Электрощиток

Газоразрядные лампы низкого и высокого давления. Особенности и применение газоразрядных ламп

Газоразрядные лампы низкого и высокого давления. Особенности и применение газоразрядных ламп

Современные виды ламп, которые применяются для освещения жилых, офисных, хозяйственно-бытовых помещений на сегодняшний день впечатляют своим разнообразием. Отличаются они друг от друга не только мощностью освещения, но и принципом действия, как следствие – разнообразием оттенков света, долговечностью и потребляемым количеством электроэнергии.

Соответственно, бывают виды ламп освещения, которые потребляют небольшое количество электроэнергии и при этом излучают яркое освещение и минимум тепла – эти лампы классифицируются, как энергосберегающие лампы, виды их по конструкции также разнообразны.

Нового поколения виды электрических ламп бывают таковыми, которые являются устойчивыми к перепадам напряжения в сети и имеют большее количество часов работы и циклов включения/выключения, что в сочетании с низким энергопотреблением значительно отличает их от традиционных ламп накаливания.

Однако, современные лампы освещения не ограничиваются этим, они имеют не только показатели светоотдачи, потребления электроэнергии и количество часов работы, существует и множество и других нюансов, как частота мерцания, экологичность, наличие/отсутствие встроенных выпрямителей тока, и многое другое.

Посему рассмотрим, какие бывают виды ламп на сегодняшний день, в первую очередь – основные положения, затем — рассмотрим принцип действия электрических ламп освещения из такого существующего их перечня:

  • лампы накаливания;
  • газоразрядные лампы;
  • светодиодные лампы.

Лампы накаливания являются наиболее распространенными на территории стран СНГ, и, пожалуй, самым древним видом ламп. Они не имеют ни каких особенных преимуществ, выделяют много тепла, потребляют много электричества, не имеют защиты от перепадов напряжения.

Единственное преимущество – теплое, подобное натуральному, солнечное освещение, которое, по мнению многих, не сравнится с явно искусственным освещением других видов ламп. Кроме того, они являются экологически чистыми в отличие от следующего вида ламп.

Газоразрядные лампы , а также их разновидность — люминесцентные лампы хороши тем, что имеют множество разновидностей, каждая из которых имеет определенное лучшее качество.

Ранее на территории СНГ были распространены классические, ртутные лампы дневного освещения, но на сегодня они в большей степени ушли в небытие и на их место пришли новые их разновидности.

Виды современных газоразрядных ламп применяются не только как обыкновенные источники электрического освещения в быту; они имеют декоративные разновидности, приемлемые для подсветки потолков, ниш и т. д.

Светодиодные лампы являются ничем иным, как современной альтернативой предыдущим двум видам ламп. Эти лампы – нового поколения энергосберегающие, экологичные и долговечные (стойкие к перепадам напряжения) осветительные электрические элементы.

Они имеют явное преимущество перед остальными видами ламп, но единственный недостаток – стоимость, так как технология их производства на сегодня новая и довольно дорогостоящая. Но их долговечность и экономичность, по мнению производителей, окупит разовые затраты на их приобретение.

Виды и принцип работы современных ламп накаливания

Принцип работы лампы накаливания основан на нагреве металлической спирали, находящейся в вакууме (лампы мощностью до 25Вт) или газе аргон или аргон+азот (средней мощности и высокомощные лампы) в герметично запаянной стеклянной колбе.

При прохождении через спираль, ток разогревает ее до температуры, равной впредь до 3000 градусов по Цельсию, вместе с этим происходит и излучение света, инфракрасных лучей.

Сама спираль выполнена из особо прочного и весьма тугоплавкого металла – вольфрама, а степень яркости освещения прямо пропорционально зависит от температуры нагрева; кроме того, газовая среда, в которой находится спираль, может содержать в себе частицы галогенов – соединений 17-ой гр. Таб. Менделеева (F, Cl, Br, I).

Современные лампы накаливания производятся из стекла с металлическим плафоном, имеющим резьбу, по средствам которой происходит фиксация в патроне, но имеются разновидности с контактно-зажимными и штыревыми типами соединений.

Виды ламп накаливания могут иметь четыре модификации, четыре условных обозначения, указывающих на тип спирали и окружающей ее среды в лампе накаливания: В (вакуумная), Б (биспиральная с аргоновым напылением), БО (биспиральная с аргоновым наполнением в опаловой колбе), Г (моноспиральная с аргоновым напылением).

Отдельным видом наиболее современных ламп накаливания являются галогенные лампы накаливания, отличие которых от вышеописанных обусловлено содержанием галогенных частиц в газовой среде лампы накаливания (частиц йода, хлора, брома), которые вступают в реакцию с испарившемся металлом с поверхности спирали.

После этого процесса металл возвращается на поверхность спирали по средствам температурного разложения получившегося соединения. Таким образом, они имеют больший КПД, срок годности и другие характеристики.

Что касается бытового назначения ламп накаливания, то они являются лампы общего назначения и обозначаются аббревиатурой ЛОН.

Виды и принцип работы современных газоразрядных ламп

Принцип работы газоразрядных ламп состоит в том, что видимое излучение света происходит вследствие возникновения разряда электричества в герметичной среде газа (неон, аргон, криптон, ксенон) или пара металлов (натрий, ртуть).

Таким образом, среда газа/пара металла – это и есть проводник тока, который от вольфрамового электрода с большим потенциалом (фазы, «+») проводит его к вольфрамовому электроду с меньшим потенциалом (нуля, «-»), излучая минимум тепла при высокой степени светоотдачи.

При этом в составе среды газа/пара могут применяться и галогены (фтор/F, хлор/Cl, бром/Br, йод/I), которые улучшают светоотдачу и остальные показатели газоразрядных ламп.

Существует также и газоразрядные люминесцентные лампы – лампы, в которых в результате разряда в парах ртути образуется невидимое для человеческого глаза ультрафиолетовое излучение (тепловое излучение), которое преобразуется в видимый свет при помощи находящегося на внутренних стенках колбы напыления люминофора (соединений галофосфата).

подразделяются на лампы низкого и высокого давления – по давлению внутри колбы.

Лампы высокого давления имеют в качестве основного преимущества высшую степень светоотдачи, и подразделяются в свою очередь по типу наполнителя на:

  • ртутные;
  • натриево-ртутные;
  • иодидо-металло-ртутные;
  • инертно-газовые.

Ртутные газоразрядные лампы высокого давления имеют напыление люминофора, является Люминесцентной лампой высокого давления и обозначается аббревиатурой ДРЛ.

Натриево-ртутные газоразрядные лампы высокого давления именуются также как просто натриевые и обозначаются аббревиатурой ДНаТ.

Иодидо-металло-ртутные газоразрядные лампы, а точнее лампы высокого давления с наполнителем — иодидами редкоземельных металлов с вмещением ртутных паров, именуются как металлогалогенные лампы и носят аббревиатуру ДРИ.

Инертно-газовые газоразрядные лампы высокого давления являются сугубо газовыми лампами, в которых применяются аргон, ксенон, неон, криптон или же их смеси и носят названия соответственно содержания газа.

Лампы низкого давления имеют преимущества только при освещении помещений, не нуждающихся в высокой мощности осветительных приборов; чаще всего – это декоративного освещения источники света, которые в зависимости от наполнителя бывают такие:

  • ртутные с инертным газом;
  • натриевые.

Лампы низкого давления с наполнителем паров ртути с примесью разновидностей инертного газа, именуемые как обыкновенные люминесцентные лампы (ЛЛ) и содержат еще слой люминесцена (см. принцип работы газоразрядных ламп).

Лампы низкого давления с наполнителем паров натрия – не являются таковыми, как предыдущие из-за совсем иного принципа действия, обозначаются аббревиатурой ДнаС.

Прочитав вышеописанные виды и принцип работы, Вы уже догадались, что по источнику света эти лампы подразделяются на газоразрядные и люминесцентные, а что касается низкого давления таких ламп, он на сегодняшний день их производят в качестве энергосберегающих.

Виды и принцип работы современных светодиодных ламп

Принцип работы светодиодных ламп состоит в излучении света от находящихся в этих лампах одиночных светодиодов или групп светодиодов, связанных специальной микросхемой, вмещающей в себе преобразователь сетевого тока в рабочий ток, на котором работают данные элементы.

Сам же светодиод представляет собой полупроводниковый аналоговый элемент, ранее использовавшийся для индикации в микроэлектронике. Этот элемент семейства диодов перерабатывает электрический ток в свет по средствам прохождения его (тока) через полупроводниковый кристалл. Кроме того, он имеет свойство пропускать ток только в одном направлении.

Если подробнее о принципе действия светодиода лампы, то он состоит из анода и катода, которые расположены по противоположным сторонам светоизлучающего кристалла, который легирован с этих сторон примесями: с одной – акцепторными, со второй — донорскими. В свою очередь кристалл находится на подложке из различного материала: кремния, силикона или находится в стеклянной оболочке.

При прохождении электрического тока от источника с большим потенциалом (анода, «+»), он движется через кристалл в направлении электрода с меньшим потенциалом (катод, «-»). Эту область перехода тока называют p-n переходом, в котором, собственно и возникает свечение при рекомбинации электронов и дырок в его области.

Виды светодиодных ламп как таковые, различные по конструкции, по составу внутренней среды и остальным техническим параметрам, присущим лампам накаливания и газоразрядным лампам, не существуют.

Имеются различия по форме плафонов (стандарты соответствуют остальным лампам), цветовой отдаче, и по рабочему питанию, что мы рассмотрим подробнее. Касаемо последнего, светодиодные лампы различают:

  • питание 4В;
  • питание 12В;
  • питание 220В.

Светодиодные лампы с питанием 4В применяются для слабомощных источников освещения, часто применяются в декоративных светильниках — «свечках». Соответственно, применяются как вспомогательное локальное, часто-густо декоративное освещение.

Светодиодные лампы 12В являются заменой современных ламп накаливания, также и галогенных ламп, а также разновидностей газоразрядных/люминесцентных ламп. Они имеют достойную мощность освещения при невысокой теплоотдачи, что делает их не только хорошими источниками общего, но и мебельного встроенного освещения.

Светодиодные лампы 220В – используются для высокомощного освещения, входное питание 220В преобразуется в меньшее по средствам встроенного трансформатора и питает светоизлучающие элементы (светодиоды). Единственный вид светодиодных ламп, которые не требуют отдельного подключения трансформатора.

Люминесцентные лампы - это газоразрядные лампы низкого давления, возникающее в которых в результате газового разряда невидимое для человеческого глаза ультрафиолетовое излучение преобразуется люминофорным покрытием в видимый свет.

Люминесцентные лампы представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Под действием электрического разряда пары ртути излучают ультрафиолетовые лучи, которые, в свою очередь, заставляют нанесенный на стенки трубки люминофор излучать видимый свет.

Люминесцентные лампы обеспечивают мягкий, равномерный свет, но распределением света в пространстве трудно управлять из-за большой поверхности излучения. По форме различаются линейные, кольцевые, U-образные, а также компактные люминесцентные лампы. Диаметр трубки часто указывается в восьмых частях дюйма (например, T5 = 5/8"" = 15,87 мм). В каталогах ламп диаметр в основном указывается в миллиметрах, например, 16 мм для ламп T5. Большинство ламп имеет международный стандарт. Промышленность выпускает около 100 различных типоразмеров люминесцентных ламп общего назначения. Наиболее распространены лампы мощностью 15, 20,30 Вт на напряжение 127 В и 40,80,125 Вт на напряжение 220 В. Средняя продолжительность горения ламп составляет 10 000 ч.

Физические характеристики люминесцентных ламп зависят от температуры окружающей среды. Это обусловлено характерным температурным режимом давления паров ртути в лампе. При низких температурах давление низкое, из-за этого существуют слишком малое количество атомов, которые могут участвовать в процессе излучения. При слишком высокой температуре высокое давление паров ведет к всевозрастающему самопоглощению произведенного ультрафиолетового излучения. При температуре стенки колбы ок. 40°C лампы достигают максимального напряжения индуктивной составляющей искрового разряда и таким образом самой высокой световой отдачи.

Достоинства люминесцентных ламп:

1. Высокая световая отдача, достигающая 75 лм/Вт

2. Большой срок службы, доходящий у стандартных ламп до 10000 ч.

3. Возможность иметь источники света различного спектрального состава при лучшей для большинства типов цветопередаче, чем у ламп накаливания

4. Относительно малая (хотя и создающая ослепленность) яркость, что в ряде случаев является достоинством

Основные недостатки люминесцентных ламп:

1. Ограниченная единичная мощность и большие размеры при данной мощности

2. Относительная сложность включения

3. Невозможность питания ламп постоянным током

4. Зависимость характеристик от температуры окружающей среды. Для обычных люминисцентных ламп оптимальная температура окружающего воздуха 18-25 С. При отклонении температуры от оптимальной световой поток и световая отдача снижаются. При температуре ниже +10 С зажигание не гарантируется.

5. Периодические пульсации их светового потока с частотой, равной удвоенной частоте электрического тока. Человеческий глаз не в состоянии заметить эти мелькания света благодаря зрительной инерции, но если частота движения детали совпадает с частотой импульсов света, деталь может показаться неподвижной или медленно вращающейся в противоположную сторону из-за стробоскопического эффекта. Поэтому в производственных помещениях люминесцентные лампы необходимо включать в разные фазы трехфазного тока (пульсация светового потока будет в разные полупериоды).

В обозначениях маркировки люминесцентных ламп применяют следующие буквы: Л - люминесцентная , Д - дневного, Б - белого, ХБ - холодно-белого, ТБ - тепло-белого цвета, Ц - улучшенной светопередачи, А - амальгамные.

Если "закрутить" трубку люминесцентной лампы в спираль, то получают КЛЛ – компактную люминесцентную лампу. По своим параметрам КЛЛ приближаются к линейным люминесцентным лампам (световая отдача до 75 Лм/Вт). Они прежде всего предназначены для замены ламп накаливания в самых разнообразных применениях.

Маркировка: Д - дуговая Р - ртутная Л - лампа В - включается без ПРА

Дуговые ртутные люминесцентные лампы (ДРЛ)

Люминесцентные ртутно-кварцевые лампы (ДРЛ), состоят из стеклянной колбы, покрытой изнутри люминофором, и кварцевой трубки, размещенной в колбе, которая заполнена парами ртути под высоким давлением. Для поддержания стабильности свойств люминофора стеклянная колба заполнена углекислым газом.

Под влиянием ультрафиолетового излучения, возникающего в ртутно-кварцевой трубке, светится люминофор, придавая свету определенный синеватый оттенок, искажая истинные цвета. Для устранения этого недостатка в состав, люминофора вводятся специальные компоненты, которые частично исправляют цветность; эти лампы получили название ламп ДРЛ с исправленной цветностью. Срок службы ламп – 7500 ч.

Промышленность выпускает лампы мощностью 80,125,250,400,700,1000 и 2000 Вт со световым потоком от 3200 до 50 000 лм.

Достоинства ламп ДРЛ:

1. Высокая световая отдача (до 55 лм/Вт)

2. Большой срок службы (10000 ч)

3. Компактность

4. Некритичность к условиям окружающей среды (кроме очень низких температур)

Недостатки ламп ДРЛ:

1. Преобладание в спектре лучей сине-зеленой части, ведущее к неудовлетворительной цветопередаче, что исключает применение ламп в случаях, когда объектами различения являются лица людей или окрашенные поверхности

2. Возможность работы только на переменном токе

3. Необходимость включения через балластный дросель

4. Длительность разгорания при включении (примерно 7 минут) и начало повторного зажигания после даже очень кратковременного перерыва в питания лампы лишь после остывания (примерно 10 мин)

5. Пульсации светового потока, большие чем у люминисццентных ламп

6. Значительное уменьшение светового потока к концу службы

Дуговые металлогалогенные лампы (ДРИ, МГЛ, HMI, HTI)

Маркировка: Д – дуговая, Р – ртутная, И - йодидная.

Это ртутные лампы высокого давления с добавками йодидов металлов или йодидов редкоземельных элементов (диспрозий (Dy), гольмий (Ho) и тулий (Tm) а также комплексные соединения с цезием (Cs) и галогениды олова (Sn). Эти соединения распадаются в центре разрядной дуги, и пары металла могут стимулировать эмиссию света, чьи интенсивность и спектральное распределение зависят от давления пара металлогалогенов.

Внешне металогенные лампы отличаются от ламп ДРЛ отсутствием люминофора на колбе. Они характеризуются высокой световой отдачей (до 100 лм/Вт) и значительно лучшим спектральным составом света, но срок их службы существенно меньше, чем у ламп ДРЛ, а сема включения сложнее, так как, помимо , содержит поджигающее устройство.

Частое кратковременное включение ламп высокого давления сокращает их срок службы. Это относится как к запуску ламп из холодного, так и из горячего состояния.

Световой поток практически не зависит от температуры окружающей среды (вне светильника). При низких температурах окружающей среды (до -50 °С) необходимо использовать специальные устройства зажигания.

HMI-лампы

Короткодуговые лампы HTI - металлогалогенные лампы с повышенной нагрузкой на стенку и очень коротким межэлектродным расстоянием имеют ещe более высокую световую отдачу и цветопередачу, что, однако, ограничивает срок службы. Главной областью применения ламп НМI является сценическое освещение, эндоскопия, кино- и видеосъемка при дневном освещении (цветовая температура = 6000 K). Мощность этих ламп лежит в диапазоне от 200 Вт до 18 кВт.

Для оптических целей были разработаны короткодуговые металлогалогенные лампы HTI с малыми межэлектродными расстояниями. Они отличаются очень высокой яркостью. Поэтому они используются прежде всего для световых эффектов, как позиционные источники света и в эндоскопии.

Маркировка: Д - дуговая; На - натриевая; Т -трубчатая.

Натриевые лампы высокого давления (ДНаТ) являются одной из самых эффективных групп источников видимого излучения: они обладают самой высокой световой отдачей среди всех известных газоразрядных ламп (100 - 130 лм/Вт) и незначительным снижением светового потока при длительном сроке службы. У этих ламп внутри стеклянной цилиндрической колбы помещается разрядная трубка из поликристаллического алюминия, инертная к парам натрия и хорошо пропускающая его излучение. Давление в трубке порядка 200 кПа. Продолжительность работы – 10 -15 тыс. часов. Однако чрезвычайно желтый свет и соответственно низкий индекс цветопередачи (Ra=25) позволяют использовать их в помещениях, где находятся люди, лишь в комбинации с лампами других типов.

Ксеноновые лампы (ДКсТ)

Дуговые ксеноновые трубчатые лампы ДКсТ при низкой световой отдаче и ограниченном сроке службы отличаются наиболее близким к естественному дневному спектральным составом света и наибольшей из всех источников света единичной мощностью. Первое достоинство практически не используется, так как лампы внутри зданий не применяются, второе обусловливает их широкое применение для освещения больших открытых пространств при установке на высоких мачтах. Недостатки ламп являются очень большие пульсации светового потока, избыток в спектре ультрафиолетовых лучей и сложность схемы зажигания.

В наш век повсеместной электрификации мы привыкли считать электрический разряд чем-то неправильным и где-то даже опасным. Поэтому в словах «газоразрядная лампа» многим видится некий парадокс.

Уже давно электричество перестало быть диковинкой. Нас оно окружает буквально со всех сторон. В стенах домов, квартир проложена проводка, по которой непрерывно течет электрический ток, даже если не включен телевизор и выключены все лампочки. Холодильник все равно все время тихо включается и сохраняет нам продукты, подпитываясь от сети. Так же и прочие приборы: светодиоды на выключателях – и те хоть чуть-чуть, но ток пропускают. А вот разряд в наших сетях – нечто неординарное. Если нечаянно замкнутся два провода в одной розетке, будет короткое замыкание, то есть разряд. А это авария и мгновенное отключение сети защитной автоматикой. Или если мы сами зарядились, просто от трения одежды, то, как только прикоснемся к чему-нибудь металлическому – будет разряд: несильно, но чувствительно уколет или даже тряхнет. Но обычно один раз. Ну, и заряженный конденсатор может ударить током, то есть через нас разрядиться.

Разновидностей разрядов достаточно много. Чаще всего нам встречается искровой разряд, как раз его-то мы и не любим. Хотя знаем, что в автомобиле он заставляет двигатель работать.

Виды электрических разрядов

Слева направо: искровой, дуговой, коронный, тлеющий. Есть еще экзотические виды – частичный и таунсендовский (темный – здесь его нет).

Какие-то из них мы используем, какие-то только пытаемся поставить на службу, с какими-то боремся.

Но вот тлеющий разряд, быть может, и назван так «смягченно», чтобы сообщить: да, это разряд, но не такой уж и страшный. Действительно, он не бьет, как искра или молния, в доли секунды, чтобы сразу же и прекратиться. Он тлеет, то есть течет, как обыкновенный и привычный для нас всех электрический ток. И не просто течет, но и светит – это все электрические лампы, где светится газ, а не металлическая проволока. Именно газоразрядные лампы.

Самое интересное во всей этой истории то, что обнаружили свечение газа под действием разряда еще до того, как появились «настоящие» электрические приборы. То есть такие устройства, в которых бы гарантированно работала электрическая энергия.

Сначала свечение газа показывали как фокус. А в качестве источника энергии использовались не генераторы, не аккумуляторы, а электризация предметов путем различных ухищрений, что позволяло вызвать некоторый заряд на поверхности. Электризация известна была давно, просто ее старались как-то усилить, в соответствии со своим пониманием. Например, рукой крутили большой шар из серы, насаженный на металлический стержень, и получали в довольно большом количестве «электричество», которое заявляло о себе искрением или свечением газа. Были и другие опыты, которые принято было проводить со сцены для публики или в модных светских салонах для избранного общества. Изучали и демонстрировали «животный магнетизм», алхимические превращения, которые уходили корнями в «герменевтическую философию».

Соответственно, и сбор электроэнергии для целей демонстрации мог происходить не на промышленном каком-то оборудовании, а на вещах, скорее принадлежавших к разряду театральной бутафории.


Однако от таких опытов получилось благое дело: люди увидели не просто физическое – то есть не магическое – явление, а поняли, что в нем заключена определенная, доступная людям, сила, которую можно накопить и измерить.

И с тех пор дальнейшее изучение электричества пошло в направлении его приручения и широкого использования человечеству во благо.


Многие исследователи тех времен получали таинственное свечение. Например, Ломоносов обнаружил свечение в стеклянном сосуде газообразного водорода. И не все эти свечения являлись тем, что теперь называется «тлеющий разряд». Дело в том, что газ способен получать энергию разными путями, и потом эту энергию излучать в виде света определенной длины волн. Это может быть внешнее электрическое напряжение, приложенное к двум установленным в сосуде с газом электродам. При некоторой величине напряжения, а также при некоторой разреженности газа, поток электронов устремится от электрода с избыточностью электронов к электроду с их недостаточным количеством. И, «натыкаясь по дороге» на атомы газа, электроны их активируют, при этом и получается тлеющий разряд.

Но нечто подобное может происходить не только от потока бегущих электронов. А, например, непосредственно от воздействия внешнего магнитного поля. Будет тлеющий разряд, очень похожий на полярное сияние. Я сам такое видел на лампах дневного света, отключенных от сети питания, но на которые воздействовало магнитное поле от вращающихся магнитных барабанов. На старых компьютерах иногда встречались такие устройства, большие как шкаф. Вот в темноте около таких шкафов лампы дневного света и давали интересные световые разводы, похожие на Северное сияние.


Цвет свечения газоразрядных ламп не зависит от источника энергии. Газ состоит обычно из однородной массы простейших молекул в один-два атома (H2 – водород, Ar – аргон) и работает как один атомарный механизм. В нем электроны, получая энергию от внешнего источника, перескакивают на другой уровень – в «возбужденное» состояние, а потом возвращаются обратно, выбрасывая свою «возбудившую» их энергию в виде кванта света строго определенных длин волны. Так и получаются свечения одного цвета, монохромные. Или нескольких цветов, соответствующих энергетическим переходам электронов в электронных оболочках атомов газа. Таким образом можно получить лампы, светящиеся конкретными цветами, в отличие от солнца с его непрерывным спектром или пламени костра, свечи или света лампы накаливания.

Энергетические процессы при этом очень просты, поэтому и весьма эффективны, имеют высокий КПД. То есть лампа накаливания дает целый спектр, который получается от хаотического теплового движения молекул твердой вольфрамовой спирали. Молекулы раскаленного вольфрама мечутся как угорелые вокруг своих мест в кристаллической решетке и исступленно испускают во всех возможных направлениях кванты света всех мыслимых энергий и частот. В этом спектре есть видимый нам свет, и есть инфракрасное излучение, которого мы не видим. А есть еще просто конвекция – передача непосредственно молекулам газовой среды лампы энергии тепла. От этого нагревается стеклянный баллон, который, в свою очередь, нагревает воздух в помещении, цоколь, патрон, провода… Получается, что на свет от лампы накаливания идет энергии всего лишь 5–10 %. Тогда как газовый свет дает, по разным оценкам, от 25 до 40 %.

Разновидности газоразрядных ламп

Газоразрядные лампы представляют собой стеклянный (из стекол особого состава) баллон, накачанный газом и с электродами, установленными внутри. Электрическое напряжение на него подается через цоколь. Газ внутри может быть под низким давлением или под высоким. По этому признаку и различаются газоразрядные лампы низкого давления, лампы высокого давления и лампы сверхвысокого давления. Остальные различия касаются, в основном, составов газовых сред внутри баллона и покрытия баллона. От этого зависят характеристики свечения ламп.

Еще одна важная конструктивная особенность ламп (газоразрядных в том числе) – конструкция и размер цоколя, от чего зависит конструкция патрона для лампы, а значит, и возможности установки таких ламп в светильниках.


А, б – низкого давления;
в, д – высокого давления;
г – сверхвысокого давления
а – натриевая, б – люминесцентная, в – ртутная, г – ксеноновая, д – натриевая
(с особым покрытием колбы – поликристаллическим оксидом алюминия)

Инертные газы, которыми наполняются лампы, способны светиться цветами собственного полосчатого спектра испускания. Получается цветное свечение, которое сразу же полюбилось рекламщикам, и они стали использовать его для изготовления эффектных красочных надписей. Разные инертные газы дают различную окраску свечения.

Криптон

Для обычных же целей освещения обычно используются лампы, содержащие смесь газов или смесь газов и паров металлов – ртути или натрия в частности.

Газовый свет может содержать ультрафиолетовые компоненты, в этом случае можно:

  • использовать такие лампы именно как источники ультрафиолета;
  • изменить спектр излучения другим средством: напылением на внутренней стороне баллона специального покрытия, которое поглощает излучение газа и переизлучает его светом, более приемлемым для употребления.

Такие вещества называются люминофорами, а лампы – люминофорными или люминесцентными.
Разновидностью люминесцентных ламп являются и повсеместно используемые сейчас газосветные энергосберегающие лампы.

Применение

Энергосберегающие лампы выпускают разных оттенков цвета, но такого, чтобы человеческий глаз воспринимал его как можно более естественным. При этом варьируются оттенки цвета или световая температура: от более теплого до приближенного к белому дневному. Энергосберегающие лампы выпускаются градацией светимости примерно так же, как это делается с лампами накаливания, эта система сложилась годами. Маленькие лампы накаливания – 25 ватт (настольные), побольше – 60, 75 ватт (люстры, торшеры), 100–120 ватт (залы, большие помещения) и так далее. Аналогично выпускаются по светимостям и лампы энергосберегающие, хотя мощность потребления энергии у них снижена раза в 2–4 за счет того, что выше КПД. Еще одно следствие этого – то, что они почти не греются. И в этом тоже есть множество плюсов: не греются патроны, не плавятся пластиковые абажуры, и так далее

Другие лампы дают сильный направленный свет: например, ксеноновые используют в прожекторах и автомобильных фарах.

Есть лампы такого цвета, который не очень хорош для человеческих глаз, но действенен при освещении растений. Это натриевые лампы различной мощности. Они дают ярко-желтое свечение, от них хорошо вегетируют растения, поэтому их используют в теплицах.

Разрядные источники оптического излучения, в том числе светового, работают по принципу преобразования в оптическое излучение энергии дугового электрического разряда.

Тихий и тлеющий электрические разряды из-за крайне малого КПД излучения для целей освещения и облучения не используют.

В зависимости от давления внутри разрядной колбы различают лампы: низкого (0,1...10 4 Па), высокого (3×10 4 …10 6 Па) и сверхвысокого (более 10 6 Па) давления. От значения рабочего давления в колбе зависят КПД и спектр излучения разрядной лампы.

У разрядных ламп низкого давления энергетический КПД (Фл/Рл ) высокий, а световой КПД потока излучения (Фс/Фл ) мал, так как значительная часть их излучения сосредоточена в невидимой УФ-зоне спектра. Для разрядных ламп высокого давления наоборот: энергетический КПД меньше, а световой КПД больше.

Так как эффективный световой КПД лампы (Фс/Рл ) равен произведению КПД энергетического (Фл/Рл ) и светового (Фс/Фл ), то это обусловило равноценную применимость обоих типов ламп.

В отличие от ламп накаливания, имеющих сплошной спектр излучения, разрядные лампы обладают ступенчатым или полосовым спектром, состав излучения которого зависит от состава газа и паров металла, наполняющих разрядную колбу (рис.2.1).

Рис.2.2. Устройство (а) и типовая стартерная схема включения (б) трубчатой разрядной лампы низкого давления:
1 – колба; 2 – стеклянная ножка; 3 – спиральный электрод; 4 – цоколь; 5 – штыревые токоподводы.

Разрядные лампы низкого давления имеют разрядную колбу 1 в виде стеклянной трубки, на концах которой в цоколь 4 вмонтированы штыревые токоподводы 5 (рис.2.2 а). В оба цоколя 4 лампы через стеклянные ножки 2 впаяны оксидированные электроды 3 , выполненные в виде моноспирали из вольфрама. У осветительных ламп внутренняя часть колбы из обычного стекла, которое не пропускает УФ-излучение, покрыта слоем люминофора. У ламп для УФ-облучения колбы выполняют из специального кварцевого или увиолевого стекла, которое имеет высокий коэффициент пропускания УФ-излучения соответствующей зоны УФ-спектра. Внутренний объем колбы заполняют аргоном и вводят небольшое количество ртути. Электрический разряд в лампе начинается в атмосфере инертного газа аргона, а затем по мере испарения ртути продолжается в её парах.

В люминесцентных разрядных лампах преобразование электрической энергии в видимое излучение происходит в два этапа .

На первом этапе электрический разряд в парах ртути сопровождается УФ-излучением в виде двух монохроматических потоков с длинами волн 253,7 и 184,9 нм, которые сами по себе являются мощными источниками бактерицидного излучения.


На втором этапе возникающее коротковолновое УФ-излучение преобразуется в слое люминофора колбы в видимое. То есть, в излучение с большей длиной волны и, соответственно, согласно (1.1) и (1.2) с меньшей энергией фотонов, так как что часть энергии фотонов теряется в слое люминофора на втором этапе преобразования. Изменяя состав люминофора, изменяют спектральный состав видимого излучения лампы.

Маркировка люминесцентных ламп низкого давления содержит буквенное обозначение, начинающееся с буквы Л (люминесцентная) и второй буквы, раскрывающей особенности ее спектра излучения: Б - белая, ТБ - тепло-белая, ХБ - холодно-белая, Д - дневная, Е - естественная, БЕ - белая естественная, ХЕ - холодная естественная. Ц - с повышенной цветопередачей, УФ - ультрафиолетовая, Ф - фотосинтезная, Р - рефлекторная, У - U – образная, К – кольцевая. После буквенного обозначения следуют цифры, указывающие мощность лампы в ваттах, и через дефис - номер разработки. Например, ЛБР-80 - лампа люминесцентная белая рефлекторная мощностью 80 Вт.

Средняя продолжительность горения осветительных люминесцентных ламп низкого давления составляет 12...15 тыс.ч, светоотдача - 40...80 лм/Вт, мощность - от 3 до 200 Вт (наиболее массовые мощностью 15...80 Вт).

Из-за падающей волътамперной характеристики электрического разряда для стабилизации режима в цепь разрядной лампы необходимо включать токоограничивающее балластное сопротивление, которое может быть активным (например лампы типа ДРВЛ), индуктивным (большинство ламп), емкостным или их комбинацией. Поэтому в сеть разрядные лампы включают через специальный пускорегулирующий аппарат (ПРА), который обеспечивает зажигание лампы и стабилизацию её дугового разряда в рабочем режиме.

На схеме, показанной на рисунке 2.2 б, представлен типовой вариант включения люминесцентной лампы низкого давления с использованием дроссельного ПРА и лампового стартера тлеющего разряда. Схема содержит осветительную люминесцентную лампу низкого давления EL, индуктивное балластное сопротивление в виде дросселя LL, ламповый стартер VL, помехоподавляюший конденсатор С2 и компенсирующий конденсатор С1 , повышающий коэффициент мощности установки с 0,4...0,6 до 0,92...0,95. Сопротивление R предназначено для разряда конденсаторов С1 и С2 после отключения лампы от сети.

При включении схемы и незагоревшейся лампе EL сетевое напряжение практически полностью оказывается приложенным к стартеру, выполненному в виде лампы тлеющего разряда VL. Под действием высокого напряжения в стартере VL возникает тлеющий электрический разряд. Под действием выделяющегося в результате разряда тепла биметаллические электроды стартера VL изгибаются и в конечном итоге замыкаются. Разряд прекращается, и спиральные электроды лампы EL за счет замыкания контактов стартера VL разогреваются током, примерно в 1,5 раза превышающим номинальный ток лампы. Процесс разогрева длится 0,5...3 с, пока биметаллические электроды стартера не остынут и не разомкнут цепь разогрева. В результате размыкания цепи разогрева со стороны дросселя LL возникает ЭДС самоиндукции, которая, накладываясь на напряжение сети, вызывает электрический разряд и загорание предварительно разогретой лампы EL, обладающей к этому моменту повышенной электронной эмиссией нагретых электродов. За счет протекания тока загоревшейся лампы EL на дросселе LL возникает дополнительное падение напряжения, которое уменьшает напряжение на электродах стартера VL ниже значения его зажигания, и работа стартера VL при зажженной лампе EL прекращается.

В настоящее время выпускаются энергоэконмичные люминесцентные лампы низкого давления пониженной мощности: 18 Вт вместо 20 Вт, 36 Вт вместо 40 Вт и 58 Вт вместо 65 Вт. Они имеют уменьшенный диаметр трубчатой колбы (25 мм вместо 40 мм) и повышенную световую отдачу.

Наряду с трубчатыми люминесцентными лампами низкого давления для целей электроосвещения широкое применение нашли дуговые ртутные люминесцентные лампы высокого давления типа ДРЛ.

На рисунке 2.3 а показано устройство четырехэлектродной люминесцентной лампы высокого давления типаДРЛ, а на рисунке, б - типовая схема её включения в сеть.

Зажиганию четырехэлектродной разрядной лампы типа ДРЛ способствует предварительный тлеющий разряд между основным 11 и поджигающим б электродами (рис. 2.3 а). Период разгорания лампы типа ДРЛ длится около 5 мин. За это время происходит разогрев внутренней колбы 8 и испарение находящейся в ней ртути с одновременным повышением давления внутри колбы 8. При этом электрический разряд распространяется на основные электроды. Лампа выходит на нормальный режим со стабилизацией всех её параметров.

После отключения разрядной лампы высокого давления её повторное зажигание возможно только после остывания лампы и соответствующего снижения давления во внутренней разрядной колбе до значения, при котором возможен повторный процесс зажигания.

Газоразрядные лампы представляют собой источники излучения световой энергии видимого диапазона. Основным конструктивным элементом газоразрядной лампы является стеклянная колба с закачанным внутрь газом либо парами металлов. С обеих сторон к колбе подводятся электроды, между которыми происходит возникновение и горение электрического разряда.

Газоразрядные лампы имеют достаточно обширную классификацию. Различают два основных типа:

  1. Лампы газоразрядные высокого давления (ГРЛВД). Они включают в себя ДРИ, ДРЛ, ДКсТ, ДНат.
  2. Газоразрядные лампы низкого давления (ГРЛНД), которые включают в себя ЛЛ различных типов, КЛЛ, специальные ЛЛ.

Данные источники света успешно вытесняют морально устаревшие лампы накаливания, которые, тем не менее, находят применение в специфических помещениях, где установка других ламп невозможна.

Преимуществами газоразрядных ламп являются:

  1. Эффективность.
  2. Высокая степень светоотдачи.
  3. Высокая степень цветопередачи.
  4. Экономичность.
  5. Долгий срок эксплуатации

Недостатки, которыми обладают газоразрядные лампы, следующие:

  1. Линейность излучаемого спектра.
  2. Дороговизна.
  3. Габаритные показатели.
  4. Необходимость установки пускорегулирующей аппаратуры.
  5. Наличие т.е. мерцания излучения.
  6. Высокая чувствительность к перепадам напряжения.
  7. Токсичность.
  8. Работа только на переменном токе.

Качественные характеристики, которыми обладает каждая газоразрядная лампа, отвечают высоким предъявляемым требованиям, таким как:

  1. Эксплуатация - до 20000 часов горения.
  2. Эффективность - до 220 люменов на каждый кВт энергии.
  3. Различный цвет излучаемого света: естественный и т.д.
  4. позволяет создавать пучки светового излучения высокой интенсивности.

Среда, в которой происходит процесс горения электрического разряда, может быть наполнена разнообразными газами, такими как аргон, неон, ксенон, криптон, а также парами различных металлов, например, ртути или натрия.

Необходимо учитывать то, что газоразрядные лампы любого типа должны устанавливаться в закрытые светильники, оборудованные Для успешной работы подобного типа источников света следует устанавливать специальную пускорегулирующую аппаратуру и балласты.

Газоразрядные лампы требуют высоких параметров электрической сети, к которой они подключаются. Не допускаются большие (более, чем 3%) отклонения параметров сети от номинальных.

Газоразрядные лампы могут применяться в производственных цехах и прочих помещениях заводов, во всевозможных магазинах и торговых центрах, офисах и различных общественных помещениях, а также для зданий и пешеходных дорожек. Кроме того, они широко используются для высокохудожественного освещения кинотеатров и эстрад, для чего применяется профессиональное оборудование.

Экономичность газоразрядных ламп позволяет сократить затраты на осветительную аппаратуру и комплектующие к ней.