Энергосберегающие

Измерение насыпной плотности. Насыпная плотность песка

Измерение насыпной плотности. Насыпная плотность песка

Но также производит и биологически активные добавки (БАД) к пище в таблетированной и капсулированной форме. В связи с этим кажется необходимым рассказать о некоторых похожих терминах и технологические свойствах этих продуктов.

Технологические свойства порошкообразных (таблетированных и капсулированных ) лекарственных веществ и биологически активных добавок к пище зависят от их физико-химических свойств. При производстве биологически активных добавок в форме таблеток и в форме твёрдых желатиновых капсул необходимо учитывать различные технологические характеристики, так как активные компоненты и многие экстракты лекарственных растений поступают в виде порошков или порошковых смесей.

Насыпная плотность

Базовой характеристикой всех сыпучих материалов является плотность. Существуют понятия истинной и насыпной плотности, которые измеряются в г/см 3 или кг/м 3 .

Истинная плотность – это отношение массы тела к объему этого же тела в сжатом состоянии, в котором не учитываются зазоры и поры между частицами. Истинная плотность – постоянная физическая величина, которая не может быть изменена.

В своем естественном состоянии (неуплотненном) сыпучие материалы характеризуются насыпной плотностью. Под насыпной плотностью различных сыпучих материалов понимают количество порошка (сыпучего продукта), которое находится в свободно засыпанном состоянии в определённой единице объема.

Насыпная плотность заданного порошка или любой сыпучей смеси (D нас. пл.) определяется отношением массы свободно засыпанного порошка (Mасса cып.) к объему этого порошка (Vcосуда) по формуле:

D нас.пл.= Mасса cып/Vcосуда

Насыпная плотность учитывает не только объем частиц материала, но и пространство между ними, поэтому насыпная плотность гораздо меньше, чем истинная. Например, истинная плотность каменной соли составляет 2,3 т/м 3 , а насыпная – 1,02 т/м 3 .

Зная насыпную плотность применяемых сыпучих материалов можно при проектировании емкостей или дозаторов, а так же капсул и таблеток рассчитать их объем и, соответственно, высоту засыпки. Понятно, что если нам частично известны некоторые параметры, а именно высота засыпки, а так же коэффициент засыпки, то можно рассчитать высоту предполагаемого объема, то есть высоту форматных частей, что очень важно при решении технологических задач. Конечно, если известна насыпная плотность порошка, тогда технологи могут легко рассчитать массу для одной дозы, порции или упаковки и тем самым определить величину дозировки для капсулятора или таблетпресса, а также для любого другого фасовочного оборудования.

Значение насыпной плотности определяется в соответствии со стандартом (ГОСТ 19440-94 «Порошки металлические. Определение насыпной плотности. Часть 1. Метод с использованием воронки. Часть 2. Метод волюмометра Скотта») с помощью прибора волюмометра, принцип действия которого основан на точном определении массы порошка, заполняющего мерную емкость. Волюмометр состоит из воронки с ситом и корпуса с несколькими наклонными стеклами, по которым порошок, пересыпаясь, падает в тигелек с измеренным объемом и весом.

Объемная или Насыпная плотность зависит от размера, формы, влажности и плотности частиц гранул или порошка. По значению этого показателя можно прогнозировать и рассчитывать объем матричных каналов. Процедуру измерения насыпной плотности порошковой смеси или монопорошка проводят на специальном приборе (рис. 1).

Производят навеску массой 5,0 г порошка. Точность навески до 0,001 г. Далее засыпают навеску в мерный цилиндр. Устанавливают на приборе амплитуду колебаний (35-40 мм) при помощи регулировочного винта. Устанавливают отметку по шкале и фиксируют положение при помощи контргайки. Далее, с помощью трансформатора устанавливают частоту колебаний. Частота устанавливается в интервале от 100 до 120 кол/мин, по счетчику. После включения прибора тумблером оператор следит за отметкой, по которой установлен уровень порошка в цилиндре. Как правило, при работе прибора в течение 10 минут, уровень порошка или смеси становится постоянным, и прибор необходимо отключить.

Насыпную плотность рассчитывают по формуле:

где: ρ н – насыпная плотность, кг/м 3 ;

m – масса сыпучего материала, кг;

V – объем порошка в цилиндре после уплотнения, м 3 .

В зависимости от насыпной плотности порошки классифицируют следующим образом:

ρ н > 2000 кг/м 3 – весьма тяжелые;

2000 > ρ н > 1100 кг/м 3 – тяжелые;

1100 > ρ н > 600 кг/м 3 – средние;

ρ н < 600 кг/м 3 – легкие.

Одним из приборов, на котором проводят измерение насыпной плотности (а также другие характеристики порошковой смеси или монопорошка), является прибор ВТ-1000.

Анализатор ВТ-1000 (Рис. 2) используется для определения свойств различных сыпучих материалов, связанных с текучестью. Порошок или порошковые смеси, по определению, являются двухфазными системами. Свойства поверхности частиц порошковой смеси или монопорошка, так же как и их плотность, все эти параметры определяет его поведение в потоке и их сыпучесть. Правильное определение параметров сыпучести очень важно для расчетов процессов обработки порошка, его упаковки, транспортировки и хранения.

С помощью ВТ-1000 (Рис.3) возможно определить не только насыпную плотность, но и дисперсность, угол падения, угол естественного откоса, угол на плоской пластине и плотность утряски. Из данных характеристик легко рассчитать угол разности, прессуемость, объем пустого пространства, сжимаемость, униформность. По характеристикам зафиксированным на приборе, можно рассчитать индекс Карра, что позволяет определить значения сыпучести и аэрируемости

(поведения порошка в аэродинамической струе).

Порошок засыпается в мерный цилиндр. Отношение занятого им объема к массе порошка является объемной или насыпной плотностью. Рис.3

Но также производит и биологически активные добавки (БАД) к пище в таблетированной и капсулированной форме. В связи с этим кажется необходимым рассказать о некоторых похожих терминах и технологические свойствах этих продуктов.

Технологические свойства порошкообразных (таблетированных и капсулированных ) лекарственных веществ и биологически активных добавок к пище зависят от их физико-химических свойств. При производстве биологически активных добавок в форме таблеток и в форме твёрдых желатиновых капсул необходимо учитывать различные технологические характеристики, так как активные компоненты и многие экстракты лекарственных растений поступают в виде порошков или порошковых смесей.

Насыпная плотность

Базовой характеристикой всех сыпучих материалов является плотность. Существуют понятия истинной и насыпной плотности, которые измеряются в г/см 3 или кг/м 3 .

Истинная плотность – это отношение массы тела к объему этого же тела в сжатом состоянии, в котором не учитываются зазоры и поры между частицами. Истинная плотность – постоянная физическая величина, которая не может быть изменена.

В своем естественном состоянии (неуплотненном) сыпучие материалы характеризуются насыпной плотностью. Под насыпной плотностью различных сыпучих материалов понимают количество порошка (сыпучего продукта), которое находится в свободно засыпанном состоянии в определённой единице объема.

Насыпная плотность заданного порошка или любой сыпучей смеси (D нас. пл.) определяется отношением массы свободно засыпанного порошка (Mасса cып.) к объему этого порошка (Vcосуда) по формуле:

D нас.пл.= Mасса cып/Vcосуда

Насыпная плотность учитывает не только объем частиц материала, но и пространство между ними, поэтому насыпная плотность гораздо меньше, чем истинная. Например, истинная плотность каменной соли составляет 2,3 т/м 3 , а насыпная – 1,02 т/м 3 .

Зная насыпную плотность применяемых сыпучих материалов можно при проектировании емкостей или дозаторов, а так же капсул и таблеток рассчитать их объем и, соответственно, высоту засыпки. Понятно, что если нам частично известны некоторые параметры, а именно высота засыпки, а так же коэффициент засыпки, то можно рассчитать высоту предполагаемого объема, то есть высоту форматных частей, что очень важно при решении технологических задач. Конечно, если известна насыпная плотность порошка, тогда технологи могут легко рассчитать массу для одной дозы, порции или упаковки и тем самым определить величину дозировки для капсулятора или таблетпресса, а также для любого другого фасовочного оборудования.

Значение насыпной плотности определяется в соответствии со стандартом (ГОСТ 19440-94 «Порошки металлические. Определение насыпной плотности. Часть 1. Метод с использованием воронки. Часть 2. Метод волюмометра Скотта») с помощью прибора волюмометра, принцип действия которого основан на точном определении массы порошка, заполняющего мерную емкость. Волюмометр состоит из воронки с ситом и корпуса с несколькими наклонными стеклами, по которым порошок, пересыпаясь, падает в тигелек с измеренным объемом и весом.

Объемная или Насыпная плотность зависит от размера, формы, влажности и плотности частиц гранул или порошка. По значению этого показателя можно прогнозировать и рассчитывать объем матричных каналов. Процедуру измерения насыпной плотности порошковой смеси или монопорошка проводят на специальном приборе (рис. 1).

Производят навеску массой 5,0 г порошка. Точность навески до 0,001 г. Далее засыпают навеску в мерный цилиндр. Устанавливают на приборе амплитуду колебаний (35-40 мм) при помощи регулировочного винта. Устанавливают отметку по шкале и фиксируют положение при помощи контргайки. Далее, с помощью трансформатора устанавливают частоту колебаний. Частота устанавливается в интервале от 100 до 120 кол/мин, по счетчику. После включения прибора тумблером оператор следит за отметкой, по которой установлен уровень порошка в цилиндре. Как правило, при работе прибора в течение 10 минут, уровень порошка или смеси становится постоянным, и прибор необходимо отключить.

Насыпную плотность рассчитывают по формуле:

где: ρ н – насыпная плотность, кг/м 3 ;

m – масса сыпучего материала, кг;

V – объем порошка в цилиндре после уплотнения, м 3 .

В зависимости от насыпной плотности порошки классифицируют следующим образом:

ρ н > 2000 кг/м 3 – весьма тяжелые;

2000 > ρ н > 1100 кг/м 3 – тяжелые;

1100 > ρ н > 600 кг/м 3 – средние;

ρ н < 600 кг/м 3 – легкие.

Одним из приборов, на котором проводят измерение насыпной плотности (а также другие характеристики порошковой смеси или монопорошка), является прибор ВТ-1000.

Анализатор ВТ-1000 (Рис. 2) используется для определения свойств различных сыпучих материалов, связанных с текучестью. Порошок или порошковые смеси, по определению, являются двухфазными системами. Свойства поверхности частиц порошковой смеси или монопорошка, так же как и их плотность, все эти параметры определяет его поведение в потоке и их сыпучесть. Правильное определение параметров сыпучести очень важно для расчетов процессов обработки порошка, его упаковки, транспортировки и хранения.

С помощью ВТ-1000 (Рис.3) возможно определить не только насыпную плотность, но и дисперсность, угол падения, угол естественного откоса, угол на плоской пластине и плотность утряски. Из данных характеристик легко рассчитать угол разности, прессуемость, объем пустого пространства, сжимаемость, униформность. По характеристикам зафиксированным на приборе, можно рассчитать индекс Карра, что позволяет определить значения сыпучести и аэрируемости

(поведения порошка в аэродинамической струе).

Порошок засыпается в мерный цилиндр. Отношение занятого им объема к массе порошка является объемной или насыпной плотностью. Рис.3

Насыпная плотность - масса единицы объема рыхло насыпанных зернистых или волокнистых материалов (цемента, песка, гравия, щебня, гранулированной минеральной ваты и т.п.).

Определение насыпной плотности рыхло насыпанных зернистых или волокнистых материалов производится путем взвешивания определенного объема материала (методом мерных цилиндров или сосудов).

Насыпная плотность (г/см 3 , кг/м 3) вычисляется по формуле

, (9)

где - масса мерного цилиндра с материалом; - масса мерного цилиндра; - объем цилиндра.

Порядок выполнения работы при песчаном грунте рыхлого сложения . Песок высушивают в сушильном шкафу при температуре (110±5)°С до постоянной массы и просеивают через сито с отверстиями размерами 5 мм. Высушенный с высоты не более 5 см песок насыпают в предварительно взвешенный мерный цилиндр по наклонному лотку (рис. 5), по желобу, согнутому из листа бумаги или совком до образования над верхом цилиндра конуса. Конус песка (избыток материала) снимают вровень с краями цилиндра металлической линейкой. Цилиндр с материалом взвешивают.

Порядок выполнения работы при песчаном грунте плотного сложения . Опыты производятся аналогично предыдущему. Подготовленный песок насыпают небольшими порциями в мерный цилиндр и уплотняют с помощью резинового молоточка путем постукивания о стенки или дно цилиндра. По мере усадки материала в цилиндре его досыпают до тех пор, пока цилиндр полностью не наполнится.

Результаты опытов заносят в таблицу 6.

Таблица 6

Результаты определения насыпной плотности

Определение насыпной плотности указанными способами производят три-пять раз, при этом каждый раз берут новую порцию материала. Насыпную плотность материала вычисляют как среднее арифметическое результатов всех определений.



Определение пористости

Пористость (общая) - степень заполнения материала порами:

где - объем пор в материале; - объем материала в естественном состоянии.

Открытая пористость определяется как отношение суммарного объема пор, насыщающихся водой, к объему материала , т.е.

. (11)

Закрытая пористость :

. (12)

Для определения общей пористости существует экспериментальный и экспериментально-расчетный способ. Экспериментальный (прямой) способ основан на замещении порового пространства в материале сжиженным гелием и требует сложной аппаратуры для испытаний.

Экспериментально-расчетный метод определения пористости использует найденные опытным путем значения истинной плотности материала и его средней плотности в сухом состоянии.

Пористость (%) вычисляют по формуле

. (13)

Открытую пористость (%) определяют по формуле

где - объемное водопоглощение материала, % (см. п. 1.6).

Результаты вычислений пористости материала заносят в табл. 7.

Таблица 7

Результаты вычислений пористости материала

Определение влажности

Влажность материала характеризуется тем количеством воды, которое содержится в порах и адсорбировано на поверхности образца.

Влажность образца (%)вычисляется по формуле

, (15)

где - масса влажного образца, г; - масса сухого образца, г.

Влажность бетона определяют по образцам или пробам, полученным дроблением образцов после их испытания на прочность. Размер кусков после дробления должен быть не больше 5 мм. Путем квартования отбирают пробу 100 г, которую сушат при температуре (105±5)°С до постоянной массы. Чтобы установить в процессе высушивания достижение пробой постоянной массы, производят взвешивания не менее чем через 4 часа. Массу считают постоянной, если разница между повторными взвешиваниями оказалась не более 0,1 %.

Результаты опытов заносят в табл. 8.

Насыпную плотность определяют взвешиванием массы высушенной пробы заполнителя в мерном сосуде.

10.1.1 Порядок проведения испытания

Определение средней насыпной плотности пористого гравия, щебня или песка производят в соответствии с работой № 2 .

Размер мерного сосуда и объем пробы для испытания в зависимости от крупности заполнителя принимают по таблице 28.

Насыпную плотность заполнителя вычисляют как среднее арифметическое значение результатов двух параллельных определений, при проведении которых каждый раз используют новую порцию заполнителя.

Таблица 32 - Размеры мерных сосудов и объем пробы

10.1.2 Обработка результатов

Насыпную плотность заполнителя (r н ) в кг/м 3 вычисляют с точностью до 10 кг/м 3 (песка марок по насыпной плотности 250 и менее – до 1 кг/м 3) по формуле:

где m 1 – масса мерного сосуда с заполнителем, кг;

m 2 – масса мерного сосуда, кг;

V – объем мерного сосуда, м 3 .

В зависимости от насыпной плотности гравий, щебень и песок подразделяют на марки, приведенные в таблице 33.

Таблица 33 - Марка по насыпной плотности неорганических пористых заполнителей

Предельные значения марок по насыпной плотности для различных видов пористых: гравия, щебня и песка – должны соответствовать требованиям ГОСТ 9757–90, приведенным в таблице34. При этом фактическая марка по насыпной плотности не должна превышать максимального значения, а минимальные значения приведены в качестве справочных.

Таблица 34 - Предельные значения марок по насыпной плотности

Примечание. По согласованию изготовителя с потребителем для приготовления конструкционных легких бетонов классов В20 и выше допускается изготовление керамзитового гравия и щебня марок 700 и 800.



Определение средней плотности зерен крупногозаполнителя

Среднюю плотность зерен крупного заполнителя определяют гидростатическим методом по разности массы контейнера с навеской до и после насыщения ее водой при взвешивании в воде и на воздухе.

10.2.1. Порядок проведения испытания

Из высушенной до постоянной массы пробы заполнителя объемом 3 л отсеивают частицы менее 5 мм на сите с отверстиями диаметром 5 мм. Затем сухой контейнер с крышкой предварительно взвешивают на воздухе и в воде на весах с приспособлением для гидростатического взвешивания. После чего в контейнер засыпают пробу заполнителя объемом 1 л, закрывают его крышкой и взвешивают. Затем контейнер с заполнителем постепенно погружают в сосуд с водой и встряхивают в воде для удаления пузырьков воздуха. Сосуд с заполнителем должен находиться в воде 1 ч, причем уровень воды должен быть выше крышки контейнера не менее чем на 20 мм. Контейнер с насыщенным водой заполнителем взвешивают на весах с приспособлением для гидростатического взвешивания. Далее контейнер с заполнителем вынимают из сосуда с водой, излишку воды в течение 10 мин дают стечь и взвешивают на воздухе.

Среднюю плотность зерен крупного заполнителя каждой фракции вычисляют как среднее арифметическое значение результатов двух параллельных определений, каждое из которых производят на новой порции заполнителя.

10.2.2 Обработка результатов

Среднюю плотность зерен крупного заполнителя (r к ) в г/см 3 вычисляют по формуле

(58)

где m 1 – масса пробы сухого заполнителя, найденная по разности массы контейнера с высушенной пробой и массы контейнера при взвешивании на воздухе, г;

m 2 – масса пробы заполнителя, насыщенного водой, найденная по разности массы контейнера с насыщенной пробой заполнителя и без него при взвешивании на воздухе, г;

т 3 – масса заполнителя в воде, найденная по разности массы контейнера с насыщенной пробой заполнителя и без него при взвешивании в воде, г;r в – плотность воды, равная 1 г/см 3 .

Насыпную плотность определяют для сыпучих строительных материалов: цемента, песка, щебня, гравия и др. Насыпная плотность таких материалов может быть определена в рыхлонасыпном, уплотненном и естественном состоянии.

Насыпной плотностью сыпучих материалов называют массу единицы объема материала в насыпном состоянии, т.е. с порами и пустотами, данный параметр можно определять в соответствии с методиками, приведенными в ГОСТ 8735-88 и ГОСТ 8269.0-97.

Насыпную плотность определяют с помощью прибора (рис. 4.1), который состоит из стандартной воронки в виде усеченного конуса и мерного цилиндра объемом 1 л или 10 л. Для испытаний под трубкой воронки устанавливают заранее взвешенный мерный цилиндр. Расстояние между верхним обрезом цилиндра и задвижкой должно быть 50 мм. В воронку насыпают сухой материал, затем открывают задвижку, наполняют цилиндр с избытком, закрывают задвижку и металлической линейкой срезают от середины в обе стороны излишек материала вровень с краями цилиндра. При этом не допускается уплотнение материала. Затем цилиндр о материалом взвешивается с точностью до 1 г. Расчет насыпной плотности материала в рыхлонасыпном состоянии ведут по формуле:

ρ н.р . = , [кг/л], (4.1)

где m 1 - масса цилиндра с материалом, кг;

m 2 - масса цилиндра, кг;

V - объем цилиндра, л.

Испытание повторяют не менее трех раз и вычисляют конечный результат как среднее арифметическое трех измерений.

При транспортировании и хранении сыпучие материалы уплотняются, при этом значение их насыпной плотности может оказаться на 15-30% выше, чем в рыхлонасыпном состоянии. Определить насыпную плотность в уплотненном состоянии можно по приведенной выше методике, однако после заполнения цилиндра материалом его следует уплотнить вибрацией в течение 30-60 сек на виброплощадке путем легкого постукивания цилиндра о стол 30 раз. В процессе уплотнения материал досыпают, поддерживая некоторый избыток его в цилиндре. Далее избыток срезают, определяют массу материала в цилиндре и вычисляют насыпную плотность в уплотненном состоянии.

На основе полученных результатов можно определить уплотняемость материала, которую принято характеризовать коэффициентом уплотнения

К у =, (4.2)

где: ρ н.у. - насыпная плотность материала в уплотненном состоянии, кг/л;

ρ н.р. - насыпная плотность материала в рыхлонасыпном состоянии, кг/л;

Рис. 4.1. Схема прибора для определения насыпной плотности материала в рыхлонасыпном состоянии:

1 - стандартная воронка; 2 - задвижка; 3 - мерный цилиндр

5. Определение водопоглошения материала

При определении водопоглощения материалов из горных пород следует руководствоваться ГОСТ 30629-99. Водопоглощение определяют на пяти образцах кубической формы с ребром 40 - 50 мм или цилиндрах диаметром и высотой 40 - 50 мм. Каждый образец очищают щеткой от рыхлых частиц, пыли, высушивают до постоянной массы. Взвешивание образцов и обмер производят после их полного остывания на воздухе. Далее испытание проводят в следующей последовательности. Образцы горной породы укладывают в сосуд с водой комнатной температуры 15 - 20 0 С в один ряд так, чтобы уровень воды в сосуде был выше верха образцов на 20 мм. Образцы выдерживают 48 ч, после чего их вынимают из сосуда, удаляют влагу с поверхности влажной мягкой тканью и каждый образец взвешивают. Массу воды, вытекающей из пор образца на чашку весов, включают в массу насыщенного водой образца.

Водопоглощение материала по массе или по объему равно отношению массы воды, поглощенной образцом материала при насыщении, соответственно к массе или объему образца.

Водопоглощение по массе вычисляют по формуле:

=
. 100 , [%], (5.1)

где m 1

m 2 - масса образца в насыщенном водой состоянии, кг.

Водопоглощение по объему вычисляют по формуле:

=
. 100 , [%], (5.2)

где m 1 - масса образца в сухом состоянии, кг;

m 2 - масса образца в насыщенном водой состоянии, кг;

V - объем образца, см 3 .

За окончательный результат принимается среднее арифметическое пяти определений водопоглощения.

Величина водопоглощения по массе может составлять более 100%.