Электрощиток

Технологии солнечных батарей. Кто и как производит солнечные панели? Видео о том, как изготовить прибор для сбора солнечной энергии самому

Технологии солнечных батарей. Кто и как производит солнечные панели? Видео о том, как изготовить прибор для сбора солнечной энергии самому

- производить солнечные батареи , такие батареи всегда будут пользоваться спросом, поскольку солнечная энергия неисчерпаема, и кремний, из которого в основном изготавливаются солнечные батареи, является очень распространенным веществом.

Единственный минус этой бизнес идеи – это неразвитость технологического процесса изготовления солнечных батарей , которая пока не позволяет снизить стоимость батареи.
Производство солнечных батарей требует наличия основного сырья - кварцевого песка, содержащего значительную концентрацию двуокиси кремния и хорошо поддающегося обработке.

Далее в зависимости от вида кремния: аморфного, монокристаллического и поликристаллического применяется своя технология производства. Для получения монокристаллического кремния с однородной структурой кристалла, его выращивают с помощью затравочного монокристалла. В специальной печи, определенным образом вращая.

Менее затратные по деньгам технологии применяются при производстве поликристаллического кремния, у которого структура неоднородна. Для получения поликристаллического кремния производят осаждения пара, что заставляет молекулы застывать свободно и неупорядоченно.

Изготовленные батареи на поликристаллическом кремнии имеют сравнительно небольшую цену.
Затем происходит обрезка получившихся в результате процесса производства дисков монокристаллического кремния до квадратной формы. Дальше алмазными дисками режут квадратной формы монокристаллический кремний тонкими пластинками толщиной 0,2 до 0,4 мм.

Затем их подвергают тщательной очистке, обтачиванию, шлифованию и очищению. Потом проводится тестирование пластинок монокристаллического кремния. Далее пластинки кремния соединяют, образуя элементы солнечных батарей. Затем на поверхности кремниевых частей батарей накладываются защитные покрытия из крепкого стекла для предупреждения
негативного воздействия окружающей среды. Далее поверхности металлизируют, потом накладывают антирефлексионное покрытие специальным ламинатом.

Для достижения необходимых электрических параметров, в частности уровня напряжения и силы тока, элементы солнечных батарей последовательно объединяют. Этот процесс происходит в соответствие с стекло-пленочной технологией, вписанной бизнес-план производства солнечных батарей. Пленка крепится к обратной стороне получающейся конструкции из фотоэлектрических пластин, затем герметизируются края пленки, что гарантирует качество солнечных батарей.

Под действием энергии солнца происходит генерирование тока фотоэлектрическими элементами солнечных батарей. Затем происходит аккумуляция тока, и его уже можно использовать для электропитания других электрических приборов.

Как сделать солнечную батарею – видео:

Кстати сами солнечные элементы можно заказать с известных интернет аукционов.


Идеи для Бизнеса из раздела:

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между . Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно .

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см 2 , на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Основные недостатки солнечных батарей:

  • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
  • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
  • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
  • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
  • Большая площадь, требующаяся для конструкции достаточной мощности.
  • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
  • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

  • Отсутствие механических преобразований энергии и движущихся частей.
  • Минимальные расходы на эксплуатацию.
  • Долговечность 30~50 лет.
  • Тишина при работе, отсутствие вредных выбросов. Экологичность.
  • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
  • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
  • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м 2 . В средней полосе России он находится в пределах 0,7~1,0 кВт/м 2 . КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м 2 , 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м 2 . Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м 2 . Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м 2 , а для 50 Ач — примерно 1,5 м 2 .

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м 2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.
Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.

Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.

Рассчитываем комплектующие

Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.

Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.

Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.

Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.

Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.

Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.

Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.

Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.

Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:

  • Длина — 15 x 52 = 780 мм.
  • Ширина — 77 x 6 = 462 мм.

Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.

Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.

Также нам потребуются:

  • Паяльник электрический 40 Вт.
  • Припой, канифоль.
  • Монтажный провод.
  • Силиконовый герметик.
  • Двусторонний скотч.

Этапы изготовления

Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.

Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, для квартиры и дома.

При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать .

Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:

  1. Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
  2. Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
  3. Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
  4. Склеиваем окончательно пластины с задней стороны скотчем.
  5. Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
  6. Вставляем в раму заднюю стенку и герметизируем её.

При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.

Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.

Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.

Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м 2 = 20 м 2 .

Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.

Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.

Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.

Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.

Делаем выводы

При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.

Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.

В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.

Видео о том, как изготовить прибор для сбора солнечной энергии самому

Человечество стремится перейти на альтернативные источники электрического снабжения, которые помогут сохранить чистоту окружающей среды и сократить затраты на выработку энергии. Производство является современным индустриальным методом. включает в себя приемники солнечного света, аккумуляторы, контролирующие устройства, инверторы и другие приборы, предназначенные для определенных функций.

Солнечная батарея является главным элементом, с которого начинается накопление и лучей. В современном мире для потребителя при выборе панели существует много подводных камней, так как промышленность предлагает большое число изделий, объединенных под одним названием.

Кремниевые солнечные батареи

Эти изделия популярны у современных потребителей. В основу их изготовления положен кремний. Запасы его в недрах широко распространены, добыча сравнительно недорогая. Кремниевые элементы выгодно отличаются уровнем производительности от других батарей солнечного света.

Виды элементов

Производство из кремния ведется следующих типов:

  • монокристаллический;
  • поликристаллический;
  • аморфный.

Различаются вышеназванные формы устройств тем, как компонуются кремниевые атомы в кристалле. Основным отличием элементов становится различный показатель преобразования световой энергии, который у двух первых видов находится приблизительно на одном уровне и превышает значения у приборов из аморфного кремния.

Промышленность сегодняшнего дня предлагает несколько моделей солнечных уловителей света. Отличие их состоит в том, какое применяется оборудование для производства солнечных батарей. Играет роль технология изготовления и разновидность начального материала.

Монокристаллический тип

Эти элементы состоят из силиконовых ячеек, скрепленных между собой. По способу ученого Чохральского производится абсолютно чистый кремний, из которого изготавливают монокристаллы. Следующим процессом является разрезание застывшего и затвердевшего полуфабриката на пластины толщиной от 250 до 300 мкм. Тонкие слои насыщают металлической сеткой электродов. Несмотря на дороговизну производства, такие элементы применяют достаточно широко из-за высокого показателя преобразования (17-22%).

Изготовление поликристаллических элементов

Солнечных батарей из поликристаллов состоит в том, что расплавленная кремниевая масса постепенно охлаждается. Производство не требует дорогого оборудования, следовательно, затраты на получение кремния снижены. Поликристаллические солнечные накопители имеют меньший коэффициент эффективности (11-18%), в отличие от монокристаллических. Это объясняется тем, что в процессе остывания масса кремния насыщается мельчайшими зернистыми пузырьками, что приводит к дополнительному преломлению лучей.

Элементы из аморфного кремния

Изделия относят к особому типу, так как их принадлежность к кремниевому виду исходит от наименования используемого материала, а производство солнечных батарей выполняется по технологии пленочных приборов. Кристалл в процессе изготовления уступает место кремниевому водороду или силону, тонкий слой которых покрывает подложку. Батареи имеют самое низкое значение эффективности, всего до 6%. Элементы, несмотря на существенный недостаток, имеют ряд неоспоримых преимуществ, дающих им право стоять в ряду с вышеназванными типами:

  • значение поглощения оптики выше в два десятка раз, чем у монокристаллических и поликристаллических накопителей;
  • имеет минимальную толщину слоя, всего 1 мкм;
  • пасмурная погода не влияет на работу по преобразованию света, в отличие от других видов;
  • из-за высокого показателя прочности на изгиб без проблем применяется в трудных местах.

Три вышеописанных вида солнечных преобразователей дополняются гибридными изделиями из материалов с двойственными свойствами. Такие характеристики достигаются, если в аморфный кремний включаются микроэлементы или наночастицы. Полученный материал схож с поликристаллическим кремнием, но выгодно отличается от него новыми техническими показателями.

Сырье для производства солнечных батарей пленочного типа из CdTe

Выбор материала диктуется потребностью в уменьшении стоимости изготовления и повышении технических характеристик в работе. Наиболее часто применяется светопоглощающий теллурид кадмия. В 70-е годы прошлого столетия CdTe считался основным претендентом на космическое использование, в современной промышленности он нашел широкое применение в энергетике солнечного света.

Этот материал относят к категории кумулятивных ядов, поэтому не стихают прения по вопросу его вредности. Исследования ученых установили тот факт, что уровень вредного вещества, поступающего в атмосферу, является допустимым и не наносит вреда экологии. Уровень КПД составляет всего 11%, но стоимость преобразуемой электроэнергии от таких элементов ниже на 20-30%, чем от приборов кремниевого вида.

Накопители лучей из селена, меди и индия

Полупроводниками в приборе служат медь, селен и индий, иногда допускается замещение последнего на галлий. Это объясняется высокой востребованностью индия для производства мониторов плоского типа. Поэтому выбран этот вариант замещения, так как материалы имеют похожие свойства. Но для показателя КПД замена играет существенную роль, производство солнечной батареи без галлия повышает эффективность работы устройства на 14%.

Солнечные уловители на полимерной основе

Эти элементы относят к молодым технологиям, так как они недавно появились на рынке. Полупроводники из органики поглощают свет для преобразования его в электрическую энергию. Для производства применяют фуллерены углеродной группы, полифенилен, меди фталоцианин и др. В результате получают тонкие (100 нм) и гибкие пленки, которые в работе выдают коэффициент эффективности 5-7%. Величина небольшая, но производство гибких солнечных батарей имеет несколько положительных моментов:

  • для изготовления не затрачиваются большие средства;
  • возможность установки гибких батарей в местах изгибов, где эластичность имеет первоочередное значение;
  • сравнительная легкость и доступность установки;
  • гибкие батареи не оказывают вредного воздействия на окружающую среду.

Химическое травление в процессе производства

Самой дорогой в солнечной батарее является мультикристаллическая или монокристаллическая пластина из кремния. Для максимально рационального режут псевдоквадратные фигуры, эта же форма позволяет плотно уложить пластины в будущем модуле. После процесса резки на поверхности остаются микроскопические слои нарушенной поверхности, которые убираются при помощи травления и текстурирования, чтобы улучшить прием падающих лучей.

Обработанная подобным способом поверхность представляет собой хаотично расположенные микропирамиды, отражаясь от грани которых, свет попадает на боковые поверхности других выступов. Процедура рыхления текстуры понижает отражающую способность материала приблизительно на 25%. В процессе травления применяют серию кислотных и щелочных обработок, но недопустимо сильно уменьшать толщину слоя, так как пластина не выдерживает следующие обработки.

Полупроводники в солнечных батареях

Технология производства солнечных батарей предполагает, что основным понятием твердой электроники является p-n-переход. Если в одной пластине совместить электронную проводимость n-типа и дырочную проводимость p-типа, то в месте соприкосновения их возникает p-n-переход. Основным физическим свойством указанного определения становится возможность служить барьером и пропускать электричество в одном направлении. Именно такой эффект позволяет наладить полноценную работу солнечных элементов.

В результате проведения фосфорной диффузии на торцах пластины складывается слой n-типа, который базируется у поверхности элемента на глубине всего 0,5 мкм. Производство солнечной батареи предусматривает неглубокое проникновение носителей противоположных знаков, которые возникают под действием света. Их путь в зону влияния p-n-перехода должен быть коротким, иначе они могут при встрече погасить один другого, при этом не сгенерировав никакого количества электричества.

Использование плазмохимического травления

В конструкции солнечной батареи предусмотрены лицевая поверхность с установленной решеткой для съемки тока и тыльная сторона, представляющая собой сплошной контакт. Во время явления диффузии возникает электрическое замыкание между двумя плоскостями и передается на торец.

Чтобы удалить замыкание, применяется оборудование для солнечных батарей, позволяющее сделать это с помощью плазмохимического, химического травления или механическим, лазерным путем. Часто используется метод плазмохимического воздействия. Травление выполняется одновременно для стопки сложенных вместе пластин кремния. Исход процесса зависит от длительности обработки, состава средства, размера квадратов материала, направления струй ионного потока и других факторов.

Нанесение антиотражающего покрытия

При помощи нанесения текстуры на поверхности элемента снижается отражение до 11%. Это обозначает, что десятая часть лучей попросту отражается от поверхности и не принимает участия в образовании электричества. С целью уменьшения таких потерь на лицевую сторону элемента наносят покрытие с глубоким проникновением световых импульсов, не отражающее их обратно. Ученые, принимая во внимание законы оптики, определяют состав и толщину слоя, поэтому производство и установка солнечных батарей с таким покрытием уменьшают отражение до 2%.

Контактная металлизация с лицевой стороны

Поверхность элемента предназначена для поглощения наибольшего количества излучения, именно этим требованием определяются размерные и технические характеристики наносимой металлической сетки. Выбирая дизайн лицевой стороны, инженеры решают две противоположные проблемы. Снижение оптических потерь происходит при более тонких линиях и расположении их на большом расстоянии одна от другой. Производство солнечной батареи с увеличенными размерами сетки приводит к тому, что часть зарядов не успевает достичь контакта и теряется.

Поэтому учеными стандартизировано значение расстояния и толщины линии для каждого металла. Слишком тонкие полоски открывают пространство на поверхности элемента для поглощения лучей, но не проводят сильный ток. Современные методы нанесения металлизации состоят в трафаретном печатании. В качестве материала наиболее оправдывает себя серебросодержащая паста. За счет ее применения КПД элемента поднимается на 15-17%.

Металлизация на тыльной стороне прибора

Нанесение металла на тыльную сторону устройства происходит по двум схемам, каждая из которых выполняет собственную работу. Сплошным тонким слоем по всей поверхности, кроме отдельных отверстий, напыляют алюминий, а отверстия заполняют серебросодержащей пастой, играющей контактную роль. Сплошной алюминиевый слой служит своеобразным зеркальным устройством с тыльной стороны для свободных зарядов, которые могут потеряться в оборванных кристаллических связях решетки. С таким покрытием на 2% больше по мощности работают солнечные батареи. Отзывы потребителей говорят, что такие элементы более долговечны и не так сильно зависят от пасмурной погоды.

Изготовление солнечных батарей своими руками

Источники питания от солнца не каждый может заказать и установить у себя дома, так как их стоимость на сегодняшний день достаточно велика. Поэтому многие мастера и умельцы осваивают производство солнечных батарей дома.

Приобрести комплекты фотоэлементов для самостоятельной сборки можно в интернете на различных сайтах. Стоимость их зависит от количества применяемых пластин и мощности. Например, небольшой мощности комплекты, от 63 до 76 Вт с 36 пластинами, стоят 2350-2560 руб. соответственно. Здесь же приобретают рабочие элементы, отбракованные с производственных линий по каким-либо причинам.

При выборе типа фотоэлектрического преобразователя принимают во внимание тот факт, что поликристаллические элементы более устойчивы к пасмурной погоде и работают при ней эффективнее монокристаллических, но имеют меньший срок службы. Монокристаллические обладают более высоким КПД в солнечную погоду, и прослужат они гораздо дольше.

Чтобы организовать производство солнечных батарей в домашних условиях, нужно подсчитать общую нагрузку всех приборов, которые будут питаться от будущего преобразователя, и определиться с мощностью устройства. Отсюда вытекает количество фотоэлементов, при этом учитывают угол наклона панели. Некоторые мастера предусматривают возможность изменения положения накопительной плоскости в зависимости от высоты солнцестояния, а зимой - от толщины выпавшего снега.

Для изготовления корпуса применяют различные материалы. Чаще всего ставят алюминиевые или нержавеющие уголки, используют фанеру, ДСП и др. Прозрачная часть выполняется из органического или обыкновенного стекла. В продаже есть фотоэлементы с уже припаянными проводниками, такие покупать предпочтительнее, так как упрощается задача сборки. Пластины не складывают одну на другую - нижние могут дать микротрещины. Припой и флюс наносятся предварительно. Паять элементы удобнее, расположив их сразу на рабочей стороне. В конце крайние пластины приваривают к шинам (более широким проводникам), после этого выводят "минус" и "плюс".

После проделанной работы тестируют панель и герметизируют. Зарубежные мастера для этого используют компаунды, но для наших умельцев они стоят довольно дорого. Самодельные преобразователи герметизируют силиконом, а тыльную сторону покрывают лаком на основе акрила.

В заключение следует сказать, что отзывы мастеров, которые сделали всегда положительные. Однажды затратив средства на изготовление и установку преобразователя, семья очень быстро их окупает и начинает экономить, используя бесплатную энергию.

Неизменный рост потребления энергии солнечного света способствует увеличению спроса на оборудование, с помощью которого эту энергию можно накапливать и использовать для дальнейших нужд. Наиболее популярным способом получения электроэнергии является солнечная фотовольтаика. В первую очередь объясняется это тем, что производство солнечных батарей основано на использовании кремния – химического элемента, занимающего второе место по содержанию в земной коре.

Рынок солнечных батарей на сегодняшний день представляют крупнейшие мировые компании с многомиллионными оборотами и многолетним опытом. В основе производства солнечных панелей лежат различные технологии, которые постоянно совершенствуются. В зависимости от ваших нужд вы можете найти солнечные батареи, размеры которых позволяют встроить их в микрокалькулятор, или панели, которые без проблем разместятся на крыше здания или автомобиля. Как правило, одиночные фотоэлементы вырабатывают очень небольшое количество мощности, поэтому используются технологии, позволяющие соединять их в так называемые солнечные модули. О том, кто и как это делает и пойдет речь дальше.

Технологический процесс изготовления солнечных панелей

1 этап

Первое с чего начинается любое производство, в том числе и производство солнечных батарей – это подготовка сырья. Как мы уже упоминали выше, основным сырьем в данном случае служит кремний, а точнее кварцевый песок определенных пород. Технология подготовки сырья состоит из 2 процессов:

  1. Этап высокотемпературного плавления.
  2. Этап синтеза, сопровождающийся добавлением различных химических веществ.

Путем этих процессов достигают максимальной степени очистки кремния до 99,99%. Для изготовления солнечных батарей чаще всего используют монокристаллический и поликристаллический кремний. Технологии их производства различны, но процесс получения поликристаллического кремния менее затратный. Поэтому солнечные батареи, изготовленные из этого вида кремния, обходятся потребителям дешевле.

После того, как кремний прошел очистку, его разрезают на тонкие пластины, которые, в свою очередь, тщательно тестируют, производя замер электрических параметров посредством световых вспышек ксеноновых ламп высокой мощности. После проведенных испытаний пластины сортируют и отправляют на следующий этап производства.

2 этап

Второй этап технологии представляет собой процесс пайки пластин в секции, с последующим формированием из этих секций блоков на стекле. Для переноса готовых секций на поверхность стекла используют вакуумные держатели. Это необходимо для того, чтобы исключить возможность механического воздействия на готовые солнечные элементы. Секции, как правило, формируют из 9 или 10 солнечных элементов, а блоки – из 4 или 6 секций.

3 этап

3 этап – это этап ламинирования. Спаянные блоки фотоэлектрических пластин ламинируют этиленвинилацетатной пленкой и специальным защитным покрытием. Использование компьютерного управления позволяет следить за уровнем температуры, вакуума и давления. А также программировать требуемые условия ламинирования в случае использования разных материалов.

4 этап

На последнем этапе изготовления блоков солнечных батарей монтируется алюминиевая рама и соединительная коробка. Для надежного соединения коробки и модуля используется специальный герметик-клей. После чего солнечные батареи проходят тестирование, где измеряют показатели тока короткого замыкания, тока и напряжения точки максимальной мощности и напряжения холостого хода. Для получения необходимых значений силы тока и напряжения возможно объединение не только солнечных элементов, но и готовых солнечных блоков между собой.

Какое оборудование необходимо?

При производстве солнечных панелей необходимо использовать только качественное оборудование. Это обеспечивает минимальные погрешности при измерении различных показателей в процессе тестирования солнечных элементов и состоящих из них блоков. Надежность оборудования предполагает более долгий срок эксплуатации, следовательно, минимизируются расходы на замену вышедшего из строя оборудования. При низком качестве возможны нарушения технологии изготовления.

Основное оборудование, используемое в процессе производства солнечных панелей:

Кто поставляет нам солнечные батареи?

Солнечные панели – дело очень перспективное, а главное прибыльное. Количество покупаемых солнечных батарей увеличивается с каждым годом. Что обеспечивает постоянный рост объемов продаж, в котором заинтересован любой завод по производству солнечных батарей, а их по всему миру немало.

На первом месте стоят, конечно, китайские компании. Низкая стоимость солнечных батарей, которые китайцы экспортируют по всему миру, привела к появлению множества проблем у других крупнейших компаний. За последние 2-3 года о закрытии производства солнечных панелей объявили, по меньшей мере, 4 немецких бренда. Началось все с банкротства компании Solon, после которой закрылись Solarhybrid, Q-Cells и Solar Millennium. Американская компания First Solar также заявила о закрытии своего завода во Франкфурте-на-Одере. Свое производство панелей свернули и такие гиганты как Siemens и Bosch. Хотя, учитывая, что китайские солнечные батареи стоят, к примеру, почти в 2 раза дешевле немецких аналогов, удивляться здесь нечему.

Первые места в топе компаний, производящих солнечные панели, занимают:

  • Yingli Green Energy (YGE) является ведущим производителем солнечных батарей. За 2012 год ее прибыль составила более 120 млн. $. Всего она установила солнечных модулей более чем на 2 ГВт. Среди ее продукции панели из монокристаллического кремния мощностью 245-265 Вт и поликристаллические кремниевые батареи мощностью 175-290 Вт.
  • First Solar. Хоть эта компания и закрыла свой завод в Германии, в числе крупнейших она все-таки осталась. Ее профиль – это тонкопленочные панели, мощность которых за 2012 год составила около 3,8 ГВт.
  • Suntech Power Ко. Производственные мощности этого китайского гиганта составляют примерно 1800 МВт в год. Около 13 млн солнечных батарей в 80 странах мира – это результат труда этой компании.

Среди российских заводов следует выделить:

  • «Солнечный ветер»
  • ООО «Хевел» в Новочебоксарске
  • «Телеком-СТВ» в Зеленограде
  • ОАО «Рязанский завод металлокерамических приборов»
  • ЗАО «Термотрон-завод» и другие.

Более полный перечень фирм, изготавливающих и поставляющих оборудование и изделия для солнечной энергетики, вы найдете в нашем .

Не отстают и страны СНГ. Так, например, завод по производству солнечных батарей еще в прошлом году был запущен в Астане. Это первое предприятия подобного рода в Казахстане. В качестве сырья планируется использовать 100% казахского кремния, а оборудование, установленное на заводе, отвечает всем последним требованиям и полностью автоматизировано. Запуск аналогичного завода есть и в планах у Узбекистана. Инициатором строительства выступила крупнейшая китайская компания Suntech Power Holdings Co, такое же предложение поступило и от российского нефтяного гиганта «ЛУКОЙЛ».

При таких темпах строительства, следует ожидать повсеместного использования солнечных модулей. Но это и неплохо. Экологичный энергетический источник, дающий бесплатную энергию, сможет решить множество проблем, связанных с загрязнением окружающей среды и истощением запасов природного топлива.

Статью подготовила Абдуллина Регина

Видео о процессе изготовления солнечных панелей:

В настоящее время очень модными и популярными являются альтернативные источники энергии, особенно у владельцев загородных коттеджей или частных домов. Но часто такое устройство стоит немалых денег и не каждый может себе позволить приобрести для дома солнечные батареи. Поэтому очень актуальным стало изготовление солнечных панелей своими руками. Так как же самому сделать солнечные батареи?

Характеристика солнечной панели

Солнечная батарея представляет собой полупроводниковую конструкцию, которая способна преобразовывать солнечное излучение в электроэнергию. Это позволяет обеспечить дом экономичным, надежным и, самое главное, бесперебойным электроснабжением. Особенно это актуально для труднодоступных районов проживания , а также там, где часто возникают перебои с электроэнергией от основного источника.

Такой альтернативный источник энергии довольно практичный, потому что в отличие от традиционного источника энергоснабжения стоит он гораздо меньше. Изготовление солнечных панелей своими руками позволяет не только оптимизировать энергопотребление, но также экономит финансы.

Преимущества

Солнечные батареи обладают следующими достоинствами:

  • простая установка за счет того, что нет необходимости прокладывать к опорам кабель;
  • выработка электроэнергии абсолютно не вредит окружающей среде;
  • отсутствуют подвижные части;
  • электричество поставляется независимо от распределительной сети;
  • минимальные затраты по времени на обслуживание системы;
  • небольшой вес батарей;
  • бесшумная работа;
  • продолжительный срок службы при минимальных расходах.

Недостатки

Несмотря на довольно весомые достоинства, есть у солнечных батарей и свои минусы, такие как:

  • трудоемкость процесса изготовления;
  • чувствительность к загрязнениям;
  • на эффективную работу солнечных панелей оказывают влияние погодные условия (солнечные или пасмурные дни);
  • для такой конструкция необходимо много места;
  • по ночам батареи не работают.

Требования, предъявляемые к солнечной батарее

Установить солнечные панели в частном доме под силу каждому. Но для того чтобы такая конструкция, созданная своими руками, приносила пользу по максимуму, следует учитывать ее особенности. К солнечной батарее предъявляются следующие требования:

Материалы, необходимые для изготовления солнечной батареи своими руками

Если нет возможности приобрести солнечные батареи, можно изготовить их своими руками. Вначале необходимо определиться с материалом , из которого они будут сделаны.

Чтобы создать панели, необходимы будут качественные фотоэлементы. Производители на сегодняшний день предлагают следующие виды устройств:

  • элементы из монокристаллического кремния имеют КПД до 13%, но в пасмурную погоду недостаточно эффективны;
  • фотоэлементы из поликристаллического кремния имеют КПД до 9%, работать могут как в солнечные, так и пасмурные дни.

Для энергоснабжения дома лучше всего использовать поликристаллы, которые доступны в наборах.

Важно знать, что все необходимые для сборки ячейки лучше всего приобретать у одного производителя , так как продукция разных марок имеет значительные различия в эффективности изделий. Это может создать дополнительные сложности при сборке, повлечь затраты в результате эксплуатации, при этом солнечная батарея будет иметь невысокую мощность.

Чтобы сделать солнечную панель из подручных средств, необходимы будут специальные проводники, предназначенные для соединения фотоэлементов.

Корпус будущей конструкции лучше всего изготавливать из алюминиевых уголков, обладающих небольшим весом. Можно также использовать такой материал, как дерево. Но из-за того, что конструкция будет все время подвержена атмосферному влиянию, срок ее эксплуатации будет снижаться.

Размеры корпуса панели зависят от количества фотоячеек.

Внешнее покрытие фотоэлементов может быть выполнено из оргстекла или прозрачного поликарбоната. Также применяют закаленное стекло, не пропускающее инфракрасные лучи.

Таким образом, для изготовления солнечной батареи своими руками потребуются следующие материалы:

  • фотоэлементы в наборе;
  • крепежные метизы;
  • медные электропровода высокой мощности;
  • силиконовые вакуумные подставки;
  • паяльное оборудование;
  • алюминиевые уголки;
  • диоды Шотке;
  • прозрачный лист из поликарбоната или плексигласа;
  • набор винтов для крепежа.

Такие материалы приобретаются в магазине стройматериалов или в интернет-магазине.

Как сделать солнечные панели своими руками?

Для того чтобы сделать панели своими руками, нужно собрать требуемые материалы. Собирается солнечная батарея для дома в такой последовательности.

Чтобы правильно сделать солнечные батареи своими руками, нужно придерживаться следующих рекомендаций:

Получить бесплатную электроэнергию в своем доме мечтает каждый человек и эта мечта осуществима. Сделав солнечные батареи своими руками, можно наслаждаться дополнительным источником электроснабжения. При этом такая конструкция не наносит никакого вреда окружающей среде , к тому же она очень надежная и недорогостоящая.