Энергосберегающие

Исследование теплопроводности. «Изучение теплопроводности различных видов текстильных материалов

Исследование теплопроводности. «Изучение теплопроводности различных видов текстильных материалов

Теплопроводность -- рабочая характеристика теплоизоляционных покрытий. Наряду с экономией основного металла эти покрытия дают возможность сократить теплопотери и предохраняют основной металл от воздействия теплового потока.

Широкое распространение получили стационарные методы определения теплопроводности, при которых сохраняются хотя и различные, но неизменные в процессе исследований температуры в определенных точках покрытия при направлении его слоистости перпендикулярно проходящему тепловому потоку.

Эти методы делятся на абсолютные и относительные. В методах первой группы температура любой точки покрытия зависит только от ее положения, но не от времени. Зная распределение температур в покрытии и количество перенесенной теплоты, можно рассчитать теплопроводность.

В относительных методах сравнивают температурные поля в исследуемом покрытии и эталонном заранее изученном материале, например, кварцевом стекле марки КВ.

Теплопроводность не оценивают непосредственно, а определяют путем перерасчета, сопоставляя с эталоном.

Рис. 2.6.1. Установка для определения теплопроводности покрытий абсолютным методом:

1 - нагреватели; 2 - образец; 3 - электропечь; 4 - потенциометр КСП4; 5 - блок реле БР101;6 - блок задачи БЗ-02; 7 - контробразец; 8 - термос; 9 - внутренний стакан термоса

Установка для оценки теплопроводности стационарным абсолютным методом показана на рис. 2.6.1.

Для создания теплового потока в системе основной металл-покрытие-контр-образец применяется трубчатая электропечь, в которой нагреватели (спирали) расположены так, что образец нагревается только в верхней половине печи, где находятся спиральные нагреватели, тогда как в нижней -- асбестовая теплоизоляция и термопреобразователи для измерения температуры образца по его длине.

Термос, необходимый для охлаждения контробразца и определения теплового потока, прошедшего через покрытие, представляет собой два изолированных стакана.

Во внутренний стакан подается вода.

Температура воды на входе и выходе из термоса может быть измерена медь-константановыми термопреобразователями. Для обеспечения достаточного контакта рабочих торцевых поверхностей контробразца и образца к последнему прикладывается усилие Р не менее 500 Н.

Теплопроводность определяют не менее чем на трех образцах одинаковых размеров, с идентичной структурой и одинаковой толщиной покрытия, которое наносят при одном технологическом режиме на торцевую поверхность образца (рис. 2.6.2).

Рис. 2.6.2 Образец для испытания на теплопроводность

Для каждого образца в каждой точке определяют не менее трех температур через каждые 20 мин.

Одновременно фиксируют температуру воды на входе и выходе.

Обеспечив необходимый прогрев образца и стационарность теплового потока, можно снимать показания всех термопреобразователей.

Для каждого образца в каждой точке определяют не менее трех температур через каждые 20 мин. Одновременно фиксируют температуру воды на входе и выходе.

Рис. 2.6.3 Распределение температур в системе основной металл-покрытие-контробразец по длине :

1 - контробразец; 2 - места установки термопреобразователей; 3 - основной металл; 4 - покрытие

По результатам исследований строится график распределения температур в системе основной металл--покрытие--контробразец (рис. 2.6.3). По графику методом экстраполяции определяют температуры на внутренней и внешней поверхностях покрытия. Теплопроводность , Вт/(м-К) вычисляется по формуле:

где Q -- тепловой поток, проходящий через покрытие, Вт; c = 4,19- -- удельная теплоемкость воды, Дж/(кгК); V -- массовый расход воды, проходящей через термос, кг/с; - повышение температуры воды в термосе, °С; -- температуры воды на входе и выходе из термоса, °С; S -- площадь покрытия, м2; -- температура на внутренней и внешней поверхностях покрытия, °С.

Известны и другие установки для оценки теплопроводности абсолютным методом. Так, В. М. Иванов с сотр. исследовали теплофизические свойства отделенных от основного металла плазменных покрытий из оксида алюминия и двуокиси циркония на установке, приведенной на рис. 2.6.4. Образец в виде цилиндра длиной 100 мм с толщиной стенок 1 мм устанавливали так, чтобы один его конец нагревался от верхних электрических нагревателей, а другой находился в эвтектическом расплаве. Охранное приспособление, экраны, изоляция из кремнеземистого волокна, возможность измерения теплового потока на сравнительно большой длине -- все это исключало неточность выполнения условий стационарности. Градиент температур определяли термопреобразователями.

Рис. 2.6.4 Установка для измерения теплопроводности покрытий абсолютным методом на цилиндрических образцах:

1 - исследуемый образец; 2 - охранное приспособление; 3 - экраны; 4- нагреватели; 5- эвтектический расплав; 6- теплоизоляция; 7-термопары

В работе Т. Б. Бузовкина с сотр. теплопроводность покрытий определена с помощью относительных методов измерения. При этом упрощение достигнуто за счет сравнения температурных полей в исследуемом и эталонном покрытиях. В качестве эталона выбирали заранее изученный материал. По эталонному образцу измеряли полный тепловой поток. При оценке теплопроводности покрытий эталоном служил плавленый кварц с многократно определенной теплопроводностью. Он обладает высокой стабильностью и может работать в интервале температур от 100 до 1700 К.

В экспериментальной установке (рис. 2.6.5) дисковый образец толщиной 3--4 мм и диаметром 23--25 мм устанавливали между эталонами из плавленого кварца.

Рис. 2.6.5 Установка для измерения теплопроводности относительным методом:

1 - образец; 2 - эталоны (плавленый кварц); 3 - термопреобразователи; 4 - силитовые стержни; 5- холодильник; 6- крышка; 7- груз; 8- кольца

Образец изготавливали из отделенного от основного металла покрытия, шлифуя с обеих сторон. Теплопроводность измеряли в условиях лучистого нагрева от силитовых стержней. Для уменьшения радиального отвода тепла систему из образца и кварцевых дисков окружали тремя защитными концентрическими кольцами из асбоцемента и засыпкой из кварцевого песка. Температурные перепады в установившемся режиме фиксировали четырьмя платина-платинородиевыми термопарами. Систему из образца и термопар располагали на медном холодильнике и прижимали к нему грузом для уменьшения переходного контактного сопротивления между образцом, эталонами и термопарами. Тепловая изоляция обеспечивала расхождение значений тепловых потоков через первый и второй эталонные образцы не более 4%. Для интервала 200--900 °С строили кривую зависимости теплопроводности от температуры и с помощью ЭВМ анализировали влияние микротрещин, пятен контакта между частицами, размеров частиц и других структурных параметров на теплопроводность.

роквелл твердость покрытие

Тема «Изучение явления теплопроводности»

Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.

Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Задачи:

Изучить теоретический материал по данному вопросу;

Исследовать теплопроводность твердых тел;

Исследовать теплопроводность жидкостей;

Исследовать теплопроводность газов;

Сделать выводы о полученных результатах.

Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.

Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.

Элементы УМК к учебнику: учебник «Физика. 8 класс »

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Видео: https://cloud. mail. ru/public/JCFY/CFTcCeqhE

Опыт 1 . Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня.


Внесем в огонь конец деревянной палки. Он воспламенится.

Вывод: дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.

Вывод: стекло имеет плохую теплопроводность.

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.

Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.

https://pandia.ru/text/80/351/images/image003_62.jpg" alt="img8_7" align="left" width="216" height="176 src=">

Опыт 3. Исследование теплопроводности газов.

Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.

Вывод : теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.

Выводы и их обсуждение

Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.

Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:

Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность - это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.


Применение теплопроводности

Теплопроводность на кухне:

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность - в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане - один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество - способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне - плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище - остыть, а рукам - получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха - это еще больше уменьшает теплопроводность.

Отопительная система:

Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов - шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц - пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Теплолечение

Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.

Теплопроводность в бане

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью - было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью - камень.

Интересные факты о теплопроводности

Тепло ли колючим зверям в иголках?

Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?

Ученые Института проблем экологии и эволюции им. РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин - главная составляющая иголок - проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.

Полипропилен – пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды , термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.

Какой материал имеет самую высокую теплопроводность?

Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.

Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины з-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т. к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.

«Огнеупорный шарик»……………………………………….

Обычный воздушный шарик , надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.

Хайруллин А, Салимов И

Материал научно-практической конференции

Скачать:

Предварительный просмотр:

ИССЛЕДОВАНИЕ ТЕПЛОПРОВОДНОСТИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИХ ПОЖАРОСТОЙКОСТЬ

Исследовательская работа

  1. Введение…………………………………………………………………………...3
  2. Теоретическая часть…………………………………………………………....3-12

2.1 Физические свойства материалов……………………………………….3-5

2.2 Понятие о теплопроводности и теплоизоляции………………………..6-7

  1. Теплопередача в строительстве…………………………………………..8-9

2.4Классификация теплоизоляционных материалов……………………10-11

2.5Теплоизоляционные свойства материалов…………………………….11-12

3.Практическая часть. Материалы и методика исследования……………..12-13

4.Пожаростойкость материалов………………………………………………....14

5.Заключение и выводы…………………………………………………………..15

6.Литература………………………………………………………………………..15

Актуальность работы: обусловлена острой необходимостью исследования свойств строительных материалов, и изучить их пожаростойкость.

Проблема:

Как сделать свой дом теплым, экологически чистым и пожаробезопасным?

Целью данной работы является исследование теплопроводности природных и искусственных строительных материалов и их пожаростойкость.

Для достижения этой цели определили следующие задачи:

  1. Изучить литературу по теме теплопроводность и теплоизоляция.
  2. Освоить методику исследования определения теплопроводности материалов.
  3. Дать количественную оценку проводящих свойств образцов как отношение изменения температуры к времени, за которое это изменение произошло.
  4. Сравнить экспериментальные и табличные значения теплопроводности материалов.

6. Изучить пожарную безопасность строительных материалов.

1.Введение

В холодную, дождливую, ветреную погоду мы всегда стремимся вернуться в теплый дом, где можно, сняв пальто, почувствовать себя в тепле и уюте. Наружные стены, окна, крыша защищают наш дом от низких температур, сильного ветра, осадков в виде дождя и снега и других атмосферных воздействий. При этом они препятствуют прониканию тепла из внутреннего помещения наружу вследствие своего сопротивления теплопередаче.

Из чего построить дом? Его стены должны обеспечить здоровый микроклимат без лишней влаги, плесени, холода. Это зависит от их физических и механических свойств.

За ХХ век в мире произведено столько материалов, сколько за всё предшествующее тысячелетие. Научные исследования позволили существенно улучшить оптические, химические, тепловые и другие свойства уже известных материалов и создать тысячи новых, которых не знала природа.

Строительный бум в России ХХI века породил спрос на теплоизолирующие материалы и конструкции. Кроме того, с началом 2000 года в силу вступили новые требования к теплозащите ограждающих конструкции. Утепление зданий современными строительными материалами позволяет значительно снизить теплопотери. Разумеется, строить лучше всего из материалов, которые обладают малой теплопроводностью.

2.Теоретическая часть.

2.1 Физические свойства материалов.

Плотность - величина, измеряемая отношением массы" вещества к занимаемому объему.

Влажность - массовая доля воды в материале, выраженная в процентах.

Для определения влажности образец взвешивают сначала во влажном, а затем в абсолютно сухом состоянии. Высушивают материал до полного удаления влаги в лабораторных условиях (в сушильном шкафу) при температуре 110°С. Материал, влажность которого равна 0, называют абсолютно сухим, при равенстве ее" влажности окружающего воздуха - воздушно-сухим.

Водопроницаемость, т. е. способность материала пропускать воду под давлением, измеряют количеством воды, прошедшей через 1 см 2 площади поверхности материала в течение 1 ч при постоянном давлении. Особо плотные материалы (битум, стекло, сталь и др.), а также достаточно плотные материалы с мелкими порами (специальный бетон) практически водонепроницаемы, остальные водопроницаемы.

Морозостойкость - способность материала в насыщенном водой состоянии выдерживать многократное и" попеременное замораживание и оттаивание. Материал" считают морозостойким, если он после испытания не имеет выкрашиваний, трещин, расслаивания, потери массы более 5% и прочности более 25%.

Теплопроводность - способность материала передавать теплоту от одной поверхности к другой. За единицу количества теплоты принят 1 джоуль (Дж). С увеличением влажности и плотности «материала возрастает его теплопроводность.

Теплоемкость - количество теплоты, которое требуется для нагревания какого-либо тела на 1 кельвин" (К).

Механические свойства материалов.

Прочность - свойство материала сопротивляться разрушению под действием нагрузок или других факторов. Пределом прочности называется условное напряжение, отвечающее наибольшей нагрузке, предшествовавшей разрушению образца материала. Предел прочности определяют нагружением образцов материала до разрушения на прессах или разрывных машинах. Хрупкие материалы испытывают главным образом на сжатие, пластичные- на растяжение.

Многие строительные материалы характеризуются в технических условиях так называемыми марками, совпадающими по величине с пределом прочности (при сжатии). Например, тяжелый бетон бывает марок (М) 100, 150, 200, 300, 400, 500 и 600 кирпич-50, 75, 100, 125, 150 и т. д.

Твердость - способность материала сопротивляться прониканию в него другого, более твердого тела. Твердость материала не всегда соответствует его прочности. Материалы с разными пределами прочности могут обладать одинаковой твердостью. Существует несколько способов определения твердости материала. Например, твердость однородных каменных материалов определяют по специальной шкале, составленной из десяти минералов, которые расположены по степени возрастания твердости. Испытуемый материал царапают минералами шкалы, результаты сравнивают с эталоном. В металл, бетон и древесину вдавливают с определенной нагрузкой стальной шарик. По глубине вдавливания или диаметру отпечатка устанавливают твердость материала.

Упругость - свойство материала изменять форму под действием нагрузки и восстанавливать ее после снятия нагрузки. Восстановление первоначальной формы может быть полным и частичным. Если восстановление формы неполное, то в материале имеются так называемые остаточные деформации. Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают заданной в технических условиях на данный материал величины.

Хрупкость - свойство материала разрушаться при механических воздействиях нагрузки без заметной пластической деформации. К хрупким материалам относятся чугун, бетон, кирпич. Они легко разрушаются при ударах и не выдерживают высоких местных напряжений (в них образуются трещины), поэтому их не применяют для строительных конструкций, подвергающихся растягивающим и изгибающим усилиям.

Пожароопасные свойства материалов.

Возгораемость - способность материала гореть или не гореть под воздействием огня. По возгораемости материалы делят на негорючие (несгораемые), трудногорючие (трудносгораемые) и горючие (сгораемые). К негорючим относятся материалы, которые не воспламеняются, не тлеют и не обугливаются под воздействием огня или высокой температуры. Если под воздействием огня или высокой температуры материалы или конструкции воспламеняются, тлеют или обугливаются и продолжают гореть или тлеть только при наличии источника зажигания, а после его удаления процесс горения или" тления прекращается, их относят к трудногорючим. Горючие материалы под воздействием огня или высокой температуры воспламеняются и продолжают гореть или тлеть после удаления источника зажигания.

Все строительные материалы неорганического происхождения относят к негорючим, а органического - к горючим.

2.2 Понятие о теплопроводности и теплоизоляции.

Передачей теплоты или теплообменом называется, переход внутренней энергии от одного тела к другому в результате теплового контакта (соприкосновения) без совершения работы

Теплопроводность - один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры тела.

Посредством этого вида теплообмена происходит передача теплоты через стенку дома в зимнее время. Так как температура внутри дома выше, чем вне его, наиболее интенсивное тепловое колебательное движение совершают частицы, образующие внутреннюю поверхность стенки. Сталкиваясь с частицами соседнего более холодного слоя, они передают им часть энергии, в результате чего движение частиц этого слоя, оставаясь колебательным, становится более интенсивным. Так от слоя к слою растет интенсивность колебаний частиц, а следовательно, и их внутренняя энергия. Таким образом, при теплопроводности перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомом, электронов), обладающих большей энергией, к частицам с меньшей энергией.

С помощью теплопроводности теплота может передаваться в твердых, жидких и газообразных телах. Самой большой теплопроводностью обладают металлы. Это объясняется тем, что переносчиками внутренней энергии здесь, кроме молекул, являются свободные электроны. Хуже проводят тепло дерево, стекло, животные и растительные ткани; еще меньшую теплопроводность имеют жидкости

(за исключением жидких металлов, например ртути): и газы. Так, воздух в тысячи раз хуже проводит тепло, чем железо. Очень важно знание теплопроводности материалов, используемых при устройстве так называемых ограждающих конструкций зданий

(т. е. наружных стен, верхних перекрытий, полон в нижнем этаже) и в особенности теплоизоляционных материалов, предназначенных для сохранения тепла в помещениях и тепловых установках.

Регулирование теплообмена является одной из основных задач строительной техники. В холодное время года теплота теряется помещением в силу теплопроводности стен и просачивания через них воздуха, уходит вместе с нагретым воздухом через вентиляционные каналы и щели. Чтобы температура в жилых и производственных помещениях соответствовала нормальным условиям жизни и деятельности человека, необходимо уменьшить эти потери. С этой целью стены домов делают из материалов с малой теплопроводностью - естественных (дерева, камыша, различных видов торфа, пемзы, пробки) или искусственных (кирпича, бетона, пенопласта и др.). Теплоизолирующие свойства этих материалов различны.

Широкое распространение в настоящее время получили каркасные здания, на постройку которых требуется гораздо меньше материалов, чем для здании других типов. Основу каркасного здания составляет металлический или железобетонный каркас, играющий в здании ту же роль, которую выполняет скелет в организме животных: воспринимает нагрузку. На каркасе укрепляют стены из теплоизолирующих пористых материалов. Поры таких материалов заполнены воздухом, поэтому они имеют сравнительно небольшой вес и плохо проводят тепло, так как теплопроводность воздуха очень мала, а конвекция воздуха в пористых материалах невозможна.

При изготовлении теплоизоляционных материалов в заготовленную массу вводят пузырьки воздуха. Для этого ее взбивают или добавляют специальную пену либо вещества, которые, вступая в химическую реакцию с заготовленной смесью, выделяют пузырьки газа. Некоторые пористые теплоизоляционные строительные материалы изготавливает термическим способом. Например, при производстве пеностекла стеклянный порошок смешивают с небольшим количеством размельченного известняка, засыпают в металлические формы и нагревают. При температуре 550-600 °С стеклянный порошок расплавляется, образуя сплошную массу. Когда температура достигает 750-780 °С, начинается разложение известняка, из которого выделяются газы. Вспучивай расплавленную массу, они придают ей пористость. После застывания образуется материал, сохраняющий все свойства обычного стекла: негорючесть, стойкость по отношению к влаге и кислотам и т. д. В то же время этот материал обладает новыми замечательными качествами: он прочен, легко поддается обработке--пилится, строгается, не трескается, когда в него забивают гвозди. Использование теплоизоляционных материалов и примышленном и гражданском строительстве не только удешевляет, но и увеличивает полезную площадь помещений, повышает их огнестойкость и звуконепроницаемость.

2.3 Теплопередача в строительстве.

Кровля, стены и окна называются наружными ограждающими конструкциями здания из-за того, что они ограждают жилище от разного рода атмосферных воздействий пониженных температур, солнечной радиации, влаги, ветра. С образованием разности температур между внутренней и наружной поверхностями ограждения в материале ограждения зарождается тепловой поток, который направлен в сторону понижения температуры. В это время ограждение оказывает большее или меньшее сопротивление R 0 тепловому потоку. Конструкции, имеющие большее тепловое сопротивление лучшей теплозащитой. Теплозащитные свойства стены будут зависеть от ее толщины и коэффициента теплопроводности материала, из которого она построена. В случае, если стена состоит из нескольких слоев (допустим, кирпич-утеплитель-кирпич), ее термическое сопротивление будет зависеть от толщины и коэффициента теплопроводности материала каждого из слоев. Теплозащитные свойства ограждающих конструкций в большой степени зависят от влажности материала. Почти все строительные материалы содержат мельчайшие поры, которые в сухом состоянии заполняются воздухом. С повышением влажности поры заполняются влагой, коэффициент теплопроводности которой по сравнению с воздухом в 20 раз больше, а это приводит к резкому снижению теплоизоляционных характеристик, как материалов, так и конструкций. В связи с этим в процессе проектирования и строительства потребуется предусмотреть мероприятия, которые препятствовали бы увлажнению конструкций атмосферными осадками, грунтовыми водами и влагой, образующейся в результате конденсации водяных паров. В процессе эксплуатации домов из-за воздействия внутренней и наружной среды на ограждающие конструкции материалы находятся не в абсолютно сухом состоянии, а отличаются несколько повышенной влажностью. Это неизбежно приводит к увеличению коэффициента теплопроводности материалов, а также к снижению их теплоизолирующей способности. Именно поэтому при оценке теплозащитных характеристик конструкций важно использовать реальное значение коэффициента теплопроводности в условиях эксплуатации, а не в сухом состоянии. Влагосодержание теплого внутреннего воздуха выше, чем холодного наружного, и в результате диффузия водяных паров через толщу ограждения всегда проистекает из теплого помещения в холодное. Если с наружной стороны ограждения расположить плотный материал, который плохо пропускает водяные пары, то часть влаги, не имея возможности выйти наружу, начнет скапливаться в толще конструкции. А если у наружной поверхности располагается материал, не препятствующий диффузии водяных паров, то вся влага будет удаляться из ограждения достаточно свободно.

Еще на стадии проектирования дома необходимо учитывать тот факт, что однослойные стены толщиной 400-650 мм из кирпича, мелких блоков из ячеистого бетона (или керамзитобетона) или керамических камней обеспечивают относительно невысокий уровень теплозащиты (примерно в 3 раза меньше требуемой). Повышенными теплоизоляционными характеристиками, удовлетворяющими современные требования, обладают трехслойные ограждающие конструкции. Состоят они из внутренней и наружной стенок из кирпича или блоков, между которыми находится слой теплоизоляционного материала. Наружная и внутренняя стенки, соединенные гибкими связями в виде арматурных стержней или каркасов, уложенных в горизонтальные швы кладки, придают конструкции прочность, а внутренний (утепляющий) слой обеспечивает требуемые теплозащитные параметры. Толщину утепляющего слоя выбирают в зависимости от климатических условий и вида утеплителя. В связи с неоднородностью структуры трехслойной стены и применения материалов с различными теплозащитными и пароизоляционными характеристиками в толще конструкции может образовываться конденсат. Присутствие последнего в значительной степени снижает теплоизоляционные свойства ограждения. Из-за этого при возведении трехслойных стен необходимо предусмотреть их влагозащиту. Совсем недавно приняты новые нормативные документы по теплосбережению. Как раз поэтому теплоизоляция жилых зданий становится на сегодняшний день одной из важнейших проблем строительства. Особенно остро проблема теплоизоляции стоит в коттеджном и дачном строительстве, поскольку, правильно сделанная, она позволяет уменьшить расходы на отопление в 3, а то и в 4 раза.

На рисунке приведен пример распределения теплопотерь через различные конструктивные элементы дома площадью 120 м 2

2.4 Классификация теплоизоляционных материалов.

Все теплоизоляционные материалы подразделяются на несколько крупных групп:

  • минераловатные;
  • стекловатные и стекловолокнистые;
  • газонаполненные полимеры - пенопласты: полиуретановые и пенополиуретановые, полистирольные и пенополистирольные, полиэтиленовые, из феноловой пены, полиэфирные;
  • теплоизоляция из натуральных материалов и продуктов их переработки: пробки, бумаги, торфяных блоков и т. п.;
  • теплоизоляция на основе синтетического каучука;
  • теплоизоляция из отходов кремниевого производства;
  • теплоизоляционные панели и конструкции;
  • модифицированные бетоны: полистиролбетон, ячеистый бетон (пенобетон).

Разумеется, строить лучше всего из материалов, которые обладают достаточно высокими теплоизоляционными свойствами.

И все-таки значительно чаще возникает проблема теплоизоляции кирпичного коттеджа, который только еще строится, или уже давно построенного дома. Безусловно, наибольший интерес представляют высокоэффективные теплоизоляционные материалы. К ним обычно относят материалы со средней плотностью в пределаях 200 кг/м 3 и К тепл менее 0,06 ВтДм"К). Такого рода материалы достаточно быстро, за 5-10 лет эксплуатации, окупаются, позволяя экономить на энергозатратах.

Выпускаются утеплительные материалы в виде рулонов и мягких, полужестких и жестких матов и плит, разных по плотности и размерам.

В последние несколько лет все большую популярность приобретают «каменные», а если быть более точным - базальтовые ваты. Такая вата представляет собой несгораемый экологически чистый материал, отличающийся высокими водоотталкивающими свойствами, но при этом паропроницаемый. Базальтовые материалы по своим теплоизоляционным свойствам значительно превосходят традиционные стекловаты, но, к сожалению, они дороже последних. Данные материалы относятся к группе несгораемых. Теплоизоляционные изделия из полимеров или бумаги сгорают при пожаре за 5 минут. Утеплители, выполненные из стекловаты при температуре 650 °С, которая достигается всего за 7 минут при обычном пожаре внутри помещения, расплавляются и спекаются в стеклянный шар. Что же касается минеральной ваты на базальтовой основе - она даже при температуре 1000 °С не расплавляется и не теряет первоначальной формы.

Все утеплительные материалы безопасны как для производства, так и для использования при соблюдении рекомендуемой технологии работы.

Утеплительные материалы из базальта также выпускаются самых разных размеров и типов (рулоны, жесткие и мягкие, маты и плиты) для их более рационального и эффективного применения. Коэффициент их теплопроводности, в зависимости от плотности, колеблется от 0,034 до 0,042 Вт/(м*К). Совсем недавно появившаяся на российском рынке базальтовая теплоизоляция используется для утепления кровель, пола и стен, наполнения перегородок, обустройства мансард, выпускается в виде плит, профильных изделий и, конечно же, рулонов.

Газонаполненные полимеры является одним из самых эффективных видов теплоизоляции. Самый распространенный и широко используемый из них - это пенопласт (пенополистирол). Невысокая теплостойкость и горючесть пенопластов не являются помехой при использовании их в слоистых конструкциях в сочетании с кирпичом или бетоном. Пенополистирол либо производят беспрессовым методом.

2.5 Теплоизоляционные свойства материалов.

Основной показатель теплоизоляционных свойств материала-коэффициент теплопроводности. Этот показатель в значительной степени зависит от содержания в нем влаги, каждый процент содержания которой снижает коэффициент на 4%. Помимо этого в зимнее время присутствующая в пенополистирольных плитах влага, замерзая и превращаясь в лед, со временем разделяет материал на отдельные гранулы, а это резко снижает долговечность беспрессового пенопласта. Беспрессованный пенопласт традиционно производят в России.

Этих недостатков лишен экструзионный пенополистирол. Обладая весьма низким водопоглощением (менее 0,3%) за счет замкнутой структуры ячеек и высокой механической прочностью, панели из экструзионного пенополистирола могут быть использованы для наружной теплоизоляции, для теплоизоляции подземных частей зданий, фундаментов, подвалов, стен, где использование большинства прочих утеплителей попросту невозможно из-за капиллярного подъема грунтовых вод.

Теплоизоляционные материалы с коэффициентом теплопроводности меньше

0,06 Вт/(м-К) окупаются в среднем за 5-7 лет эксплуатации за счет экономии энергии.

Ниже в таблице приведены коэффициенты теплопроводности строительных материалов.

Вид утеплителя

Коэффициент теплопроводности,

Полнотелый кирпич

Фиброцемент

0,55

Безавтоклавный пенобетон

0,45

Сухой песок

Твердые породы дерева

0,25

Теплоизоляционный ячеистый бетон

0,12

Битумный асфальт

Керамика

0,07

Пробковый утеплитель

0,047

Эковата (бумага)

0,046

«Пеноизол» (пенопласт)

0,04

Базальтовая вата.

0,039

Стекловата

0.038

Пенополиэтилен

0,035

Пенофольгированный утеплитель Low-E

0,027

Пенополистирол

0,027

Эти материалы пропитаны веществами для снижения влагопоглощения, антипиренами для придания материалу негорючести и антисептиками. Они обладают достаточно неплохими теплоизоляционными свойствами (К т гл =0,078 Вт/(м-К) и вполне могут быть использованы для утепления наружных и внутренних стен, потолков. Материалы выпускаются в виде панелей или в виде эковаты.

3. Практическая часть.

Материалы и методика исследования.

Исследования проводились при комнатной температуре

Исследования проводились с помощью электронного термометра. Оборудование: электрическая плитка. штатив, прибор комбинированный цифровой с датчиком температуры, и исследуемые материалы. Мы наблюдали за изменением температуры с течением времени и записывали в таблицу, затем построили графики.

В данной работе исследованы теплопроводящие свойства нескольких материалов древесина, кирпич, газобетон, а также исследовали на возгораемость утеплителей технониколь , пенопласт и строительной пены. Крутизна полученных кривых характеризует теплопроводность материалов как отношение изменения температуры ко времени, за которое это изменение произошло.

27,6

23,7

21,6

24,3

Анализируя полученные графики роста температуры, вычислили

теплопроводность материалов как отношение изменения температуры ко времени, за которое это изменение произошло

Материал

Теплопроводность

Экспериментальная 0 С /с

Теплопроводность

Табличная Вт/(м*К)

Кирпич

0,079

0,56

Газобетон

0,062

0,45

Дерево

0,055

0.25

Анализ графиков и результатов измерений показал - какими уникальными теплоизоляционными возможностями обладают современные материалы.

4.Пожаростойкость материалов

Для строительства современных домов человек использует различные материалы: кирпич, газобетон, древесину и изделия из нее – древесно-стружечные плиты (ДСП), древесно-волокнистые плиты (ДВП), фанеру и т. д.

Для отделки используются отделочные и облицовочные материалы, среди которых полистирольная плитка, ПВХ- и ДСП-панели, обои, плёнки, керамическая плитка, стеклопластики, полимерные материалы, изделия из синтетики и пластмасс и т.д. Отделочные материалы создают дополнительную угрозу жизни и здоровья людей вызывая задымление, выделяя токсичные продукты горения и способствуя быстрому распространению пламени.

Экспериментальная часть

Здесь мы исследовали на возгораемость дерева пропитанного противопожарными антисептиками, утеплителя технониколь, пенопласта и строительной пены.

Вывод: очень хорошо возгорается строительная пена и образуется при этом удушающий газ и черный дым.

Утеплитель технониколь очень плохо возгорается, можно сказать совсем не горит.

У древесины пропитанное антисептиками возгораемость намного снижается.

Пенопласт горит хорошо и выделяет большое количество сажи.

5. Заключение и выводы:

Полученные в ходе исследований результаты, показывают какими уникальными теплоизоляционными возможностями обладают современные материалы и приводят к выводу о необходимости информировать и даже пропагандировать среди населения современные строительные материалы. Тем более что на современном строительном рынке достаточно широко представлены высококачественные теплоизоляционные материалы. Эти утеплители экологически чистые и пожароустойчивые.

Такие материалы более дорогие и поэтому недостаточно широко используются в строительстве. В нашем городе эти материалы уже применяются при строительстве новых зданий, а также для утепления уже возведенных строений. Причем данные материалы применяются как на крупных строительных площадках, так и при строительстве частных домов.

После проведённого исследования мы пришли к выводу, что наш дом далеко не безопасен, потому что пожар может возникнуть быстро, так как многие вещества и предметы являются сильногорючими, сопровождаться он будет сильным задымлением и высокой концентрацией ядовитых веществ.

Не используйте в своих домах материалы со знаком "Г2", "Г3" и "Т4". Это значит, что они легко воспламеняются и высокотоксичны.

Помните! Синтетические материалы выделяют при горении очень ядовитый дым.

Соблюдайте в доме чистоту и порядок. Чистота и порядок должны стать вашим девизом.

Простые правила помогут сделать дом уютным, а главное – безопасным!

  1. Литература
  1. ИсаченкоВ.П., ОсиповаВ.А.,Сукомел А.С.Теплопередача. – М.:

Энергоиздат, 1981. –416с.

  1. Филиппов Л.П. Исследование теплопроводности строительных материалов. –М.: Изд-во МГУ, 2000г. –240 с.
  2. Осипова В.А. Экспериментальное исследование процессов теплообмена. –М.: Энергия, 2001г. –318с.
  3. Интернет ресурсы.

~ ~

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1. Введение.

Проект разработан в соответствии со стандартом среднего общего образования по физике. При написании данного проекта рассмотрено изучение тепловых явлений, применение их в быту и технике. Помимо теоретического материала большое внимание уделено исследовательской работе - это опыты, которые отвечают на вопросы «Какими способами можно изменить внутреннюю энергию тела», «Одинаковая ли теплопроводность различных веществ», «Почему струи теплого воздуха или жидкости поднимаются вверх», «Почему тела с темной поверхностью нагреваются сильнее»; поиск и обработка информации, фотографий.Время работы над проектом: 1 - 1,5 месяца.Цели проекта:* практическая реализация имеющихся у школьников знаний о тепловыхявлениях;* формирование навыков самостоятельной исследовательской деятельности;* развитие познавательных интересов;* развитие логического и технического мышлений;* развитие способностей к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами;

2. Основная часть.

2.1. Теоретическая часть

В жизни мы действительно ежедневно встречаемся с тепловыми явлениями. Однако не всегда мы задумываемся, что эти явления можно объяснить, если хорошо знать физику. На уроках физики мы познакомились со способами изменения внутренней энергии: теплопередачей и совершением работы над телом или самим телом. При контакте двух тел с разными температурами происходит передача энергии от тела с более высокой температурой к телу с более низкой температурой. Этот процесс будет происходить до тех пор, пока температуры тел не сравняются (не наступит тепловое равновесие). При этом механическая работа не совершается. Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплообменом или теплопередачей. При теплопередаче энергия всегда передается от более нагретого тела к менее нагретому. Обратный процесс самопроизвольно (сам по себе) никогда не происходит, т. е. теплообмен необратим. Теплообмен определяет или сопровождает многие процессы в природе: эволюцию звезд и планет, метеорологические процессы на поверхности Земли и др. Виды теплопередачи: теплопроводность, конвекция, излучение.

Теплопроводностью называется явление передачи энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц, из которых состоит тело.

Наибольшей теплопроводностью обладают металлы — она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец, но и здесь теплопроводность в десятки раз больше, чем у воды.

При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.

2.2. Практическая часть.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Опыт №1

Взяли различные предметы: одну алюминевую ложку, другую деревянную, третью - пластмассовую, четвертую - из нержавеющего сплава, а пятую - серебряную. Прикрепили к каждой ложке каплями меда скрепки для бумаг. Вложили ложки в стакан с горячей водой, чтобы ручки со скрепками торчали из него в разные стороны. Ложки нагреются, и по мере нагревания мед будет плавиться и скрепки отпадут.

Конечно, ложки должны быть одинаковые по форме и размеру. Где нагревание произойдет быстрее, тот металл лучше проводит тепло, более теплопроводен. Для этого опыта я взял стакан с кипятком и четыре вида ложек: алюминиевую, серебряную, пластмассовую и нержавеющую. Я опускал их по одной в стакан и засекал время: за сколько минут она нагреется. Вот, что у меня получилось:

Вывод: ложки, изготовленные из дерева и пластмасса, греются дольше, чем ложки из металла, значит, металлы обладают хорошей теплопроводностью.

Опыт №2

Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. На шта-ти-ве го-ри-зон-таль-но за-креп-лён стер-жень. На стержне через оди-на-ко-вые про-ме-жут-ки вер-ти-каль-но за-креп-ле-ны с по-мо-щью воска металлические гвоздики.

К краю стерж-ня под-но-сят свечу. По-сколь-ку край стерж-ня на-гре-ва-ет-ся, то по-сте-пен-но стер-жень про-гре-ва-ет-ся. Когда тепло до-хо-дит до места креп-ле-ния гвоздиков со стерж-нем, сте-а-рин пла-вит-ся, и гвоздик па-да-ет. Мы видим, что в дан-ном опыте нет пе-ре-но-са ве-ще-ства, со-от-вет-ствен-но, на-блю-да-ет-ся теп-ло-про-вод-ность.

Опыт №3

Различные металлы обладают различной теплопроводностью. В физическом кабинете есть прибор, с помощью которого мы можем убедиться в том, что различные металлы обладают разной теплопроводностью. Однако, в домашних условиях мы смогли в этом убедиться с помощью самодельного прибора.

Прибор для показа различной теплопроводности твердых веществ.

Мы изготовили прибор для показа различной теплопроводности твердых тел. Для этого использовали пустую банку из алюминиевой фольги, два резиновых кольца (самодельные), три отрезка проволоки из алюминия, меди и железа, плитку, горячую воду, 3 фигурки человечков с поднятыми вверх руками, вырезанные из бумаги.

Порядок изготовления прибора:

    проволоки изогнуть в виде буквы «Г»;

    укрепить их с внешней стороны банки при помощи резиновых колец;

    подвесить к горизонтальным частям проволочных отрезков (посредством расплавленного парафина или пластилина) бумажных человечков.

Проверка действия прибора . Налить в банку горячей воды (при необходимости подогреть банку с водой на электрической плитке) и наблюдать, какая фигурка упадет первой, второй, третьей.

Результаты. Упадет первой фигурка, закрепленная на медной проволоке, вторая - на алюминиевой, третья - на стальной.

Вывод. Разные твердые вещества обладают различной теплопроводностью.

Теплопроводность у различных веществ различна.

Опыт №4

Рассмотрим теперь теплопроводность жидкостей. Возьмём пробирку с водой и станем нагревать её верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется. Значит, у жидкостей теплопроводность невелика.

Опыт №5

Исследуем теплопроводность газов. Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх. Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа ещё больше, чем у жидкостей и твёрдых тел. Следовательно, теплопроводность у газов ещё меньше.

Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, снег и другие пористые тела.

Это связано с тем, что между волокнами этих веществ содержится воздух. А воздух - плохой теплопроводник.

Так под снегом сохраняется зеленая трава, озимые сохраняются от вымерзания.

Опыт №6

Распушил небольшой комок ваты и обернул им шарик термометра.Теперь подержал некоторое время термометр на определенном расстоянии от пламени и заметил, как поднялась температура. Затем тот же комок ваты сжал и туго обмотал им шарик термометра и снова поднес к лампе. Во втором случае ртуть поднимется гораздо быстрее. Значит, сжатая вата проводит тепло намного лучше!

Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.

3. Заключение.

У различных веществ различная теплопроводность.

Большой теплопроводностью обладают твердые тела (металлы), меньшей - жидкости, и плохой - газы.

Теплопроводность различных веществ мы можем использовать в быту, технике и природе.

Явление теплопроводности присуще всем веществам, независимо от того, в каком агрегатном состоянии они находятся.

Теперь без затруднения я смогу ответить и объяснить с физической точки зрения на вопросы:

1.Почему птицы в холодную погоду распушают свои перья?

(Между перьями находится воздух, а воздух плохой проводник тепла).

2. Почему шерстяная одежда лучше предохраняет от холода, чем синтетическая?

(Между шерстинками находится воздух, который плохо проводит тепло).

3. Почему зимой, когда погода холодная, кошки спят, свернувшись в клубок? (Свернувшись в клубок, они уменьшают площадь поверхности, отдающей тепло).

4. Зачем ручки паяльников, утюгов, сковородок, кастрюль делают из дерева или пластмассы? (Дерево и пластмасса обладают плохой теплопроводностью, поэтому при нагревании металлических предметов мы, держась за деревянную или пластмассовую ручку, не будем обжигать руки).

5. Зачем кусты теплолюбивых растений и кустов на зиму укрывают опилками?

(Опилки являются плохими проводниками тепла. Поэтому растения укрывают опилками, чтобы они не замёрзли).

6. Какие сапоги лучше защищают от мороза: тесные или просторные?

(Просторные, так как воздух плохо проводит тепло, он является ещё одной прослойкой в сапоге, которая сохраняет тепло).

4. Список используемой литературы.

Печатные издания:

1.А.В. Перышкин Физика 8 класс -М: Дрофа,2012г.

2.М.И.Блудов Беседы по физике часть1 -М: Просвещение 1984г.

Интернет - ресурсы:

1.http://class-fizika.narod.ru/8_3.htm

2.http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D1%8C

цель работы

Усвоение и закрепление теоретического материала по разделу теплопередачи "Теплопроводность", овладение методом экспериментального определения коэффициента теплопроводности; получение навыков измерений, анализ полученных результатов.

    Экспериментальным путем определить коэффициент теплопроводности теплоизоляционного материала.

    Записать табличное значение коэффициента теплопроводности исследуемого материала.

    Вычислить погрешность найденного в опыте значения коэффициента теплопроводности по отношению к табличному.

    Сделать вывод по работе.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

При проведении технических расчетов необходимо располагать значениями коэффициентов теплопроводности различных материалов.

Коэффициент теплопроводности характеризует способность материала проводить теплоту. Численная величина l твердых материалов, особенно теплоизоляторов, как правило, определяется опытным путем.

Физический смысл коэффициента теплопроводности определяется из уравнения Фурье, записанного для удельного теплового потока

g = –l grad t . (1)

Существует несколько методов экспериментального определения величины l, основанных на теории стационарного или нестационарного теплового режима.

Дифференциальное уравнение теплового потока Q, Вт, при стационарной теплопроводимости можно записать в виде

Q = – lF grad t . (2)

Если рассматривать тонкостенный цилиндр, когда l / d > 8, температурный градиент температурного поля в цилиндрической системе координат будет записан в виде

grad t = dt / dr ,

а уравнение (2) данного случая

где d 1 , d 2 – соответственно внутренний и нижний диаметры цилиндра, м;

l - длина цилиндра, м;

(t 2 - t 1) = Dt - перепад температур между температурами на внутренней и внешней поверхности цилиндра, 0 С;

l - коэффициент теплопроводности материала, из которого изготовлен цилиндр, Вт/(м 0 С);

grad t - градиент температуры по нормали к поверхности теплообмена, 0 С/м.

Если уравнение (3) решить относительно коэффициента теплопроводности l, Вт/(м 0 С), то будем иметь

l = Q ln(d 2 /d 1) / (2plDt). (4)

Уравнение (4) может быть использовано для экспериментального нахождения величины коэффициента теплопроводности материала, из которого изготовлен цилиндр.

При проведении эксперимента необходимо определить величину теплового потока Q, Вт, и значения (t 2 - t 1) = Dt 0 С, при наступлении стационарного теплового режима.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Экспериментальная установка (рисунок) состоит из цилиндра 1, во внутренней полости которого помещен электронагреватель 2, его мощность регулируется автотрансформатором (тумблером)3 и определяется по показаниям амперметра 4 и вольтметра 5. Температура внутренней и наружной поверхностей цилиндра измеряется с помощью хромель-копелевых термопар 7, подключенных к микропроцессорному измерителю температур 6. По разности этих температур в стационарном тепловом режиме определяется коэффициент теплопроводности исследуемого материала из которого изготовлен цилиндр.

Рисунок. Схема экспериментальной установки для определения коэффициента теплопроводности материала цилиндра.

ПОРЯДОК проведения ОПЫТА

    Включить аппаратуру поворотом ручки на щите в положение 1.

    Поворотом ручки автотрансформатора (тумблера) установить заданную преподавателем мощность нагревателя.

    Наблюдая за показаниями измерителя температур, дождаться установления стационарного теплового режима.

    Результаты измерений представить в таблицу:

Т а б л и ц а

Номер опыта

где U, I - напряжение и сила тока в нагревателе;

t 2 , t­ 1 - температура внутренней и наружной поверхности цилиндра.

ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

    Вычислить коэффициент теплопроводности исследуемого материала, l, Вт/(м 0 С)

l эк = Q ln (d 2 /d 1) / (2plDt),

где Q = UI – мощность нагревателя, Вт;

d 1 = 0.041 м, d 2 = 0.0565 м – внутренний и наружный диаметры цилиндра;

l = 0.55 м – длина цилиндра.

    Записать табличное значение l, Вт/(м 0 С).

3. Определить погрешность l эк по отношению к справочному значению l, %.

D = (l эк – l)100/l.

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ

    Установившийся и неустановившийся тепловой режимы.

    Температурное поле, стационарное и нестационарное, стационарное поле трехмерное, двухмерное и одномерное.

    Температурный градиент.

    Физическая сущность процесса теплопроводности.

    Уравнение Фурье, его анализ.

    Коэффициент теплопроводности, факторы, влияющие на величину коэффициента теплопроводности.

    Привести численно значение коэффициента теплопроводности для некоторых материалов.

    Какие материалы относятся к теплоизоляционным?

    Записать величину температурного градиента для одномерного температурного поля в декартовой и цилиндрической системах координат.

    Записать формулы для определения теплового потока Q, Вт, плоской и цилиндрической однослойных и многослойных стенок.

    Записать формулы для определения удельных тепловых потоков g 1 , Вт/м 2 , g 2 , Вт/м для плоской и цилиндрической однослойных и многослойных стенок.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

    Михеев М.А., Михеева И.М. Основы теплопередачи.- М.: Энергия, 1977.

    Баскаков А.П. и др. Теплотехника.- М.: Энергоиздат, 1991.

    Нащокин В.Б. Техническая термодинамика и теплопередача.- М.: Высшая школа, 1980.

    Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача.- М.: Энергия, 1981.

РАБОТА № 8

ОПРЕДЕЛЕНИЕ СТЕПЕНИ ЧЕРНОТЫ ТВЕРДОГО ТЕЛА

цель работы

Усвоение и закрепление теоретического материала по разделу основы теории теплообмена "Лучистый теплообмен", а также овладение методом экспериментального определение коэффициента излучения и степени черноты твердого тела.

1. Экспериментальным путем определить коэффициент излучения и степень черноты твердого тела.

2. Найти погрешность полученного значения степени черноты по отношению к справочному значению (в процентах).

3. Сделать вывод по работе.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Все тела непрерывно излучают и поглощают тепловую энергию. Носителем лучистой тепловой энергии является электромагнитные колебания с длиной волны от 0.8 до 800 мкм. Процесс лучистого теплообмена происходит между телами, имеющими разное значение температур и разделенных газообразной средой.

Лучистый тепловой поток от тела, попав на другое тело, частично поглощается, частично отражается, а частично проходит через тело. Часть лучистой энергии, которая поглощается телом, снова превращается в тепловую энергию. Та часть энергии, которая отражается, попадает на другие (окружающие) тела и ими поглощается. То же самое происходит и с той частью энергии, которая проходит сквозь тело. Таким образом, после ряда поглощений излучаемая телом энергия полностью распределяется между окружающими телами. Следовательно, каждое тело не только непрерывно излучает, но и непрерывно поглощает лучистую энергию.

Для определения лучистого потока излучаемого телом, (Вт) используется формула

, (1)

где С - коэффициент излучения серого тела, Вт/(м 2 К 4),

С = С о ;

Со - коэффициент излучения абсолютно черного тела, Вт/(м 2 К 4),

 - степень черноты испытуемого тела;

F - площадь поверхности испытуемой трубки, м 2 ;

Т 1 - абсолютная температура поверхности испытуемой трубки, К;

Т в - абсолютная температура воздуха в помещении, К.

Из формулы (1) определяется величина коэффициента излучения испытуемого тела, Вт/(м 2 К 4),

. (2)

При рассмотрении лучистого теплообмена часть величин, входящих в расчетные формулы, определяется опытным путем; например степень черноты тела. Для определения опытным путем численной величины степени черноты тела, можно воспользоваться экспериментальной установкой.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Экспериментальная установка (рисунок) состоит из испытуемого 1 и эталонного 2 тел, выполненных в виде трубок длиною l , установленных вертикально. Наружные диаметры трубок одинаковы: d = 0.025 м.

Таким образом, испытуемое (серое) и эталонное (черное) тела имеют одинаковую величину поверхностей теплообмена F. Эталонная трубка покрыта:черным лаком с известной степенью черноты ( эт = 0.97). Внутри трубок смонтированы электрические нагреватели 3, обеспечивающие равномерное выделение тепла по длине труб. Нагреватели питаются от сети переменного тока, их мощности регулируются лабораторными автотрансформаторами 4 и измеряются ваттметрами 5. Тепловой поток, создаваемый электронагревателем и проходящий через стенку трубы в окружающий воздух, определяется по мощности электронагревателя. Предотвращение утечек тепла в окружающий воздух торцы трубок достигается установкой теплоизоляционных заглушек.

Температура на поверхности трубок измеряется с помощью хромель-копелевых термопар 6 и микропроцессорного измерителя температур 7.

Температура воздуха в лаборатории определяется термометром, установленным вдали от установки. Предполагается, что температура тел в помещении (кроме тел 1 и 2) равна температуре воздуха в нем.

Тепловой поток с поверхности трубки к воздуху, определяемый в опыте, представляет собой сумму конвективного и лучистого тепловых потоков (Вт)

Q = Q к + Q л, (3)

Q л = Q - Q к. (4)

Значение Q к можно рассчитать по формулам конвективного теплообмена, но удобнее эту величину исключить из рассмотрения за счет использования эталонного тела с известной степенью черноты. Для данной экспериментальной установки эт 0,97.

Рисунок. Схема экспериментальной установки

Излучение эталонного тела будет определяться по формуле

. (5)

Если форма, размер и температуры испытуемого и эталонного тел одинаковы, конвективные составляющие можно приравнять, т.е.

,

Q л = Q –
+
. = (Q –
) +F[(/100) 4 – (T в /100) 4 ] . (6)

Подставив (6) в (2), получим расчетную формулу

. (7)