Электрощиток

Уровень co2 в помещении норма. Почему так важен контроль концентрации CO2 в помещении? Симптомы, на которые стоит обратить внимание

Уровень co2 в помещении норма. Почему так важен контроль концентрации CO2 в помещении? Симптомы, на которые стоит обратить внимание

Воздух состоит, как известно, из молекулярного азота (78%), молекулярного кислорода (21%), аргона (1%), небольшого количества паров воды и еще ряда веществ, содержание которых измеряется сотыми и тысячными долями процента. Среди них и углекислый газ, или, как его предпочитают называть ученые, - диоксид углерода (CO 2). Для удобства содержание CO 2 в воздухе оценивают не в процентах (сотых долях), а в миллионных долях, которые обозначают латинскими буквами ppm (part per million - частиц на миллион). Содержание углекислого газа в атмосфере Земли за всю историю ее существования колебалось в довольно широких пределах (см.: 300 миллионов лет назад углекислого газа в атмосфере было гораздо больше, чем сейчас). Сейчас его концентрация оценивается в 380–390 ppm (или 0,038–0,039%), хотя еще 50 лет назад она составляла всего 310–320 ppm. Основная причина роста содержания углекислого газа в атмосфере за последнее столетие - выбросы его при сжигании ископаемого топлива (нефти, угля, газа), а также сведение лесов.

Само существование жизни на Земле теснейшим образом связано с наличием в атмосфере углекислого газа. Во-первых, углекислый газ, наряду с парами воды и метаном, создает парниковый эффект - обеспечивает сохранение тепла, которое излучает нагретая солнечными лучами земля. Если бы в атмосфере не было парниковых газов, то средняя годовая температура воздуха у поверхности Земли была бы не +15°C, как сейчас, а –23°C.

Во-вторых, углекислый газ - это источник углерода для всех зеленых растений, планктонных микроскопических водорослей и цианобактерий. Используя энергию солнечного света, все эти организмы в ходе фотосинтеза производят из углекислого газа и воды органическое вещество, а в качестве побочного продукта выделяют кислород. Суть процесса фотосинтеза отражается простым уравнением:

CO 2 + H 2 O + энергия → (CH 2 O) + O 2 ,

где (CH 2 O) - обобщенная формула органического вещества.

Однако если в ходе фотосинтеза углекислый газ связывается (соответственно, изымается из атмосферы), то в ходе другого процесса - дыхания - он снова выделяется:

(CH 2 O) + O 2 → CO 2 + H 2 O + энергия .

В современной биосфере подавляющее большинство организмов получают необходимую им энергию именно в процессе аэробного дыхания - окисления органического вещества кислородом. Таким образом, жизнедеятельность множества организмов сама по себе оказывается важным источником углекислого газа. Наибольший вклад вносит дыхание грибов и бактерий, разлагающих отмершее вещество растительных тканей, а также дыхание самих растений (в первую очередь корней).

Сейчас ученые научились очень точно измерять концентрацию углекислого газа в воздухе. В самых разных точках Земного шара, от Аляски до Южного полюса существуют специальные станции, на которых в течение круглого года ведутся наблюдения за всеми изменениями содержания CO 2 . Собранные данные позволили построить трёхмерный график, показывающий зависимость количества углекислого газа в воздухе сразу от двух параметров - географической широты расположения станции и времени года (см. рис. 1).

Задача

Рассмотрите внимательно приведенный выше график сезонных изменений содержания углекислого газа в атмосфере на разных широтах. Обратите внимание на то, что для Северного полушария, особенно - области высоких его широт, характерны необычайно сильные колебания в содержании CO 2 . Максимальные значения отмечаются весной - в апреле–мае, а минимальные - осенью, в сентябре–октябре. В Южном полушарии подъемы и спады количества CO 2 также наблюдаются, но в противофазе тому, что происходит в Северном полушарии, а главное - с совсем незначительной амплитудой.
Задание. Попробуйте объяснить полученную картину. Из-за чего так сильно колеблется содержание углекислого газа в течение года и почему в Северном полушарии размах колебаний значительно больше, чем в Южном?

Если вам трудно разобраться в трёхмерном графике, приведенным выше, посмотрите еще на один (рис. 2). Он ориентирован по-другому: Южное полушарие ближе к вам, а Северное - дальше. Это другие годы, но характер сезонных изменений на разных широтах тот же самый: в Южном полушарии они выражены очень слабо, в Северном - сильно.


Подсказка 1

В качестве подсказки советую взять глобус (лучше даже сломанный, отвалившийся от подставки) и посмотреть на него внимательно со стороны Северного полюса и со стороны Южного. Ниже приведена соответствующая пара рисунков (рис. 3). Вам нужно понять, чем различаются Северное и Южное полушария и как эти различия могут сказаться на процессах поглощения и выделения углекислого газа.

Подсказка 2

Посмотрите на график сезонных изменений содержания углекислого газа, полученный за последние годы на астрофизической обсерватории Мауна-Лоа на острове Гавайи (рис. 4). Хотя это всего 20° с. ш., колебания концентрации CO 2 выражены очень четко. Самая высокая концентрация отмечается в мае, самая низкая - в сентябре-октябре.

Решение

Наверное вы обратили внимание на то, что Северное полушарие - преимущественно континентальное (бо льшую часть его занимает суша), а Южное - океаническое (в центре - покрытая льдом Антарктида, а вокруг - огромное пространство океана). Можно предположить далее, что суша и океан различаются по интенсивности процессов связывания и выделения углекислого газа. Из графика сезонных изменений концентрации CO 2 , полученным на Мауна-Лоа (рис. 4), следует, что в летние месяцы в Северном полушарии количество этого газа сильно снижается (минимум достигается осенью), а в зимние месяцы растет и достигает максимума к весне. Теперь нетрудно догадаться, что уменьшение содержания углекислого газа летом происходит благодаря деятельности растений, а именно - фотосинтезу, в ходе которого CO 2 потребляется. Рост растений, увеличение массы листьев, стеблей и корней происходит за счет углерода, который был поглощен ими из воздуха в форме углекислого газа.

Если за изъятие углекислого газа из атмосферы отвечает фотосинтез, то за его поступление - дыхание всех организмов, в первую очередь бактерий и грибов, разлагающих органическое вещество отмерших растений. Дыхание происходит и весной, и летом, и осенью, а с небольшой интенсивностью - и зимой, по крайней мере в тех местах, где сохраняются положительные температуры. Период вегетации (активного роста растений) в умеренных и высоких широтах ограничен концом весны - началом лета. Но именно тогда количество углекислого газа, связываемого быстро растущими растениями, существенно превосходит количество его, выделяемое в процессе дыхания всех организмов. Поэтому мы и наблюдаем в это время снижение концентрации углекислого газа в воздухе. Затем фотосинтез резко ослабевает, а дыхание всех организмов продолжается, что и приводит к накоплению CO 2 . Еще один дополнительный источник углекислого газа, работающий круглогодично, - это сжигание человеком ископаемого топлива.

Здесь читатель вправе заметить, что процессы фотосинтеза и дыхания имеют место не только на суше, но и в океане. Почему же над океаном мы не наблюдаем столь значительных изменений в содержании CO 2 в воздухе? Ведь наиболее активный фотосинтез происходит в море также весной и в начале лета, когда становится тепло, а главное - светло, и когда в воде содержится еще достаточно много элементов минерального питания (азота и фосфора в доступной форме). На самом деле сезонные колебания концентрации углекислого газа в Южном, океаническом, полушарии также существуют, но протекают они, естественно, в противофазе тому, что происходит в Северном. Удивительно, почему у них такая небольшая амплитуда. Здесь могут работать несколько механизмов.

Во-первых, океан (даже его верхние слои) обладает огромной теплоемкостью, что сглаживает сезонные колебания температуры в сравнении с происходящим на суше. Во-вторых, в воде углекислый газ хорошо растворяется (в холодной лучше, чем в теплой) - то есть существует физико-химический механизм связывания CO 2 ; правда, поверхностные слои океана могут и отдавать CO 2 атмосфере в случае низкого его там парциального давления. В-третьих, и это, пожалуй, самое главное - величина чистой первичной продукции, то есть количество органического вещества, образованного в ходе фотосинтеза автотрофными организмами, в расчете на единицу площади для суши примерно в 2,5 раза выше, чем для океана. Фитопланктон не может обеспечить изъятие из окружающей среды такого количества CO 2 , которое изымает наземная растительность умеренных и северных широт. Колебания в содержании углекислого газа, обнаруживаемые обсерваторией на Мауна-Лоа, определяются прежде всего сезонностью в развитии растительности Евразии и Северной Америки.

Послесловие

Вообще-то, воздушная среда в сравнении с водной очень подвижна. Невольно возникает вопрос: почему перемешивание воздушных масс не выравнивает содержание углекислого газа в атмосфере Земли? Здесь необходимо напомнить, что воздух легко и быстро перемещается в широтном направлении, но не в меридиональном. Поэтому на Гавайских островах можно наблюдать результаты сезонного развития растительности на удаленных материках. Но в направлении «север - юг» мы видим сохранение серьезных различий в содержании CO 2 на разных широтах. Мешает меридиональному переносу ячеистая структура воздушной циркуляции. Воздух в районе экватора нагревается сильнее всего, поэтому он поднимается там вверх, расширяясь, движется к северу и югу, постепенно охлаждается и опускается в обоих полушариях к земле примерно на 30°. Потом этот охлажденный воздух движется у поверхности земли к экватору и замыкает круговорот. Таким образом формируются ячейки Гадлея , названные по имени описавшего их английского ученого XVIII века Джорджа Гадлея (George Hadley). Движение воздушных масс в каждой из этих ячеек заставляет двигаться соседние воздушные массы вниз, а затем к северу и югу (в зависимости от полушария). Это уже ячейки Феррела , названные в честь американского метеоролога XIX века Уильяма Феррела (William Ferrel). Наличие подобной ячеистой структуры циркуляции сильно препятствуют перемешиванию воздушных масс в меридиональном направлении, но не создает препятствий для движения по широте.

Сегодня, особенно в России, люди недооценивают важность контроля и поддержания нормального уровня углекислого газа (CO2) в квартире (офисе, школе, в любом помещении, где мы проводим хотя бы пол часа). В этой статье, я бы хотел подробнее рассказать про качество воздуха в доме:

  • о важности поддержания правильного уровня СО2 в помещениях;
  • о методах измерения уровня СО2;
  • вкратце об организации правильной системы вентиляции воздуха.

Почему важно контролировать уровень углекислого газа в помещениях?

Про важность соблюдения уровня CO2 сказано уже много (советую почитать: , , ветка на форуме iXBT , ). Но вкратце: углекислый газ выделяется при дыхании человека (основной источник, а при плохой вентиляции скапливается в больших концентрациях в помещении. Незначительное повышение концентрации СО2 вызывает у людей ощущение «спертости» воздуха, духоты. При более значительном повышении концентрации симптомы становятся хуже: «тяжелая» голова, головокружение, головные боли и вплоть до необратимых изменений в организме человека. Концентрацию углекислого газа принято измерять в ppm (parts per million - частей на миллион).

Реакция организма взрослого человека в зависимости от уровня CO2

Опасные концентрации СО2

Почему в квартире высокий уровень CO2?

Основных причин — три:

  • Пластиковые окна
  • Не работающая вытяжка и отсутствие приточной вентиляции
  • Несоблюдение санитарных нормативов — большое количество людей в комнате.

Пластиковые окна без клапанов — источник повышенного уровня СО2 в квартире

Сегодня мы любим устанавливать пластиковые окна и гордиться тем, что они полностью герметизируют квартиру (ведь дома станет тепло!), но не задумываемся о будущих последствиях (особенно если дома есть дети!). Причина в том, что современные окна полностью перекрывают приток воздуха с улицы и тем самым блокируют работу естественной системы вентиляции квартиры, а как следствие — воздух в квартире не обновляется и повышается уровень СО2. Некоторые устанавливают специальные оконные клапаны, через которые проходит воздух с улицы — это хоть какое-то, но решение.

К стати, старые советские окна с немаленькими щелями так проектировались специально, чтобы обеспечить хоть какой-то приток свежего воздуха!

Неработающая вытяжка

Часто люди не обращают внимание на вытяжные вентиляционные отверстия в кухне и сан.узле. Некоторые даже «закладывают» их при ремонте. Иногда сетка на вентиляционных отверстий настолько засорена, что практически останавливает работу вентиляции. Эти факторы способствуют ухудшению качества воздуха в квартире. Представьте, что вы и еще несколько человек находятся в одном небольшом замкнутом пространстве, активно двигаются, готовят кушать и т.д. Через какое-то время, если воздух не обновляется, в этом пространстве становится очень тяжело находиться, в воздухе сконцентрировано много загрязняющих веществ, в том числе углекислого газа. А теперь представьте, что многие из нас так живут годами после установки пластиковых окон! А потом удивляемся откуда у нас/наших детей появляются хронические болезни?

Чтобы проверить качество работы вытяжной вентиляции в вашей квартире лучше обратиться к профессионалам. Как правило достаточно звонка в управляющую компанию с жалобой на плохо работающую вентиляцию. Но, чтобы понять действительно ли вентиляция плохо работает лучше предварительно проверить менее точными, но «подручными» способами. Сделать это можно, поднеся к вентиляционным отверстиям тонкую полоску бумаги, свечу или горящую спичку, а можно попробовать тлеющими ароматическими палочками — от них достаточно умеренный и безопасный дым (Соблюдайте правила пожарной безопасности! ). Бумажка или дым должны «всасываться» потоком воздуха внутрь вентиляционного отверстия. Если этого не происходит или поток воздуха очень слаб, попробуйте открыть окно, чтобы «разгерметизировать» квартиру. Даже если это не помогло — то с вентиляцией проблемы и их нужно обязательно исправлять! В многоквартирных домах ответственность за работу вентиляции несет управляющая компания и в большинстве случаев они должны заниматься восстановлением работы вентиляции, не требуя с вас дополнительной оплаты. Возможно, вас будут убеждать, что сделать ничего уже нельзя (или вымогать оплату), что в вашем доме старая и засоренная система вентиляции — рекомендую быть более настойчивым и в случае отказа УК исправлять работу вентиляции обратиться с заявлением в вышестоящие инстанции.

В Интернете существует несколько отличных форумов, посвященных теме вентиляции в доме, там вы можете найти много полезной информации и задать интересующие вас вопросы профессионалам:

  • ветка на форуме «Город мастеров» http://www.mastercity.ru/forumdisplay.php?f=22

Приточная вентиляция

Если в вашем доме/квартире исправна система вытяжной вентиляции и у вас хорошо утепленные или пластиковые окна, то для создания условий для естественной очистки воздуха в квартире я бы очень рекомендовал устанавливать приточную вентиляцию. Сегодня это не очень дорого и установка не портит ремонт в вашей квартире.

У меня установлены пассивные клапаны Домвент, в ближайшее время напишу про них отдельную статью. Очень много информации по поводу приточной вентиляции можно найти на форуме iXBT в этой ветке .

Несоблюдение санитарных нормативов

Соблюдайте санитарные нормы. Даже самая хорошо работающая вентиляция может не справиться с большим количеством людей в комнате. Существуют некоторые способы расчета необходимого притока свежего воздуха в зависимости от количества людей в помещении (конечно же, они очень условные, но для грубой оценки вполне полходят):

  • поступление свежего воздуха 15 cfm = 25,5 м3/час на одного человека, находящегося в помещении, соответствует уровню концентрации CO2 в 1000 ppm
  • поступление свежего воздуха 20 cfm = 34 м3/час на одного человека, находящегося в помещении, соответствует уровню концентрации CO2 в 800 ppm

Что делать?

  • Контролировать уровень СО2
  • Проверить хорошо ли работает у вас дома вытяжка (и работает ли вообще)
  • Установить приточную вентиляцию (пассивную — клапаны; или активную — бризеры с электромоторами и подогревом воздуха)
  • Если приточной вентиляции нет, то рекомендуется проветривать помещение (малоэффективный способ, т.к. вставать ночью, особенно зимой, чтобы открыть окно на несколько минут — вряд ли получится)

Как измерить уровень углекислого газа?

Сегодня существует огромное количество разных приборов для измерения CO2. Приведу пример нескольких из них, самых надежных и распространенных.

Sensair K-30

Нужны навыки программирования, пайки и работы с микроэлектроникой, но самый универсальный по соотношению цена/качество. Я использую именно его. Где купить в России, к сожалению, я не нашел и заказал на сайте co2meter.com

Подключение к сенсора K-30 к Raspberry Pi или Arduino расскажу в следующих статьях.

TIM (ссылка)

Симпатичный, кроме измерения CO2 умеет измерять влажность и температуру, существуют версии со встроенной памятью, для хранения замеров. Купить можно там же — co2meter.com .

Netatmo

Симпатичный, дорогой, удобный, мега-многофункциональный. Можно купить в России.

Заключение

Надеюсь в данной статье я смог донести о важности контроля уровня СО2 и обеспечении свежего воздуха в помещениях, где мы проводим много времени. Это ваше здоровье и здоровье ваших близких! В следующей серии статей я расскажу о том, как подключать датчики СО2 в единую систему Умного дома и как правильно организовывать вентиляцию (с автоматизацией или без).

Как известно, причиной многих проблем с самочувствием и синдрома хронической усталости может быть переизбыток углекислого газа (CO2) в воздухе помещения (). Спасает от этого проветривание и вентиляция. Для того, чтобы понимать, насколько хорошо проветривается моя квартира, я купил прибор, измеряющий уровень углекислого газа в воздухе - CO2-монитор. Я взял модель с даталогером, это очень удобно для того, чтобы смотреть, как меняется уровень CO2 в течение суток.



За последние 50 лет концентрация углекислого газа а атмосфере земли . Концентрация CO2 почти не зависит от места на земле - воздух хорошо перемешивается. Как это не удивительно, содержание CO2 в городском воздухе и в лесу отличается всего на 10 ppm. Считается, что концентрация до 700 ppm для человека не заметна и никак не влияет на его здоровье и самочувствие.

Человек при дыхании выделяет много углекислого газа, поэтому в закрытом помещении концентрация CO2 очень быстро вырастает до 2000 ppm и выше.

Существует два метода определения концентрации углекислого газа в воздухе - электрохимический (solid electrolyte) и метод недисперсионной инфракрасной спектрометрии (). Электрохимический метод менее точен и датчики, работающие на его основе, недолговечны.

Производителей датчиков NDIR похоже всего два. Более известный - шведский SenseAir Сейчас SenseAir выпускает датчики K30. Датчики предыдущего поколения SensAir K22 сняты с производства, однако их сделали много и теперь продают относительно дёшево, что позволяет производить измерители CO2 по цене от $100.

Именно таким датчиком, SensAir K22 и оснащён прибор . По неизвестным причинам когда этот прибор продают под оригинальным называнием он стоит аж $390, однако хитрый продавец GainExpress на Aliexpress и Ebay продаёт этот же прибор под названием «CO98 3-in1 CO2 Carbon Dioxide Desktop Datalogger Monitor Indoor Air Quality Temperature Relative Humidity RH 0~9999ppm Clock» за . Там-то я его и купил.

Аналогичный прибор без даталогера и с менее точным датчиком влажности у того же продавца стоит .

В комплекте - прибор, блок питания, кабель USB, диск с программой, инструкция, сертификат калибровки.

Прибор показывает уровень CO2 в ppm, температуру и влажность с высокой точностью, время и дату. Кроме того показывается оценочное состояние уровня углекислого газа - Good, Normal или Poor. При желании по достижении уровня Poor прибор может начать пищать и показывать значок вентилятора - пора проветривать.

В этом приборе используется точный ёмкостной датчик влажности (±3%RH at 25°C, 10~90% RH, ±5%RH at 25°C, <10% & >90% RH). В более дешёвых измерителях CO2 стоят датчики попроще, дающие большую ошибку на низких уровнях влажности.

Прибор умеет показывать минимальные и максимальные значения всех трёх измеряемых параметров. В режиме даталогинга задаётся частота измерений (от 1 секунды до 5 часов). При долгом нажатии кнопки Log начинается запись значений в память. Во время записи мигает светодиод и основной дисплей (значение ppm постоянно сменяется надписью rec). Из-за этого мигания неудобно постоянно оставлять прибор в режиме логинга. заканчивается запись по долгому нажатию Esc. Каждая новая запись стирает предыдущую.

После окончания записи данные можно передать в компьютер. Для этого сзади у прибора есть маленький круглый разъём, а в комплекте идёт кабель USB.

Программа считывает данные с прибора и рисует вот такие графики.

Можно включить отображение температуры и влажности, но тогда на экране будет вот такая мешанина.

Датчик NDIR требует периодической калибровки, поэтому прибор автоматически калибруется раз в 7 дней. Минимальное значение CO2 принимается за 400 ppm (при этом за один раз калибровка может сдвигать показания не более, чем на 50 ppm). Для правильной работы прибора необходимо как минимум раз в неделю хорошо проветривать помещение (3-4 часа с открытым окном без людей в помещении). Этого достаточно, чтобы уровень CO2 в помещении стал таким же, как на улице и прибор правильно откалибровался.

Прибор питается только от сети. Это связано с тем, что датчик NDIR потребляет довольно много. Прибор постоянно потребляет 30 mA, раз в секунду происходит импульс потребления 200 mA. Напряжение питания - 5 вольт. Я воспользовался повербанком для того, чтобы временно использовать прибор в качестве портативного, измеряя уровни CO2 в разных помещениях.

Наличие этого прибора не только позволяет оценивать уровень CO2, но и очень стимулирует правильное и частое проветривание - смотришь на «страшные» показания прибора и тут же бежишь открывать окно.

Несмотря на то, что прибор недёшев я заказал второй другой модели, чтобы в каждой комнате было по CO2-метру. Когда придёт, расскажу и о нём.

Планирую купить +70 Добавить в избранное Обзор понравился +39 +86

Данная информация предназначена для специалистов в области здравоохранения и фармацевтики. Пациенты не должны использовать эту информацию в качестве медицинских советов или рекомендаций.

Основы СО 2 мониторинга

Практическое руководство (по материалам фирмы Datex)
Новосибирск 1995 г.

1.Введение 2

2.Что такое капнограмма. 3

  • Что такое PetСО 2 4
  • 3.Как образуется СО 2 в выдыхаемом воздухе 4

  • Отличие PetCO 2 от напряжения СО 2 в артериальной крови 5
  • Небольшое артериально-альвеолярное различие (aAДСО 2) 5
  • Основные причины увеличения аАДСО 2 5
  • 4.Почему измеряется PetCO 2 6

  • Клинические преимущества СО 2 мониторинга 6
  • Использование PetCO 2 для контроля вентиляции 7
  • Физиологические факторы, управляющие удалением СО 2 7
  • Что такое альвеолярная вентиляция 7
  • 5.Диагностика гипер- и гиповентиляции 7

  • Нормокапния и нормовентиляция 8
  • Гипокапния и гипервентиляция 8
  • Гиперкапния и гиповентиляция 9
  • 6.Интерпретация капнограммы и тренда СО 2 9

    7.Практическое руководство по СО2 мониторингу 15

  • Основное правило для размещения отборника газа 15
  • Удаление газа с выхода монитора 15
  • Мониторинг при слабых воздушных потоках 15
  • 8.СО2 мониторинг в посленаркозный период 16

    Приложение 18

    Практическое руководство составлено по материалам фирмы Datex научно-производственной фирмой ЗАО “ЛАСПЕК”

    Перевод и компьютерная верстка - Д.Е. Грошев
    Редактор к.м.н. - О.В. Гришин.

    1 Введение.

    Эти методические рекомендации рассчитаны на анестезиологов и реаниматологов, не знакомых с СО 2 -мониторингом, и имеют целью в простой форме ответить на вопрос: "зачем и как производится СО 2 -мониторинг?”. Освоение нескольких основных принципов СО 2 -мониторинга обеспечивает врача богатой информацией о состоянии пациента и функционировании наркозной аппаратуры. Список литературы, рекомендуемой для более подробного изучения, приведен в разделе "Справочная литература".

    Проведение СО 2 -мониторинга в анестезиологии и реаниматологии считается очень важным и даже необходимым условием эффективного наблюдения за больным с управляемым или нарушенным дыханием, а также с нормальным дыханием при угрозе его нарушения. Быстрый рост популярности СО 2 -мониторинга отражает его значение в обеспечении безопасности пациента. Многие потенциально опасные ситуации с его помощью обнаруживаются на самых ранних этапах развития, предоставляя врачу достаточное время для анализа и исправления развивающегося критического состояния. Кроме того мониторирование значения концентрации СО 2 в конце выдоха (PetCO 2) и анализ его тренда дают наиболее объективную диагностическую информацию о состоянии пациента при наркозе.

    В таблице приведена оценка относительного значения ряда методик для выявления критических ситуаций. (Whitcer C. et al. Anasthetic mishaps and the cost of monitoring: a proposed standart for monitoring equipment. J. Clin Monit 1988; 4:5-15p.).


    Пульсоксиметр

    Капнограф

    Спирометр

    Тонометр

    Фонендоскоп

    Галометр

    Анализатор О 2

    Термометр

    2.Что такое капнограмма.

    Кривая изменения концентрации СО 2 во времени называется капнограммой. Она отражает различные стадии выдоха. Капнограмма является важным диагностическим средством, так как ее форма практически одинакова у здоровых людей. Поэтому следует анализировать любое изменение формы капнограммы.

    *Мертвым пространством называется часть воздушных путей, где не происходит газообмен. В случае аппаратного мониторинга CO 2 в формировании капнограммы выдоха принимают участие следующие типы мертвого пространства. Механическое или аппаратное мертвое пространство - состоит из эндотрахеальной трубки и соединительных шлангов. Анатомическое мертвое пространство - составляют трахея и бронхи. Альвеолярное мертвое пространство - составляет часть дыхательных путей в которой не происходит газообмен, хотя они и вентилируются.

    Что такое PetCO 2 .

    Максимальная концентрация СО 2 в конце спокойного выдоха PetCO 2 (end-tidal CO 2) очень тесно связана с альвеолярной концентрацией СО 2 , так как она регистрируется во время поступления воздуха из альвеол.

    3. Как образуется СО 2 в выдыхаемом воздухе.

    Углекислый газ (СО 2) выделяется всеми клетками во всех тканях организма, как продукт метаболизма. СО 2 является конечным продуктом процесса окисления глюкозы, и должен постоянно удаляться из тканей.

    Из клеток СО 2 диффундирует в капиллярную кровь, так как в ней концентрация СО 2 поддерживается более низкой. Из капиллярной крови СО 2 далее транспортируется по венам от периферии к правому предсердию.

    Сердце прокачивает венозную кровь через малый круг кровообращения к легким где происходит газообмен.

    Легкие состоят приблизительно из 300 миллионов альвеол, в которых кровь насыщается кислородом при легочном кровообращении. Стенки альвеол являются по существу очень тонкими мембранами (с общей площадью поверхности около 100м 2), позволяющими газам легко диффундировать между легочной кровью и альвеолярным воздухом.

    СО 2 диффундирует из крови в альвеолярное пространство. При дыхании (или искусственной вентиляции), концентрация СО 2 в альвеолах постоянно сохраняется ниже, чем в капиллярной крови легких. При вдохе “свежий” воздух поступает в легкие и смешивается с альвеолярным, слегка снижая альвеолярную концентрацию СО 2 . При выдохе СО 2 удаляется из организма. Газ, выходящий в конце выдоха, практически полностью соответствует альвеолярному газу.

    На протяжении выдоха воздух покидает различные участки легких, смешиваясь так, что СО 2 -монитор измеряет только усредненную концентрацию СО 2 . Диффузия СО 2 на альвеолярном уровне является непрерывным процессом. На капнограмме этот процесс отражается только в последней фазе выдоха. В других фазах наблюдается значительная динамика капнограммы, так как она отражает концентрацию СО 2 как во вдыхаемом, так и в выдыхаемом воздухе.

    Сравнительный анализ артериальной крови и альвеолярного воздуха показывает, что величина PetCO 2 довольно близко отслеживает уровень напряжения СО 2 в крови (РаСО 2), но все же они не равны. В норме PetCO 2 на 1-3 мм рт.ст. ниже чем РаСО 2 . Однако у пациентов с легочной патологией различия могут быть значительно большими. Причины этого сложные и выявление увеличения этого различия дает нам дополнительный диагностический параметр: артериально-альвеолярное различие (аАDСО 2). Фактически аАDСО 2 может рассматриваться как количественный показатель альвеолярного мертвого пространства, поэтому значительные его изменения должны исследоваться дополнительно.

    Небольшое артериально-альвеолярное различие.

    Артериально-альвеолярное различие является результатом особенностей процессов вентиляции и перфузии легочных альвеол. Даже у здорового пациента вентиляционно-перфузионное отношения отличаются в разных участках легких. При наркозе несоответствие вентиляции и перфузии обычно слегка возрастает, однако обычно это не имеет клинического значения.

    Основные причины увеличения аАДСО 2 .

    Снижение уровня газообмена происходит в той части респираторных отделов легких, которые не имеет достаточной перфузии, но тем не менее хорошо вентилируется. При выдохе воздух из этих участков легких будет смешиваться с обогащенным СО 2 альвеолярным воздухом из остальных участков легких, уменьшая PetCO 2 . При этом aADCО 2 будет увеличено. Такая вентиляция называется вентиляцией альвеолярного мертвого пространства.

    Возможными причинами вызывающими увеличение аАСО 2 являются:

      положение пациента (положение на боку)

      легочная гипоперфузия

      легочная тромбоэмболия.

    Рисунок А иллюстрирует эффект вентиляции альвеолярного мертвого пространства. В половине легких нет перфузии и, следовательно, газообмена. При выдохе альвеолярный газ смешивается и результирующая концентрация PetCO 2 будет в два раза меньше, чем РаСО 2 в крови. Для сравнения рисунок В иллюстрирует идеальную ситуацию, когда перфузия происходит во всем объеме легких и PetCO 2 =РАСО 2 =РаСО 2 .

    4. Почему измеряется PetCO 2 .

    СО 2 мониторинг дает информацию как о состоянии пациента, так и о системе обеспечения ИВЛ. Так как концентрация СО 2 зависит от многих факторов, она редко является достаточной для постановки специфического диагноза. Однако мониторирование СО 2 с быстродействующей индикацией и отображением концентрации СО 2 в каждом выдохе обеспечивает достаточный запас времени для принятия необходимых мер по исправлению ситуации.

    Клинические преимущества СО 2 мониторинга.

    В условиях стабильного состояния пациента (ИВЛ в сочетании с нормальной гемодинамикой) концентрация СО 2 тесно связана с изменением напряжения СО 2 в крови и, следовательно, является неинвазивным методом контроля РаСО 2 . Выделение СО 2 - величина довольно стабильная, поэтому резкие изменения PetCO 2 обычно отражают либо изменения кровообращения в малом круге (например легочную эмболию), либо легочной вентиляции (например отсоединение трубки или избыточная ИВЛ - гипервентиляция).

    Использование мониторинга СО 2 позволяет:

    • Быстро определить правильность интубации трахеи.
    • Быстро выявить нарушения в воздушном тракте (коннектор интубационной трубки, интубационная трубка, дыхательные пути) или в системе подачи воздуха (аппарат ИВЛ).

      Объективно, непрерывно, неинвазивно контролировать адекватность вентиляции.

      Распознавать нарушения в газообмене, легочном кровообращении и метаболизме.

      Обеспечивает контроль безопасного использования малопотоковых наркозных методик с присущим им экономичным расходом ингаляционных анестетиков.

      Уменьшает необходимость в частых рутинных анализах газа крови, так как тренд PetCO 2 отражает тренд РаСО 2 . Газоанализ крови становится необходим в случаях значимого отклонения тренда PetCO 2 .

    Общепринятые термины мониторинга СО 2

    “капно” - означает уровень СО 2 при выдохе(от греческого “kapnos” курить);“гипер” - значит слишком много; “гипо” - значит слишком мало.

    Использование PetCO 2 для контроля вентиляции.

    В норме при спокойном естественном дыхании газообменная функция легких обеспечивает парциальное давление СО 2 в крови (РаСО 2) около 40 мм рт.ст. Это происходит путем регулирования частоты и глубины дыхания. При увеличении выделения СО 2 (например, при физических нагрузках) пропорционально возрастает частота и глубина дыхания. Во время наркоза с применением мышечных релаксантов, анестезиолог должен обеспечить надлежащий уровень вентиляции. Обычно этот уровень оценивается путем расчета необходимой вентиляции по номограммам. Гораздо более эффективный способ контроля адекватной вентиляции основан на мониторировании СО 2 .

    Физиологические факторы, управляющие удалением СО 2 .

    Удаление СО 2 зависит от 3-х факторов: скорости метаболизма, состояния системы легочного кровообращения и состояния системы альвеолярной вентиляции.

    Необходимо помнить, что эти 3 фактора взаимосвязаны. Изменение кислотно-основного баланса (или состояния КОС), вызванное различными причинами, может так же влиять на удаление СО 2 .

    Опыт диагностики различных критических ситуаций во время ИВЛ приходит довольно быстро. Так, если стационарное значение СО 2 возрастает при постоянной вентиляции, изменения в PetCO 2 обычно возникают из-за изменения в легочном кровообращении. При этом следует обратить внимание на изменения метаболизма или КОС.

    В процессе наркоза, скорость метаболизма обычно меняется слабо (основным исключением является редкий случай злокачественной гипертермии, который вызывает резкий рост PetCO 2 .)

    Что такое альвеолярная вентиляция.

    Когда уровень вентиляции устанавливается, поддерживая стабильное и в пределах нормы PetCO 2 , то нет необходимости проводить какие-либо расчеты. Вместе с тем, чтобы быть готовым к любой ситуации, полезно знать особенности легочной вентиляции. Как уже говорилось, часть воздуха при дыхании не достигает альвеол и остается в механическом (соединительный коннектор, клапанная коробка, эндотрахеальная трубка) и анатомическом (трахея, бронхиальное дерево) мертвом пространстве, где газообмен не происходит. Чтобы рассчитать объем альвеолярной вентиляции в л/мин, который собственно и обеспечивает газообмен в легких, необходимо вычесть объем общего мертвого пространства из дыхательного объема. Умножив объем воздуха, проникающего в альвеолярные пространства, на частоту дыхания, можно получить альвеолярную минутную вентиляцию - показатель эффективной вентиляции.

    5. Диагностика гипер- и гиповентиляции.

    После начала наркоза и проведения интубации трахеи, анестезия обычно поддерживается системой искусственной вентиляции в стационарном состоянии выделения СО 2 . Заметим, что в течении продолжительной операции (более 1.5 часов), из-за угнетающего действия анестетиков и развивающейся гипотермии, слегка снижается метаболизм пациента и наблюдается постепенное уменьшение PetCO 2

    Нормокапния и нормовентиляция.

    Альвеолярная вентиляция обычно устанавливается так, чтобы обеспечить нормокапнию - то есть PetCO 2 должно находиться в диапазоне 4.8 - 5.7 % (36 -43 мм рт.ст.). Такая вентиляция называется нормовентиляцией, так как она характерна для здоровых людей. Иногда альвеолярную вентиляцию при ИВЛ устанавливают с легкой гипервентиляцией (PetCO 2 4-5%, 30-38 мм рт.ст.).

    Преимущества нормовентиляции.

    При поддержании нормовентиляции гораздо легче распознается развитие критических ситуаций: нарушения альвеолярной вентиляции, кровообращения или метаболизма. Спонтанное дыхание восстанавливается более легко. Кроме того, восстановление в посленаркозном периоде происходит гораздо быстрее.

    Гипокапния и гипервентиляция.

    Уровень PetCO 2 ниже 4.5% (34 мм.рт.ст.) называется гипокапнией. При наркозе наиболее частым случаем гипокапнии является слишком высокая альвеолярная вентиляция (гипервентиляция).

    В после-наркозный период гипокапния при спонтанном дыхании пациента может быть результатом гипервентиляции вызванной страхом, болью или развивающимся шоком.

    Недостатки длительной гипервентиляции.

    К сожалению до сих пор распространенной практикой при ИВЛ является гипервентиляция пациента, которая по общепринятому мнению необходима для обеспечения адекватной оксигенации и даже для углубления наркоза. Однако современные лекарственные средства и способы мониторинга могут обеспечить лучшую оксигенация и анестезию без гипервентиляции "на всякий случай".

    Гипервентиляция имеет достаточно серьезные недостатки:

    вазоконстрикция, приводящая к снижению коронарного и церебрального кровотока;

    избыточный дыхательный алкалоз;

    угнетение дыхательных центров;

    Все эти факторы приводят к более трудному и продолжительному восстановлению в посленаркозный период.

    Гиперкапния и гиповентиляция.

    Превышение PetCO 2 уровня 6.0% (45 мм рт.ст. при Ратм=760) называется гиперкапнией. Наиболее распространенной причиной гиперкапнии при наркозе является недостаточность альвеолярной вентиляции (гиповентиляция), обусловленная низким уровнем дыхательного объема и (или) частоты дыхания. Кроме того, в закрытом контуре ИВЛ продолжительная гиперкапния может быть вызвана недостаточно полным поглощением СО 2 . На капнограмме это проявляется в том, что концентрация СО 2 в фазе вдоха не падает до нулевого уровня.

    В после-наркозный период продолжительная гиперкапния при спонтанном дыхании пациента может быть вызвана:

      остаточным нейромышечным блоком;

      медикаментозным подавлением дыхательных центров;

      болевым ограничением дыхания (особенно после операции на органах брюшной полости).

    Заметим, что гиперкапния может сопровождаться гипоксией, однако это не обязательно. Гипоксическое состояние наступает позже гиперкапнии при более низких значениях альвеолярной вентиляции.

    Дополнительными клиническими проявлениями гиперкапнии являются: тахикардия, появление испарины, повышение напряжения, головная боль, беспокойство. При продолжительной гиперкапнии возникают нежелательные побочные эффекты, такие как склонность к сердечной аритмии (при воздействии летучих анастетиков), увеличение сердечного выброса, увеличение внутричерепного давления, легочная вазоконстрикция и периферическая вазодилатация.

    6. Интерпретация капнограммы и тренда СО 2 .

    Мониторы СО 2 обычно отображают кривую изменения концентрации СО 2 каждого выдоха в реальном времени (капнограмму) и тренд PetCO 2 за 30 минут. Резкие изменения в выделении СО 2 хорошо заметны на капнограмме выдоха, в то время как постепенные изменения лучше заметны по тренду СО 2 .

    Нормальная капнограмма.

    Капнограмма здорового человека при искусственной вентиляции имеет нормальную форму. Любое значительное отклонение от нормальной формы капнограммы отражает нарушение в дыхательной системе, комплексные или механические нарушения в контуре ИВЛ.

    СО 2 резко перестал обнаруживаться.

    Если капнограмма имела нормальный вид, а затем резко оборвалась до нуля, за один выдох, наиболее вероятной причиной является нарушение герметичности контура вентиляции.

    Другой возможной причиной является полная обструкция дыхательного тракта, например вызванная перекручиванием (перегибом) интубационной трубки.

    Экспоненциальное падение PetCO 2 .

    Быстрое падение PetCO 2 за несколько дыхательных циклов может указывать на:

    • выраженную легочную эмболию
    • остановку сердца
    • значительное падение артериального давления (сильная кровопотеря)
    • выраженную гипервентиляцию (за счет ИВЛ).

    Ступенчатое падение уровня PetCO 2

    Наиболее вероятной причиной резкого (но не до нуля) падения уровня PetCO 2 является:

      Перемещение эндотрахеальной трубки в один из главных бронхов, (например при изменении положения пациента).

    • Внезапная частичная обструкция воздушных путей.
    Резкое возрастание PetCO 2 .

    Внезапно появившееся резкое, но плавно проходящее возрастание PetCO 2 , при концентрации СО 2 во вдыхаемом воздухе равной нулю, может быть вызвано внутривенным введением бикарбоната.

    Постепенное снижение PetCO 2 .

    Постепенное снижение PetCO 2 в течении нескольких минут может быть вызвано возрастанием минутной вентиляции, падением сердечного выброса, или ухудшением перфузии.

    Постепенное возрастание PetCO 2

    Постепенное возрастание PetCO 2 в течении нескольких минут может быть вызвано наступлением гиповентиляции, возрастанием скорости метаболизма в результате реакции пациента на стрессовое воздействие (боль, страх, повреждение и т.п.).

    Интубация пищевода.

    При интубации пищевода небольшая концентрация СО 2 может регистрироваться, благодаря ручной вентиляции через рот. После извлечения эндотрахеальной трубки и успешного ее введения некоторое время наблюдается повышенное значение PetCO 2 из-за накопления СО 2 при апноэ.

    Злокачественная гипертермия.

    Монитор СО 2 является быстродействующим индикатором злокачественной гипертермии. Быстрое возрастание скорости метаболизма легко обнаруживается по возрастанию PetCO 2 (СО 2 вдоха остается нулевым).

    Неполная мышечная релаксация.

    При неполной мышечная релаксация и недостаточной глубине наркоза у больного сохраняется собственное дыхание “работающее” против ИВЛ. Это неглубокое спонтанное дыхание вызывает провалы на капнограмме.

    Частичная обструкция дыхательных путей.

    Искаженная форма капнограммы (с медленной скоростью нарастания) может указывать на частичную обструкцию воздушных путей. Возможной причиной обструкции может быть:

      генерализованный бронхоспазм,

      слизь в дыхательных путях,

      перегиб эндотрахеальной трубки.

    Эффект возвратного дыхания.

    Возрастание концентрации СО 2 вдоха отражает эффект возвратного дыхания, заключающийся в том, что пациент вдыхает СО 2 выдохнутый им в замкнутый контур ИВЛ (неполное поглощение СО 2 в контуре прибора ИВЛ).

    Осцилляции капнограммы при сердечных сокращениях.

    При слабом дыхании (особенно во второй половине выдоха при крайне низких скоростях потока) сердечные сокращения могут проявляться на спадающем участке капнограммы. Осцилляции капнограммы происходят из-за движения сердца против диафрагмы, вызывающего прерывистый поток воздуха в сторону эндотрахеальной трубки.

    Восстановление естественного дыхания.

    В критической ситуации пациента обычно вручную вентилируют 100% кислородом. При этом намеренно допускают рост PetCO 2 , чтобы запустить спонтанное дыхание. После чего пациент с не нарушенной вентиляцией быстро достигает удовлетворительной альвеолярной вентиляции.

    Детская капнограмма.

    На рисунке приведена типичная капнограмма, получаемая при использовании системы дыхания Jakson-Rees в детской анестезии. Начальное возвратное дыхание вызвано недостаточной очисткой газового потока, что было в дальнейшем скорректировано. Отчетливое альвеолярное плато подтверждает, что регистрируется "реальное" значение PetCO2.

    Остановка сердца.

    Быстрый спад высоты капнограммы, при сохранении правильной формы показывает резкое падение легочной перфузии из-за слабого сердечного выброса (1). При сердечной асистолии СО 2 не транспортируется к альвеолам легочным кровотоком (2). Начинается эффективная кардиопульмональная реанимация (3). Восстановление кровотока подтверждается ростом капнограммы.

    Тренд СО 2 и капнограмма в реальном времени помогут Вам оценить всю процедуру и ее эффективность.

    7. Практическое руководство по СО 2 мониторингу.

    Мониторы CO 2 используют для измерения небольшие количества газа, который непрерывно забирается из воздушного тракта пациента (150 - 200 ml/min). Монитор с боковым отбором газа может использоваться со всеми типами контуров анестезии. Для мониторинга СО 2 при естественном дыхании используется носовой адаптер.

    Основное правило для размещения отборника газа.

    Размещайте адаптер отбора газа как можно ближе ко рту или носу пациента. Таким образом вы исключаете нежелательное “мертвое пространство” между местом отбора газа и пациентом, и измеренная концентрация PetCO 2 будет точнее соответствовать уровню альвеолярного СО 2 .

    Когда для нагрева и увлажнения вдыхаемого воздуха используются нагреватель и влагообменник, адаптер отбора газа должен быть расположен между эндотрахеальной трубкой и нагревателем, и влагообменником.

    В частности, когда используется закрытый контур вентиляции, адаптер отбора газа должен быть расположен возле эндотрахеальной трубки, чтобы предотвратить смешивание очищенного и выдохнутого газов.

    Соединительные трубки не должны очищаться после использования. Очистка химическими веществами может испортить внутреннюю поверхность трубок и увеличить сопротивление потоку газа.

    Стальные газоотборные адаптеры являются многоразовыми и могут быть стерилизованы, но пластиковые адаптеры предназначены только для одного пациента.

    Используйте только фирменные трубки и адаптеры. Применение других образцов может привести к неправильным измерениям.

    До использования воздуховодные трубки и адаптеры должны быть визуально проверены.

    Удаление газа с выхода монитора.

    Из выходного штуцера прибора газ выходит с достаточным давлением. Для предотвращения загрязнения воздуха палаты анестезионными газами, выходная трубка монитора должна подключаться к шлангу вытяжной вентиляции.

    Мониторинг при слабых воздушных потоках.

    Небольшие объемы газа, которые отбираются для мониторинга, обычно удаляются. Однако если в закрытой системе используются ультранизкие потоки, газ после анализа должен быть возвращен в ветвь выдоха дыхательного контура.

    8. СО 2 мониторинг в посленаркозный период.

    С помощью носового адаптера отбора газа СО 2 монитор позволяет непрерывно измерять PetCO 2 у пациента со спонтанным дыханием. При этом СО 2 мониторинг является прекрасным методом для выявления апноэ или угнетения дыхательных центров.

    Если пациент остается под искусственной вентиляцией СО 2 монитор позволяет Вам оценить необходимый уровень вентиляции пациента непрерывно и неинвазивно.

    Часто нарушение вентиляционно-перфузного отношения, вызванное легочной патологией проявляется в артериально-альвеолярном различии (аАДСО 2). Измерение концентрации СО 2 в артериальной крови и сравнение его с PetCO 2 дает оценку состояния легких. Причины изменения аАДСО 2 обязательно должны быть выяснены.

    Nunn JF. Applied Respiratory Physiology,2nd edition London: Butterworth,1977.

    Smalhout B,Kalenda Z. An Atlas of Capnography, 2nd edition. The Netherlands: Kerckedosh-Zeist,1981

    Kalenda Z. Mastering Ifrared Capnography. The Netherlands: Kerckebosh-Zeist,1989

    Paloheimo M, Valli M,Ahjopalo H. A Guide to CO2 Monitoring. Helsinki,Finland: Datex Instrumentarium Corp,1983

    Lindoff B, Brauer K. Klinick Gasanalys. Lund, Sweden: KF-Sigma,1988

    Lillie PE, Roberts JG. Garbon Dioxide Monitoring. Anaesth Intens Care 1988;16:41-44

    Salem MR. Hypercapnia, Hypocapnia and Hypoxemia. Seminars in Anesthesia 1987;3:202-15

    Swedlow DB. Capnometry and Capnograpny: The Anesthesia Disaster Early Warning System. Seminars in Anesthesia 1986;3:194-205

    Ward SA. The Capnogram: Scope and Limitations. Seminars in Anesthesia 1987;3:216-228

    Gravenstein N, Lampotang S, Beneken JEM. Factors influencing capnography in the Bain circuit. J Clin Monit 1985;1:6-10

    Badgwell JM et al. Fresh Gas Formulae do not accurately predict End-Tidal PCO2 in Pediatric Patients. Can J Anaesth 1988;35:6/581-6

    Lenz G, Kloss TH, Schorer R. Grundlagen und anwendungen der Kapnometrie. Anasthesie und Intensivmedizin 4/1985; vol 26: 133-141

    Приложение 1

      “ГАРВАРДСКИЙ СТАНДАРТ” минимального анестезиологического мониторинга (1985).

      Обязательное присутствие анестезиолога в течении всего времени проведения общей и региональной анестезии.

      Артериальное давление и частота пульса (каждые 5 минут).

      Электрокардиография.

      Постоянный мониторинг/вентиляция и гемодинамика/.

      для вентиляции: наблюдение за размерами дыхательнго мешка,аускультация дыхательных шумов, мониторинг вдыхаемых и выдыхаемых газов (PetCO2).

      для кровообращения: пальпация пульса, аускультация сердечных тонов, наблюдение за кривой артериального давления, пульсовая плетизмография или оксиметрия.

      Мониторинг разгерметизации дыхательного контура с звуковым сигналом.

      Кислородный анализатор с заданным уровнем тревоги по минимальной концентрации кислорода.

      Измерение температуры.

    Исследования и уровень углекислого газа в помещениях.


    В последние годы появились точные инфракрасные сенсоры для замера уровня углекислого газа в помещениях. Они входят в состав газоанализаторов и показывают концентрацию углекислого газа в режиме реального времени, поэтому их удобно ставить в жилых и общественных помещениях, школах и детских садах. Однако для того, чтобы от этих измерений была польза, нужны четкие нормы по уровню углекислого газа в помещениях. А их у нас пока нет. В странах Европы, США и Канаде, как правило, нормой считается 1000 ppm (0,1%). Да, в ближайшее время мы будем измерять уровень углекислого газа в минских квартирах и улицах.

    Квартиры.

    Повальное увлечение пластиковыми окнами, совершенно безрукие или неработающие вентиляционные системы усугубляют ситуацию. Я измерял в своей квартире: при плотно закрытых окнах и двери помещение объемом 16 кв. метров, уровень углекислого газа в помещении достигает 1500 ppm за полтора часа. Часто люди не обращают внимание на вытяжные вентиляционные отверстия в кухне и туалете. Некоторые даже замуровывают их при ремонте. Иногда сетка на вентиляционных отверстий настолько засорена, что практически останавливает работу вентиляции. Эти факторы способствуют ухудшению качества воздуха в квартире. Представьте, что вы и еще несколько человек находятся в одном небольшом замкнутом пространстве, активно двигаются, готовят кушать и т.д. Через какое-то время, если воздух не обновляется, в этом пространстве становится очень тяжело находиться, в воздухе сконцентрировано много загрязняющих веществ, в том числе углекислого газа

    Спальня.

    Для хорошего качества сна и здоровья человека необходимо, чтобы уровень СО2 в спальнях и детских комнатах был не выше 0,08%. Ученые Технологического Университета Делф (Delft University of Technology), Нидерланды, считают, что для сна важнее качественный воздух в спальне, чем продолжительность сна. Высокий уровень СО2 в спальнях может также усиливать храп.

    Углекислый газ в помещении, оборудованном кондиционером.

    Кондиционер дает поток холодного воздуха, перепада температур при выходе на улицу, бактерий, комфортно живущих в прохладе. Но, кроме этого, для экономии электроэнергии, при работе кондиционера закрывают все окна. При этом концентрация углекислого газа быстро достигает значительной величины и получается прохладный, но содержащий избыток углекислого газа воздух.

    Школы.

    Ещё более тревожные данные принесло масштабное международное исследование, проведённое по инициативе Европейского респираторного общества в школах Франции, Италии, Дании, Швеции и Норвегии. Оно показало, что в учебных заведениях, где концентрация CO2 в классах превышала 1000 ppm, подверженность учащихся заболеваниям респираторных органов повышалась в 2—3,5 раза. Правда, здесь необходимо сделать уточнение. Тем не менее исследователи проблемы пришли к заключению, что безопасный уровень CO2 в помещении не должен превышать 1000 ppm.

    А в школах Департамент здравоохранения США рекомендует поддерживать уровень углекислого газа не выше 600 ppm. Кроме того, существует ещё одна норма: воздух в помещениях по содержанию CO2 не должен отличаться от наружного более чем на 350 ppm. Теоретически обеспечить такое соотношение должны системы вентиляции и кондиционирования.

    Во многих школах проводится мониторинг качества воздуха по уровню углекислого газа. Конечно, не всегда и не везде этот уровень соответствует норме. Но в этом случае администрация школ обязана принять меры, чтобы улучшить положение. В Финляндии, например, школу, в классах которой обнаружен повышенный уровень углекислого газа, могут даже закрыть до тех пор, пока не будет налажена вентиляция.

    Офисы.

    В 2007 году доктор медицинских наук Ю. Д. Губернский (Институт экологии человека и гигиены окружающей среды им. А. Н. Сытина РАМН) и кандидат технических наук Е. О. Шилькрот (ОАО «ЦНИИПромзданий) провели исследования воздушной среды в московских офисах и на улицах Москвы. При том что измерения проводились далеко не в самые неблагополучные с точки зрения метеорологической обстановки дни, уровень углекислого газа на улицах составлял 1000 ppm. А в офисах концентрация CO2 достигала 2000 ppm и даже выше.


    Часто переделывают под офис помещения без правильно работающей вентиляции, в этом случае проблемы гарантированы. Особенно это касается маленьких переговорок, в которые набиваются по 20 человек. Если в переговорку на 20 квадратов сядут 20 человек — то за час концентрация углекислого газа вырастет уже до 10"000 ppm углекислого газа в помещении — а это уже уровень, при котором мозги перестают работать. Поэтому в маленьких переговорках без постоянно дующей вентиляции со свежим воздухом (не кондиционер!) допустимое время нахождения 5-10 человек без снижения когнитивных способностей — не более 10-20 минут.

    Для вентиляции на больших объектах — модно реализовывать управление мощностью измеряя концентрацию CO2 в отработанном воздухе — чтобы автоматически зря воздух не гонять, когда все из офиса ушли (на подогрев/охлаждение-то уходят огромные мощности).

    Фитнес-залы.

    Занимаясь в фитнес- или тренажерных залах вы также можете столкнуться с проблемой повышенного уровня углекислого газа, и вместо пользы нанесете вред своему организму. Это особенно актуально потому, что при физических нагрузках уровень концентрации углекислоты в крови и так повышается, и в плохо проветриваемом помещении человек почувствует признаки гиперкапнии (избыток углекислого газа).

    Вызванные гиперкапнией испарину, головную боль, головокружение и одышку списывают на физическое утомление и воспринимают чуть ли не как доказательство своей двигательной активности. На самом деле, это может говорить о переизбытке углекислого газа в артериальной крови. Длительная гиперкапния характеризуется расширением сосудов миокарда и головного мозга, может привести к росту кислотности крови, вторичному спазму кровеносных сосудов, замедлению сердечных сокращений.

    Что делать? Об этом я напишу в следующей статье.