можно было управлять нагрузкой бесконтактным методом, конечная ступень схемы построена на тринисторе V5 .


Движок переменного сопротивления R4 устанавливают в крайнее нижнее положение. И затем его медленно двигают вверх до тех пор, пока не включится индикатор H1 . Теперь подносим ладонь к пластине и проверяем работу устройства.

Диод V4 в цепи тринистора V5 исключает появление импульса обратного напряжения. А V6 и сопротивление R7 защищают тринистор от пробоя. Для тринистора с U о6р . = 400 В элементы V6 и R7 можно убрать из схемы.

Различного типа датчики сегодня широко применяются в промышленности. Без них ни один технологический процесс не обходится. Существует несколько их видов, нас же в этой статье будет интересовать индуктивный датчик. Поэтому разберемся, для чего он необходим, где применяется, его устройство и принцип работы.

По сути, датчик данного типа – это прибор, принцип работы которого основан на изменениях индуктивности катушки и сердечника. Кстати, отсюда и само название. Изменения индукции происходят из-за того, что в магнитное поле катушки проникает металлический предмет, изменяя его. А соответственно и изменяется схема подключения, в которой основную роль играет компаратор. Он при изменении индукции подает сигнал на реле или конечный транзистор (выключатель), что приводит к отключению подачи электрического тока.

Поэтому основное предназначение данного прибора – это измерять перемещение части оборудования. И при превышении пределов проходимости отключать его. При этом у датчиков есть свои пределы перемещения, которые варьируются в диапазоне от 1 микрона до 20 миллиметров. Кстати, именно поэтому этот прибор называют и индуктивным датчиком положения.

Достоинства и недостатки

Начнем с достоинств:

  • Простота конструкции, достаточно высокая его надежность. Полное отсутствие скользящих контактов, которые быстро выходят из строя.
  • Можно использовать для подключения в электрические сети с промышленной частотой.
  • Высокая чувствительность.
  • Может выдерживать большую выходную мощность.

Недостатки:

  • Напряжение и точность работы датчика взаимосвязаны, поэтому нестабильное напряжение в сети становится причиной разброса пределов реагирования.

Параметры индуктивного датчика

Один из параметров уже описывался выше – это диапазон срабатывания. Хотя, как утверждают специалисты, он не является важным, но именно по нему и делают выбор. Все дело в том, что в паспорте изделия указываются номинальные параметры напряжения при работе прибора в температурном режиме +20С. Постоянное напряжение составляет 24 вольт, переменное – 230 вольт. Как вы понимаете, в таких условиях индукционный датчик обычно не работает, а если и работает, то редко. При этом в качестве объекта, который будет изменять индуктивность катушки прибора, должна выступать стальная пластина, ее ширина должна быть равна трем диапазонам срабатывания и толщиною 1 мм.


На практике же за основу выбора берут два показателя диапазона срабатывания:

  • Эффективный.
  • Полезный.

Показания первого отличаются от номинального параметра в пределах ±10%. При этом температурный диапазон расширяется от +18С до +28С. Второй определяется, как ±10% от первого при температурном режиме от 25 до 70С. И если при первом параметре используется номинальное напряжение в сети, то при втором присутствует разброс от 85% до 110% от номинала.

Есть еще один параметр, который связан с зоной срабатывания. Это гарантированный предел. Его нижняя часть равна «0», а верхняя 81% от номинального диапазона.

Необходимо учитывать и такие параметры, как гистерезис и повторяемость. Что такое гистерезис в этом случае? По сути, это расстояние между дальними позициями срабатывания датчика. Оптимальное его значение – это 20% от эффективного диапазона срабатывания.

Не последнее значение имеет и материал, из которого изготавливается объект слежения (перемещения). Оптимальный вариант – сталь 37, ее коэффициент редукции равен «1». Все остальные металлы имеют меньший коэффициент. К примеру, нержавейка – 0,85, медь – 0,3. Как понять, на что влияет коэффициент редукции? Для примера возьмем медную пластину. То есть, получается так, что диапазон срабатывания будет равно 0,3, умноженному на полезный диапазон срабатывания. Достаточно низкий показатель.

Перечислим и другие не столь важные параметры6

  • Постоянное напряжение имеет диапазоны: 10-30, 10-60, 5-60 вольт. Переменное 98-253 вольт.

Внимание! Производители сегодня предлагают так называемые универсальные индукционные датчики, которые могут работать и от сети переменного тока, и от сети постоянного.


  • Ток нагрузки (номинальный) – 200 мА. Сегодня производители иногда производят датчики с токовой нагрузкой 500 мА. Это так называемое специсполнение.
  • Частота отклика. Суть этого параметра заключается в том, что он показывает максимальное значение возможности переключаться. Измеряется данный параметр в герцах. Так для основных промышленных датчиков этот показатель равен 1000 Гц.

Способ подключения

Существует несколько разновидностей индуктивных датчиков, которые имеют разное количество проводов подключения.

  • Двухпроводные. Включаются прямо в цепь токовой нагрузки. Самый простой вариант, но очень капризный. Для него нужен номинальное сопротивление нагрузке. Если он снижается или увеличивается, прибор начинает работать некорректно. При подключении к сети постоянного тока, необходимо соблюдать полярность.
  • Трехпроводной. Это самые распространенные индукционные датчики, в которых два провода подключаются к напряжению, один к нагрузке.
  • Четырех-, пятипроводные. В них два провода подключаются к нагрузке. Пятый провод – это возможность выбора режима работы.

Цветовая маркировка выводов

Все, что связано с электрическими сетями, особенно проводниками, обязательно обозначается цветовой маркировкой. Делается это для удобства проведения монтажа и обслуживания. Индуктивный датчик этого также не избежал. В нем выходы обозначены определенными стандартными цветами:

  • Минус – синий цвет.
  • Плюс – красный.
  • Выход – черный.
  • Бывает и второй выход, он белого цвета, который может быть и входом в систему управления. Об этом производитель обязательно информирует в инструкции.

И последнее – это конструктивные особенности, которые касаются корпуса датчика. Он может иметь цилиндрическую или прямоугольную форму. Изготавливается из металлических сплавов или пластика. Чаще всего в промышленности используются цилиндрические приборы диаметром 12 или 18 мм. Хотя есть в этой размерной линейке и другие параметры: 4, 8, 22 и 30 мм.


Для обеспечения нормальной работы двигателя используется множество механизмов и контроллеров, предназначенных для выполнения разных функций. Одним из таких девайсов является индуктивный датчик. Что это за контроллер, каков его принцип работы, какие бывают виды устройств? Об этом мы поговорим ниже.

[ Скрыть ]

Характеристика индуктивных преобразователей

Индуктивный датчик или представляет собой бесконтактное устройство, предназначенное для контроля положения того или иного объекта, выполненного из металла. Это важно, поскольку девайс может проявлять чувствительность только к металлу.

Функции и принцип действия

Принцип действия девайса основан на изменении амплитуды колебаний генераторного устройства, встроенного в контроллер, при внесении в активную зону определенного металлического объекта. Соответственно, применение девайса возможно только с такими типами объектов. При подаче напряжения на конечный выключатель, который находится в зоне чувствительности, появляется магнитное поле. Это поле способствует образованию вихревых токов, влияние которых отражается на изменении амплитуды колебаний генераторного устройства.

В итоге такие преобразования способствуют появлению аналогового выходного импульса, значение которого может быть разным в зависимости от расстояния между контроллером и объектом. Индуктивный датчик перемещения играет очень важную роль для узлов, которые используются для отслеживания изменения места расположения металлических объектов. Благодаря контроллеру определяется, правильно ли расположен тот или иной объект или нет. В том случае, если предмет находится не там, где нужно, система управления должна будет предпринять все необходимые действия для того, чтобы обеспечить нормальную работу устройства.

Что касается устройства контроллера, то девайс состоит из следующих элементов:

  1. Генераторный узел, предназначенный для образования электромагнитного поля, которое, в свою очередь, используется для создания зоны активности с объектом.
  2. Усилительное устройство. Используется для повышения значения амплитуды импульса, чтобы сигнал мог достигнуть нужного параметра.
  3. Триггер Шмитта. Этот элемент предназначен для обеспечения гистертезиса при переключении девайса.
  4. Диодный элемент, который свидетельствует о состоянии контроллера. Также светодиод позволяет обеспечить наиболее оптимальный контроль функционирования девайса и указать на оперативность настройки.
  5. Следующий элемент — компаунд. Его предназначение заключается в обеспечении защиты девайса от попадания влаги внутрь корпуса, а также грязи и пыли, что может привести к его поломке.
  6. Сам корпус. Корпус контроллера предназначен для обеспечения установки девайса, а также его защиты от всевозможных механических повреждений. Как правило, корпус выполняется из латуни либо полиамида, а также он оснащается всеми необходимыми фиксаторами для крепления (автор видео — канал Lty D).

Типы контроллеров

Системы с индуктивным датчиком могут использовать разные устройства, которые отличаются между собой по следующим параметрам:

  1. Конструкция девайса, а также тип корпуса, который может быть прямоугольным либо цилиндрическим. Что касается материала, из которого выполняется сам корпус, то он может быть либо металлическим, либо пластмассовым.
  2. Если речь идет о цилиндрических деталях, то они могут иметь разные размеры корпуса. Как правило, диаметры корпуса составляют 12 и 18 мм, но можно найти и другие девайсы- 4, 8, 22 мм и т.д.
  3. Следующий параметр — рабочий люфт девайса, составляющий расстояние до стальной пластины контроллера. Для небольших по размерам контроллеров этот показатель составляет от 0 до 2 мм, для контроллеров, диаметр которых составляет 12 и 18 мм, рабочий зазор должен быть 4 и 8 мм соответственно.
  4. Число проводов для подключения к бортовой сети. Двухпроводные устройства более удобны в плане установки, однако они чувствительно относятся к нагрузке — при слишком высоком или низком сопротивлении их работа может быть нарушена. Трехпроводные детали на сегодняшний день считаются самыми распространенными, в данном случае два контакта используется для питания, а еще один — для нагрузки. Есть также пяти- и четырехпроводные регуляторы, в которых пятый контакт используется для выбора режима функционирования.
  5. Еще один параметр, по которым устройства могут отличаться, заключается в различии полярности. Релейные датчики позволяют коммутировать нужное значение напряжения или один из контактов питания. В транзисторных датчиках типа PNP на выходе устанавливается специальный транзисторный элемент, позволяющий коммутировать плюсовой выход. Что касается минуса, то в данном случае он подключен постоянно. Также есть транзисторные устройства NPN, в данном случае постоянно запитан плюс, а мину коммутируется транзисторным элементом.

Фотогалерея «Схемы подключения»

Достоинства и недостатки

Индуктивный датчик вращающихся оборотов (к примеру, ДПКВ) или другого типа, как и любое устройство, может иметь свои достоинства и недостатки. Предлагаем с ними ознакомиться.

Начнем с преимуществ:

  1. Во-первых, такие регуляторы характеризуются достаточно простой конструкцией, что позволяет обеспечить высокую надежность их работы. Конструктивно в элементе отсутствуют скользящие контакты, благодаря чему обеспечивается надежная работа датчика, так как контакты не изнашиваются и не выходят из строя.
  2. При необходимости такой регулятор можно своими руками подключить к электрической сети с промышленной частотой.
  3. Повышенная чувствительность регулятора, что позволяет обеспечить его наиболее эффективную и бесперебойную работу.
  4. При необходимости такие приборы могут работать в условиях высоких выходных мощностей.

Что касается недостатков:

  1. Нелинейные значения могут привести к появлению погрешностей, что связано с использованием принципа индуктивного преобразования.
  2. Правильная работа детали возможна при определенной температуре. Если температура не будет соответствовать нормированному диапазону, это может привести к появлению больших погрешностей.
  3. Появлению погрешностей могут способствовать и образование электромагнитного поля вне датчика.

Цена вопроса

Стоимость товара зависит от многих характеристик, в частности, области применения. В среднем цены на индуктивные регуляторы начинаются от 500 рублей и выше.

Видео «Как подключить индукционный регулятор?»

Наглядная инструкция на примере подключения регулятора в мотоцикле Юпитер приведена в ролике ниже (автор — Вадим Карамов).