Электрощиток

Показатель качества воздуха в закрытых помещениях. Гигиеническое значение нормальных составных частей воздуха

Показатель качества воздуха в закрытых помещениях. Гигиеническое значение нормальных составных частей воздуха

Чистый атмосферный воздух у поверхности Земли - это ме­ханическая смесь различных газов, среди которых в порядке их убывания по объему содержатся азот, кислород, аргон, диоксид углерода и ряд других газов, суммарное количество которых не превышает 1 %.

Состав чистого сухого атмосферного воздуха в объемных процентах представлен на рис. 1,2,

За сутки в состоянии покоя взрослый человек пропускает че­рез легкие 13-14 м3 воздуха - значительный объем, увеличи­вающийся при выполнении физических нагрузок. Это значит, что для организма небезразлично, воздухом какого химическо­го состава он дышит.

Кислород - самый важный для жизнедеятельности газ воз­духа. Он расходуется в организме на окислительные процессы, поступая через легкие в кровь, и доставляется тканям и клеткам организма в составе оксигемоглобина,

Рис. 1.2. Химический состав атмосферного воздуха при нормальных условиях.

В окружающей природе кислород также необходим для окис­ления органических веществ, находящихся в воде, воздухе и почве, а также для поддержания процессов горения.

Источником кислорода в атмосфере являются зеленые рас­тения, образующие его под действием солнечной радиации в процессе фотосинтеза и выделяющие в воздух в процессе ды­хания, Речь идет о фитопланктоне морей и океанов, а также растениях тропических лесов и вечнозеленой тайги, которые образно называют "легкими планеты".

Зеленые растения образуют кислород в очень больших коли­чествах, и вследствие постоянного перемешивания слоев ат­мосферного воздуха его содержание в атмосферном воздухе повсюду остается практически постоянным - около 21 %. Низ­кие концентрации кислорода, существенные для жизнедеятель­ности организма человека, наблюдаются при подъеме на высоту и при пребывании людей в герметически замкнутых помеще­ниях в случае аварийных ситуаций, когда нарушены техничес­кие средства поддержания жизнедеятельности. Повышенное содержание кислорода отмечается в условиях высокого атмос­ферного давления (в кессонах). При парциальном давлении свыше 600 мм рт.ст. он ведет себя как токсичное вещество, вы­зывая отек легких и пневмонию.

В атмосферном воздухе содержится динамический изомер кислорода - трехатомный кислород озон, являющийся силь­нейшим окислителем. Он образуется в природных условиях в верхних слоях атмосферы под влиянием коротковолнового ультрафиолетового излучения Солнца, при грозовых разрядах, в процессе испарения воды.

Озон играет важнейшую роль в защите биологических объ­ектов планеты от губительного воздействия жесткого ультрафи­олета, задерживая его в стратосфере на высоте 20-30 км.

Озон обладает своеобразным приятным запахом свежести, и его присутствие можно легко обнаружить в лесу после грозы, в горах, в чистой природной среде, где он считается показате­лем чистоты воздуха. Однако избыток озона неблагоприятен для жизнедеятельности организма, и начиная с концентрации 0,1 мг/м3 он действует как раздражающий газ.

Присутствие же озона в воздухе крупных промышленных горо­дов, загрязненном выбросами автотранспорта и промышленных объектов, в свете последних научных данных считается неблаго­приятным признаком, поскольку в этих условиях он образуется в результате фотохимических реакций при формировании смога.

Высокая окислительная способность озона используется при обеззараживании воды.

Диоксид углерода, или углекислый газ, поступает в воздух в процессе дыхания людей, животных, растений (в ночное вре­мя), окисления органических веществ при горении, брожении, гниении, находясь в окружающей среде в свободном и связан­ном состояниях.

Постоянство содержания этого газа на уровне 0,03 % в ат­мосфере обеспечивается его поглощением на свету зелеными растениями, растворением в воде морей и океанов, удалением с атмосферными осадками.

Значительные количества СО2 образуются в результате работы промышленных предприятий и автотранспорта, сжигающих ог­ромные количества топлива, вследствие чего в последние годы появились данные о том, что содержание углекислого газа в воздухе крупных современных городов приближается к 0,04 %, что вызывает тревогу у экологов по поводу образования "пар­никового эффекта", о котором более подробно будет сказано дальше.

Диоксид углерода участвует в обменных процессах организма, являясь физиологическим возбудителем дыхательного центра.

Вдыхание больших концентраций СОг нарушает окислительно­восстановительные процессы, и его накопление в крови и тканях ведет к тканевой аноксии. Длительное пребывание людей в за­крытых помещениях (жилых, производственных, общественных) сопровождается выделением в воздух продуктов их жизнеде­ятельности: углекислоты с выдыхаемым воздухом и летучих ор­ганических соединений (аммиак, сероводород, индол, меркап­тан), называемых антропотоксинами, с поверхности кожных покровов, грязной обуви и одежды. Происходит и некоторое снижение содержания в воздухе кислорода. В этих условиях у людей могут появиться жалобы на ухудшение самочувствия, снижение работоспособности, сонливость, головную боль и дру­гие функциональные симптомы. Чем же объясняется этот симптомокомплекс? Можно предположить, что причина лежит в не­хватке кислорода, количество которого, как уже говорилось, несколько снижается по сравнению с его содержанием в атмос­ферном воздухе. Однако было установлено, что его снижение в самых неблагоприятных условиях не превышает I %, так как вследствие негерметичности этих помещений кислород легко проникает из атмосферы в воздух помещений, пополняя его за­пас. Организм человека не реагирует на такое снижение содер­жания кислорода. Больные люди отмечают снижение кислорода в воздухе, если оно составляет 18 %, здоровые - 16 %. Жизнь не­возможна при концентрации кислорода в воздухе, равной 7-8 %. Однако названных концентраций кислорода в негерметичных помещениях никогда не бывает, но они могут быть в затонувшей подводной лодке, обрушившейся шахте и других герметичных пространствах. Следовательно, в негерметичных помещениях снижение содержания кислорода не может стать причиной ухуд­шения самочувствия людей. Тогда не заключается ли эта причи­на в накоплении избытка углекислоты в воздухе помещений? Однако известно, что неблагоприятная концентрация СО2 для здоровья человека составляет 4-5 %, когда появляются голо­вная боль, шум в ушах, сердцебиение и т.д. При содержании в воздухе 8 % углекислоты наступает смерть. Указанные же концентрации характерны только для герметичных помещений с неисправной системой жизнеобеспечения. В обычных закры­тых помещениях таких концентраций углекислого газа быть не может вследствие имеющегося постоянного воздухообмена с окружающей средой.

И все же содержание С02 в воздухе закрытых помещений имеет санитарное значение, являясь косвенным показателем чистоты воздуха. Дело в том, что параллельно с накоплением С02, обычно не выше 0,2 %, ухудшаются другие свойства воз­духа: повышаются температура и влажность, запыленность, со­держание микроорганизмов, число тяжелых ионов, появляются антропотоксины. Вот этот комплекс изменившихся физичес­ких свойств воздуха наряду с химическим загрязнением и вы­зывает ухудшение самочувствия людей. Такому изменению свойств воздуха соответствует содержание углекислоты, равное ОД %, и поэтому данная концентрация считается предельно до­пустимой для воздуха закрытых помещений.

В последние годы было установлено, что для оценки санитар­ного состояния воздуха закрытых помещений этого показателя недостаточно, так как требуется определение содержания неко­торых токсичных химических веществ, выделяющихся в воздух из полимерных строительных материалов, широко приме­няемых для внутренней отделки помещений (фенол, аммиак, формальдегид и др.).

Азот и другие инертные газы. Азот по количественному со­держанию является наиболее существенной частью атмосфер­ного воздуха, составляя 78,1 % и разбавляя другие газы, в пер­вую очередь кислород. Азот физиологически индифферентен, не поддерживает процессы дыхания и горения, содержание его в атмосфере постоянное, одинаково его количество во вдыха­емом и выдыхаемом воздухе. В условиях повышенного атмос­ферного давления азот может оказать наркотическое действие, а также известна его роль в патогенезе кессонной болезни.

Известен круговорот азота в природе, осуществляемый с по­мощью определенных видов почвенной микрофлоры, растений и животных, а также электрических разрядов в атмосфере, в ре­зультате чего азот связывается биологическими объектами, а за­тем вновь поступает в атмосферу.

Под вентиляцией (от лат.ventilatio - проветривание) понимается замена воздуха в помещении. В необходимых случаях при этом проводится: кондиционирование воздуха (фильтрация, подогрев или охлаждение, увлажнение или осушение), ионизация и т.д. Вентиляция обеспечивает благоприятные для здоровья санитарно-гигиенические условия (температуру, влажность, скорость движения воздуха и чистоту воздуха) воздушной среды в помещении, благоприятные для здоровья и самочувствия человека, отвечающие требованиям санитарных норм, технологических процессов, строительных конструкций зданий и т.д.

Основное назначение вентиляции - удаление продуктов жизнедеятельности людей и подача свежего воздуха в помещение.

Вентиляция, может быть естественной и искусственной.

При естественной вентиляции смена воздуха происходит за счет удаленных масс теплового и холодного воздуха или за счет движения наружного воздуха.

Когда необходимые метеорологические условия и состав воздуха в помещениях не могут быть обеспечены вентиляцией с естественным побуждением, эти помещения должны быть оборудованы вентиляцией с механическим побуждением. Искусственная вентиляция воздуха делится на приточную, вытяжную и комбинированную (приточно-вытяжную). С помощью приточной вентиляции в помещения принудительно подается наружный воздух, который разбавляет загрязнения и в результате подпора вытесняет его. При вытяжной вентиляции загрязненный воздух по воздуховоду поступает наружу и вследствие небольшого разрежения свежий воздух поступает через вентиляционные отверстия. Комбинированная система вентиляции представляет собой сочетание приточной и вытяжной и является наиболее эффективной.

Приточная вентиляции применяется большей частью в жилых и общественных помещениях, вытяжная вентиляция - в помещениях, имеющих источники загрязнения воздуха (санитарно-бытовые, изоляторы, буфетные), а комбинированные - в наиболее изолированных помещениях.

Система искусственной вентиляции состоит из набора элементов, включающих воздухозаборные устройства, вентиляторы, фильтры, воздуховоды, воздухораспределители, воздуховыбрасывающие шахты.

Таблица 3.1 - Классификация систем вентиляции

Признак Виды
По способу создания давления и перемещения воздуха С естественным и искусственным (механическим) побуждением
По назначению Приточная и вытяжная
По способу организации воздухообмена Общеобменные, Местные, аварийные, противодымные
По месту действия Общая и местная

Оценка эффективности вентиляции может быть сделана на основании:

1) санитарного обследования вентиляционной системы и режима ее эксплуатации;

2) расчета фактического объема вентиляции и кратности воздухообмена по формулам или данным замеров;

3) объективного исследования воздушной среды и микроклимата вентилируемых помещений;

4) субъективных ощущений человека.

При гигиенической оценке воздушного комфорта имеет значение воздушный куб. Воздушный куб определяется площадью помещения и высотой.

Наиболее удобным критерием оценки химического состава воздуха является концентрация в нем углекислого газа; его предельно допустимая концентрация (ПДК) равна 0,1 % или 1 ‰.

Необходимый объем вентиляции - количество воздуха в м, которое надо подать в помещение на 1 человека в час, чтобы содержание СО 2 не превысило допустимого уровня (0,1 %).

Взрослый человек при легкой физической работе производит в течение 1 мин. 18 дыхательных движений с объемом каждого дыхания 0,5 л и, следовательно, в течение одного часа выдыхает 540 л воздуха (18*0,5*60=540 л). Так как в выдыхаемом воздухе содержится 4 % С0 2 , общее количество выдыхаемого СО 2 за 1 час составит 21,6 л.

Необходимый объем вентиляции рассчитывается по формуле:

L - объем вентиляции в м 3 /час;

k - количество литров углекислого газа, выдыхаемого одним человеком в час при спокойной работе (для взрослого - в среднем 22,6 л, для школьника примерно столько литров, сколько лет школьнику);

р - предельно допустимая концентрация углекислого газа, т.е. 1 ‰;

q - концентрация углекислого газа в атмосфере (0,4 ‰).

Для взрослого человека объем вентиляции в час равен, в среднем, 37,7 м 3 ; для первоклассника он равен 10-12 м 3 , для выпускника школы - 25-30 м 3 . Это тот объем воздуха, который нужен для нормального газообмена, хорошего самочувствия и высокой работоспособности в течение часа.

Необходимая кратность воздухообмена - сколько раз за 1 час должен полностью обновиться (смениться) воздух, чтобы на протяжении часа он соответствовал нормативам.

K - кратность воздухообмена, раз;

L - объем вентиляции в час, м 3 /час;

V - объем помещения, м 3 .

В жилых помещениях кратность воздухообмена должна быть не менее 2.

Чистота воздуха закрытых помещений оценивается не только по содержанию в нем СО 2 , но и пыли, микроорганизмов (микробное число, санитарно-показательные микроорганизмы), углеводородов и др.

> Углекислота

Ученые обнаружили, что избыток углекислого газа в помещении очень вреден для здоровья. Углекислота сегодня чуть ли не главное действующее лицо многих катастрофических сценариев, которыми нас пугают многие ученые. Ему приписывают вину за глобальное потепление и все связанные с этим грядущие катаклизмы.

Но, как выяснилось, данный газ уже давно делает свое "черное дело". И вовсе не в масштабе планеты, а в любой душной комнате. Не хватает кислорода, говорим мы в таком случае. Особенно если начинает болеть голова, краснеют глаза, резко снижается внимание, появляется чувство усталости. Однако, как показали последние исследования зарубежных ученых, причина вовсе не в недостатке кислорода. Виноват избыток углекислого газа, который каждый из нас выдыхает. Кстати, от 18 до 25 литров этого газа в час.

Чем же опасна углекислота? Индийские ученые пришли к совершенно неожиданным выводам. Даже в относительно низких концентрациях этот газ является токсичным и по своей "ядовитости" близок к двуокиси азота, что может привести к заболеванию сердечно-сосудистой системы, гипертонии, усталости и т.д.

Чистый воздух за городом содержит около 0,04 процента углекислого газа. Еще недавно в Европе и США считалось, что газ опасен для человека только в больших концентрациях. Однако в последнее время начали изучать, как он влияет на человека при концентрации выше чем 0,1 процента. Оказалось, если содержание превышает этот уровень, то, например, у многих учеников снижается внимание, ухудшается успеваемость, они пропускают уроки из-за болезней легких, бронхов, носоглотки и т.д. Особенно это касается детей, больных астмой. Поэтому требования к воздуху во многих странах очень высоки. В России подобные исследования источников загрязнения воздуха никогда не проводились. Однако комплексное обследование московских детей и подростков показало, среди обнаруженных болезней преобладают заболевания органов дыхания.

Очень важно поддерживать высокие показатели качества воздуха в спальне, где люди проводят треть своей жизни. Чтобы хорошо выспаться, гораздо важнее качественный воздух в спальне, чем продолжительность сна, а уровень углекислоты в спальнях и детских комнатах должен быть ниже 0,08 процента.

Финские ученые нашли способ решения проблемы. Ими создан прибор, который удаляет из воздуха помещений избыток углекислого газа. В итоге содержание газа не больше, чем за городом. Принцип основан на абсорбции (поглощении) углекислого газа специальным веществом. В России о существовании проблемы негативного влиянии повышенного уровня углекислоты в помещении знают пока единицы.

Ирина Меднис

19.03.2008 | Российская газета

Другие интересные статьи раздела:


Нормативы воздухообмена в жилых зданиях

Для оценки степени чистоты воздуха используются концентрация углекислого газа в воздухе, окисляемость воздуха, общее содержание микроорганизмов и содержание стрептококков и стафилококков (табл. 7.5).

Таблица 7.5.

3.4 Освещение. Ра­циональное освещение необходимо прежде всего для оптимальной функции зрительного анализатора. Свет обладает и психофизиологическим действием. Рациональное освещение положительно сказывается на функциональном состоянии коры большого мозга, улучшает функцию других анализаторов. В целом световой комфорт, улучшая функциональное состояние центральной нервной системы и повышая работоспособность глаза, приводит к повышению производительности и качества труда, отдаляет утомление, способствует уменьшению производственного травматизма. Изложенное относится как к естественному, так и к искусственному освещению. Но естественное освещение, помимо того, оказывает выраженное общебиологическое действие, является синхронизатором биологических ритмов, обладает тепловым и бактерицидным действием (см. главу III). Поэтому жилые, производственные и общественные здания должны быть обеспечены рациональным дневным освещением.

С другой стороны, с помощью искусственного освещения можно создать в любом месте помещения заданную и стабильную в течение дня освещенность. Роль искусственного освещения в настоящее время высока: вторые смены, ночной труд, подземные работы, вечерние домашние занятия, культурный досуг и др.

К основным показателям, характеризующим освещение, относятся: 1) спектральный состав света (от источника и отраженного), 2) освещенность, 3) яркость (источника света, отражающих поверхностей), 4) равномерность освещения.



Спектральный состав света. Наибольшая производительность труда и наименьшая утомляемость глаза бывает при освещении стандартным дневным светом. За стандарт дневного света в светотехнике принят спектр рассеянного света с голубого небосвода, т. е. поступающего в помещение, окна которого ориентированы на север. Наилучшее цветоразличение отмечается при дневном свете. Если размеры рассматриваемых деталей один миллиметр и более, то для зрительной работы примерно одинаково освещение источниками, генерирующими белый дневной свет и желтоватый.

Спектральный состав света важен и в психофизиологическом аспекте. Так, красный, оранжевый и желтый цвета по ассоциации с пламенем, солнцем вызывают ощущение теплоты. Красный цвет возбуждает, желтый - тонизирует, улучшает настроение и работоспособность. Голубой, синий и фио­летовый кажутся холодными. Так, окраска стен горячего цеха в синий цвет создает ощущение прохлады. Голубой цвет - успо­каивает, синий и фиолетовый - угнетают. Зеленый цвет - нейтральный - приятный по ассоциации с зеленой растительностью, он меньше других утомляет зрение. Окраска стен, машин, крышек парт в зеленые тона благоприятно сказывается на самочувствии, работоспособности и зрительной функции глаза.

Окраска стен и потолков в белый цвет издавна считается гигиенической, так как обеспечивает наилучшую освещенность помещения из-за высокого коэффициента отражения 0,8-0,85. Поверхности, окрашенные в другие цвета, имеют меньший коэффициент отражения: светло-желтый - 0,5-0,6, зеленый, серый - 0,3, темно-красный- 0,15, темно-синий - 0,1, черный -- 0,01. Но белый цвет (из-за ассоциации со снегом) вызывает ощущение холода, он как бы увеличивает размер помещения, де­лает его неуютным. Поэтому стены чаще окрашивают в светло-салатовый, светло-желтый и близкие к ним цвета.

Следующий показатель, характеризующий освещение,- освещенность. Освещенностью называют поверхностную плотность светового потока. Единицей освещенности является 1 люкс - освещенность поверх­ности 1 м 2 , на которую падает и равномерно распределяется световой поток в один люмен. Люмен - световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площади 0,53 мм 2 . Освещенность обратно пропорциональна квадрату расстояния между источ­ником света и освещаемой поверхностью. Поэтому, чтобы экономно создать высокую освещенность, приближают источник к освещаемой поверхности (местное освеще­ние). Освещенность определяют люксметром.

Гигиеническое нормирование освещенности сложно, так как она влияет на функцию центральной нервной системы и на функцию глаза. Эксперименты показали, что с увеличением освещенности до 600 лк значительно улучшается функциональное состояние центральной нервной системы; дальнейшее увеличение освещенности до 1200 лк в меньшей мере, но также улучшает ее функцию, освещенность выше 1200 лк почти не оказывает влияния. Таким образом, везде, где работают люди, желательна освещенность порядка 1200 лк, минимум 600 лк.

Освещенность влияет на зрительную функцию глаза при различной величине рассматриваемых предметов. Если рассматриваемые детали имеют размер менее 0,1 мм, при освещении лампами накаливания нужна освещенность 400-1500 лк", 0,1-0,3 мм -300- 1000 лк, 0,3-1 мм -200-500 лк, 1 - 10 мм - 100-150 лк, более 10 мм – 50- 100 лк. При этих нор­мативах освещенность достаточна для функции зрения, но в ряде случаев она ме­нее 600 лк, т. е. недостаточна с психофизиологической точки зрения. Поэтому при освещении люминесцентными лампами (поскольку они экономичней) все перечисленные нормы увеличиваются в 2 раза и тогда освещенность приближается к оптимальной и в психофизиологическом отношении.

При письме и чтении (школы, библиотеки, аудитории) освещенность на рабочем месте должна быть не менее 300 (150) лк, в жилых комнатах 100 (50), кухнях 100 (30).

Для характеристики освещения большое значение имеет яркость . Яркость - сила света, излучаемого с единицы поверхности. Фактически при рассматривании предмета мы видим не освещенность, а яркость. Единица яркости - кандела на квадратный метр (кд/м 2) - яркость равномерно светящей плоской поверхности, излучающей в перпендикулярном направлении с каждого квадратного метра силу света, равную одной канделе. Яркость определяют яркомером.

При рациональном освещении в поле зрения человека не должно быть ярких источников света или отражающих поверхностей. Если рассматриваемая поверхность чрезмерно яркая, то это негативно отразится на работе глаза: появляется ощущение зрительного дискомфорта (с 2000 кд/м 2), падает производительность зрительной работы (с 5000 кд/м 2), вызывает слепимость (с 32 000 кд/м 2) и даже болевое ощущение (с 160 000 кд/ м 2). Оптимальная яркость рабочих поверхностей - несколько сот кд/ м 2 . Допустимая яркость источников освещения, находящихся в поле зрения человека, желательна не более 1000-2000 кд/ м 2 , а яркость источников, редко попадающих в поле зрения человека, не более 3000-5000 кд/ м 2

Освещение должно быть равномерным и не создавать теней . Если в поле зрения человека часто меняется яркость, то наступает утомление мышц глаза, принимающих участие в адаптации (сужение и расширение зрачка) и синхронно с ней происходящей аккомодации (изменение кривизны хрусталика). Равномерной должна быть освещенность по помещению и на рабочем месте. На расстоянии 5 м пола помещения отношение наибольшей освещенности к наименьшей не должно превышать 3:1, на расстоянии 0,75 м рабочего места - не больше 2:1. Яркость двух соседних поверхностей (например, тетрадь - парта, школьная доска - стена, рана - операционное белье) не должна отличаться больше, чем 2:1-3:1.

Освещенность, создаваемая общим освещением, должна быть не менее 10% величины, нормируемой при комбинированном, но не менее 50 лк при лампах накаливания и 150 лк при люминесцентных лампах.

Естественное освещение. Солнце создает освещенность вне помещений обычно порядка де­сятков тысяч люкс. Естественное освещение помещений зависит от светового климата местности, ориентации окон зданий, наличия затеняющих объектов (здания, деревья), устройства и размеров окон, ширины межоконных простенков, отражающей способности стен, потолка, пола, чистоты стекол и др.

Для хорошего дневного освещения площадь окон должна соответствовать площади помещений. Поэтому распространенным способом оценки естественного освещения помещений является геометрический, при котором вычисляют так называемый световой коэффициент , т. е. отношение застекленной площади окон к площади пола. Чем больше величина светового коэффициента, тем лучше освещение. Для жилых помещений световой коэффициент должен быть не меньше 1/8-1/10, для классов и больничных палат 1/5- 1/6, для операционных 1/4-1/5, для подсобных помещений 1/10-1/12.

Оценка естественного освещения только по световому коэффициенту может оказаться неточной, так как на освещенность оказывает влияние наклон световых лучей к освещаемой поверхности (угол падения лучей). В том случае если из-за противостоящего здания или деревьев в комнату попадает не прямой солнечный свет, а только отраженные лучи, их спектр лишен коротковолновой, самой эффективной в биологическом отношении части – ультрафиолетовых лучей. Угол, в пределах которого в определенную точку помещения попадают прямые лучи с небосвода, носит название угла отверстия.

Угол падения образован двумя линиями, одна из которых идет от верхнего края окна к точке, где определяются условия освещения, вторая – линия на горизонтальной плоскости, соединяющая точку измерения со стеной, на которой расположено окно.

Угол отверстия образуется двумя линиями, идущими от рабочего места: одна – к верхнему краю окна, другая – к самой верхней точке противостоящего здания или какого-либо ограждения (забор, деревья и т.п.). Угол падения должен быть не менее 27º, а угол отверстия – не менее 5 º. Освещенность у внутренней стены помещения зависит также от глубины помещения, в связи с чем для оценки условий дневного освещения определяют также коэффициент заглубления - отношение расстояния от верхнего края окна до пола к глубине комнаты. Коэффициент заглубления должен быть не менее 1:2.

Ни один из геометрических показателей не отражает полноту влияния на естественное освещение всех факторов. Влияние всех факторов учитывается светоте­ническми показателем- коэффициентом естественной освещенности (КЕО). КЕО = Е п: Е 0 *100%, где Е п - освещенность (в лк) точки, находящейся внутри помещения в 1 м от стены, противоположной окну, : Е 0 - освещенность (в лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом (сплошная облачность) всего небосвода. Таким образом, КЕО определяется как отношение освещенности внутри помещения к одновременной освещенности вне помещения, выраженное в процентах.

Для жилых помещений КЕО должен быть не менее 0,5%, для больничных палат- не менее 1%, для школьных классов- не менее 1,5%, для операционных - не менее 2,5%.

Искусственное освещение должно отвечать следующим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета: не нагревать; по спектральному составу приближаться к дневному.

Существует две системы искусственного освещения: общее и комбинированное , когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах..

Основными источниками искусственного освещения являются лампы накаливания и люминесцентные. Лампа накаливания- - удобный и без­отказный источник света. Одними из ее недостатков являются небольшая светоотдача, преобладание в спектре желтых и красных лучей и меньшее содержание синего и фиолетового. Хотя в психофизиологическом отношении такой спектральный состав делает излучение приятным, теплым. В отношении зрительной работы свет лампы накаливания уступает дневному лишь при необходимости рассматривания очень мелких деталей. Он непригоден в тех случаях, когда требуется хорошее цветоразличение. Поскольку поверхность нити накала ничтожно мала, я­кость ламп накаливания значительно превышает ту, которая слепит . Для борьбы с яркостью применяют защищающую от ослепляющего действия прямых лучей света осветительную арматуру и подвешивают светильники вне поля зрения людей.

Различают осветительную арматуру прямого света, отраженного, полуотраженного и рассеянного . Арматура прямого света направляет свыше 90% света лампы на освещаемое место, обеспечивая его высокую освещенность. В то же время создается значительный контраст между освещенными и неосвещенными участками помещения. Образуются резкие тени, и не исключено ослепляющее действие. Эта арматура применяется для освещения вспомогательных помещений и санитарных узлов. Арматура отраженного света характеризуется тем, что лучи от лампы направляются на потолок и на верхнюю часть стен. Отсюда они отражаются и равномерно, без образования теней, распределяются по помещению, освещая его мягким рассеянным светом. Этот вид арматуры создает наиболее приемлемое с ги­гиенической точки зрения освещение, но оно не экономично, так как при этом теряется свыше 50% света. Поэтому для освещения жилищ, классов, палат часто применяют более экономную арматуру полуотраженного и рассеянного света. При этом часть лучей освещает помещение, пройдя через молочное или матовое стекло, а часть - после отражения от потолка и стен. Подобная арматура создает удовлетворительные условия освещения, она не слепит глаза и при ней не образуется резких теней.

Люминесцентные лампы отвечают большинству требований, приведенных выше. Люминесцентная лампа представляет собой трубку из обычного стекла, внутренняя поверхность которой покрыта люминофором. Трубка заполнена парами ртути, с обеих концов ее впаяны электроды. При включении лампы в электрическую сеть между электродами возникает электрический ток («газовый разряд»), генерирующий ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей начинает светиться люминофор. Путем подбора люминофоров изготавливают люминесцентные лампы с различным спектром видимого излучения. Наиболее часто применяют лампы дневного света (ЛД), лампы белого света (ЛБ) и тепло-белого света (ЛТБ). Спектр излучения лампы ЛД приближается к спектру естественного освещения помещений северной ориентации. При нем глаза утомляются наименьше даже при рассматривании деталей небольшого размера. Лампа ЛД незаменима в помещениях, где требуется правильное цветоразличение. Недостатком лампы является то, что кожа лица людей выглядит при этом свете, богатом голубыми лучами, нездоровой, цианотичной, из-за чего эти светильники не применяют в больницах, школьных классах и ряде подобных помещений. По сравнению с лампами ЛД спектр ламп ЛБ богаче желтыми лучами. При освеще­нии этими лампами сохраняется высокая работоспособность глаза и лучше выглядит цвет кожи лица. Поэтому лампы ЛБ применяют в школах, аудиториях, жилищах, палатах больниц и т. п. Спектр ламп ЛТБ богаче желтыми и розовыми лучами, что несколько снижает работоспособность глаза, но значительно оживляет цвет кожи лица. Эти лампы применяют для освещения вокзалов, вестибюлей ки­нотеатров, помещений метро и т. п.

Разнообразие спектра является одним из гигиенических п реимуществ этих ламп. Светоотдача люминесцентных ламп в 3-4 раза больше ламп накаливания (с 1 Вт 30-80 лм), поэтому они экономичней . Яркость люминесцентных ламп 4000- 8000 кд/м 2 , т. е. выше допустимой. Поэтому и их применяют с защитной арматурой. При многочисленных сравнительных испытаниях с лампами накаливания на производстве, в школах, аудиториях объективные показатели, характеризующие состояние нервной системы, утомление глаза, работоспособность, почти всегда свидетельствовали о гигиеническом преимуществе люминесцентных ламп. Однако для этого требуется квалифицированное применение их. Необходим правильный выбор ламп по спектру в зависимости от назначения помещения. Так как чувствительность зрения к свету люминесцентных ламп, так же, как и к дневному свету, ниже, чем к свету ламп накаливания, нормы освещенности для них устанавливают в 2-3 раза выше, чем для ламп накаливания (табл. 7.6.).

Если при люминесцентных лампах освещенность ниже 75-150 лк, то наблюдается «сумеречный эффект», т.е. освещенность воспринимается как недостаточная даже при рассматривании крупных деталей. Поэтому при люминесцентных лампах освещенность должна быть не ниже 75-150 лк.

Современный человек проводит в помещениях жилых и об­щественных зданий в зависимости от образа жизни и условий трудовой деятельности от 52 до 85 % суточного времени. По­этому внутренняя среда помещений даже при относительно невысоких концентрациях большого количества токсических веществ небезразлична для человека и может влиять на его са­мочувствие, работоспособность и здоровье.

Кроме этого, в зданиях токсичные вещества действуют не изолированно, а в сочетании с такими факторами, как тем­пература и влажность воздуха, ионный режим, радиоактивный фон и др.

Химическое загрязнение воздуха помещений. Основными источниками загрязнения воздуха закрытых помещений явля­ются атмосферный воздух, строительные и отделочные поли­мерные материалы, жизнедеятельность организма самого чело­века и бытовая деятельность.

Качество воздушной среды закрытых помещений по хими­ческому составу в значительной степени зависит от качества ок­ружающего атмосферного воздуха, так как здания имеют пос­тоянный обмен и не защищают жителей от загрязненного атмосферного воздуха. Миграция пыли и токсичных веществ, содержащихся в атмосфере, обусловлена их естественной и ис­кусственной вентиляцией, и поэтому вещества, присутствую­щие в наружном воздухе, обнаруживаются и в помещениях, причем даже в тех, в которые подается кондиционированный воздух.

Степень проникновения различных химических загрязните­лей атмосферного воздуха в помещения различна: концентра­ции диоксида серы, озона и свинца обычно ниже, чем снаружи; концентрации оксидов азота, углерода и пыли близки внутри и снаружи; концентрации же ацетальдегида, ацетона, бензола, этилового спирта, толуола, этилбензола, ксилола и других органических соединений в воздухе помещений превышают их концентрации в атмосфере более чем в 10 раз, что, видимо, связано с внутренними источниками загрязнений.

Одним из самых мощных внутренних источников загрязне­ния воздушной среды закрытых помещений являются полимер­ные строительные и отделочные материалы. Номенклатура по­лимерных материалов насчитывает около 100 наименований. Их используют для покрытия полов, отделки стен, теплоизоляции наружных кровли и стен, гидроизоляции, герметизации и об­лицовки панелей, изготовления оконных блоков и дверей и т.д.

Масштабы и целесообразность применения полимеров в стро­ительстве жилых и общественных зданий определяются нали­чием ряда положительных свойств, облегчающих их использо­вание, улучшающих качество строительства и удешевляющих его. Однако установлено, что все полимерные материалы выде­ляют разнообразные токсичные для организма человека вещест­ва: поливинилхлоридные материалы выделяют в воздушную среду бензол, толуол, этилбензол, циклогексан, ксилол, бути­ловый спирт; древесно-стружечные плиты на фенолформальде­гидной и мочевино-формальдегидной основах - фенол, фор­мальдегид и аммиак; стеклопластики - ацетон, метакриловую кислоту, толуол, бутанол, формальдегид, фенол, стирол; лако­красочные покрытия и кленсодержащие вещества - толуол, бутилметакрилат, бутилацетат, ксилол, стирол, ацетон, бутанол, этиленгликоль; ковровые изделия из химических волокон - стирол, изофенол, сернистый ангидрид.

Интенсивность выделения летучих веществ зависит от усло­вий эксплуатации полимерных материалов - температуры, влажности, кратности воздухообмена, времени эксплуатации. Даже в небольших концентрациях эти химические вещества могут стать причиной сенсибилизации организма. Установле­но, что в помещениях, насыщенных полимерными материала­ми, наблюдается большая подверженность населения аллерги­ческим и простудным заболеваниям, гипертонии, неврастении, вегетососудистой дистонии. Наиболее чувствительными явля­ются организмы детей и больных людей.

Следующим внутренним источником загрязнения воздуш­ной среды помещений являются продукты жизнедеятельности организма человека - антропотоксины. Установлено, что чело­век в процессе своей жизнедеятельности вьщеляет около 400 хи­мических соединений, названных антропотоксинами, причем пятая часть из них относится к числу высокоопасных веществ (2-й класс опасности), это диметиламин, сероводород, диоксид азота, окись этилена, бензол.

Концентрации диметиламина и сероводорода превышали ПДК для атмосферного воздуха; превышали ПДК или находи­лись на их уровне концентрации диоксида и оксида углерода, аммиака.

К 3-му классу - малоопасным веществам - относятся ук­сусная кислота, фенол, метилстирол, толуол, метанол, винил­ацетат.

Остальные вещества составляли десятые и меньшие доли ПДК, но взятые вместе они свидетельствовали о неблагополу­чии воздушной среды, поскольку даже 2-4-часовое пребыва­ние в этих условиях отрицательно сказывалось на состоянии умственной работоспособности испытуемых. Воздушная среда невентилируемых помещений ухудшается пропорционально числу людей и времени их пребывания в помещении.

Источником загрязнения воздушной среды являются и бы­товые процессы. Газификация квартир повышает уровень их благоустройства, но результаты многочисленных исследова­ний показали, что открытое сжигание газа ухудшает состояние воздушной среды газифицированных жилищ в плане загрязне­ния разнообразными химическими веществами и ухудшения микроклимата помещений.

Было установлено, что при часовом горении газа в воздухе помещений концентрации веществ составляли (мг/м3): оксид углерода - 15; формальдегид - 0,037; оксид азота - 0,62; ди­оксид углерода - 0,44; бензол - 0,07, причем высокие кон­центрации этих веществ обнаруживались не только на кухне, но и в жилых помещениях.

Температура воздуха в помещении во время горения газа по­вышалась на 3-6 "С, влажность - на 10-15 %. После выклю­чения газа концентрации химических веществ снижались, но к исходным величинам иногда не возвращались и через 1,5-2,5 ч.

Источником бытового загрязнения воздуха является и куре­ние. При курении воздух загрязняется, по данным хроматомасс-спектрометрического анализа, 186 химическими соедине­ниями, в числе которых оксиды углерода и азота, серы, стирол, ксилол, лимонен, бензол, этилбензол, никотин, формальдегид, сероводород, фенол, акролеин, ацетилен, бенз(а)пирен, причем в достаточно высоких концентрациях.

У пассивных курильщиков (некурящих людей, находящихся рядом с курящими), компоненты табачного дыма вызывали раздражение слизистых оболочек глаз, увеличение содержания в крови карбоксигемоглобина, учащение пульса, повышение уровней артериального давления. С табакокурением напрямую связывают развитие рака бронхолегочной системы. Подсчита­но, что 40 выкуренных сигарет в день поставляют в легкие око­ло 150 мг бенз(а)пирена дополнительно к бенз(а)пирену атмос­ферного воздуха.

Микробное загрязнение воздуха помещений. В воздухе обна­руживаются различные микроорганизмы, из которых наиболь­ший гигиенический интерес представляют бактерии и вирусы. Атмосферный воздух не является благоприятной средой для жизнедеятельности микроорганизмов, и поэтому, попав в нее, они сравнительно быстро погибают вследствие высыхания, от­сутствия питательного материала и бактерицидного действия ультрафиолетового излучения Солнца. Бактерии, содержащие­ся в атмосфере, являются сапрофитами, которые отличаются большей устойчивостью в окружающей среде, чем патогенные микробы.

В воздухе же закрытых, плохо проветриваемых и перенаселен­ных людьми помещений содержится значительное количество микробов, среди которых могут быть и патогенные (возбудите­ли вирусных заболеваний - гриппа, кори, ветряной спы и др., бактериальных - коклюша, дифтерии, скарлатины, туберкуле­за и других инфекций, которые могут иметь даже массовый, эпидемический характер распространения).

П.Н, Лащенков установил, что существуют два пути переда­чи инфекции через воздух, воздушно-капельный и воздушно­-пылевой.

При воздушно-капельном пути передачи заражение проис­ходит в результате вдыхания мельчайших капелек слюны, мок­роты, слизи, выделяемых больным или носителем микро­бов во время кашля, чиханья и даже разговора. Известно, что мельчайшие капельки могут разбрызгиваться на расстояние от I до 1,5 м, перемещаясь дальше с воздушными течениями на несколько метров, сохраняясь во взвешенном состоянии до 1 ч. При этом пути передачи в воздух, а затем и в организм воспри­имчивого человека поступают вирулентные возбудители. К то­му же они лучше защищены от высыхания, легко и быстро пос­тупая в организм людей через дыхательные пути. Все это делает воздушно-капельный путь передачи инфекций более опасным в эпидемиологическом отношении. Действительно, все эпиде­мические инфекции распространяются этим путем.

При воздушно-пылевом пути передачи инфекции заражение происходит через взвешенную в воздухе пыль, содержащую па­тогенные микроорганизмы, вирулентность которых ослаблена за счет высыхания инфицированных капелек выделений боль­ного. Пылевые частицы с осевшими на них микробами могут держаться в виде бактериального аэрозоля от нескольких минут до 2-4 ч. Между содержанием в воздухе помещений пыли и ко­личеством микробов существует прямая зависимость: чем боль­ше пыли, тем обильнее микрофлора. Поэтому борьба с пылью в закрытых помещениях одновременно является и борьбой с бактериальным загрязнением воздуха.

Мерами предупреждения передачи инфекций воздушным путем являются элементарные правила поведения при кашле и чиханье (закрывать нос и рот носовым платком, повернув­шись в сторону от рядом находящихся людей, очень эффектив­но ношение марлевых масок всеми людьми в период эпиде­мий); соблюдение чистоты в помещениях путем регулярной влажной их уборки, соблюдение установленных норм площади и кубатуры жилых и общественных зданий; санация воздуха и помещений ЛПУ с помощью дезинфектантов и бактерицид­ных ламп.