Электрощиток

Что такое сверхпроводимость в физике. История открытия сверхпроводимости

Что такое сверхпроводимость в физике. История открытия сверхпроводимости

Сверхпроводимость, как явление, возникает в результате образования куперовских пар электронов, ведущих себя подобно единой частице.

Сверхпроводимость — вещь странная и, в некоторой мере, даже противоречащая здравому смыслу. Когда электрический ток течет по обычному проводу, то, в результате наличия у провода электрического сопротивления, ток совершает некую работу, направленную на преодоление этого сопротивления со стороны атомов, в результате чего выделяется тепло. При этом каждое соударение электрона — носителя тока — с атомом тормозит электрон, а сам атом-тормоз при этом разогревается — вот почему спираль электрической плитки становится такой красной и горячей. Всё дело в том, что спираль обладает электрическим сопротивлением , и, вследствие этого, при протекании по ней электрического тока, выделяет тепловую энергию (см. Закон Ома).

В 1911 году нидерландский физик-экспериментатор Хейке Камерлинг Оннес (Heike Kammerlingh Onnes, 1853-1926) сделал удивительное открытие. Погрузив провод в жидкий гелий, температура которого составляла не более 4° выше абсолютного нуля (который, напомним, составляет -273°С по шкале Цельсия или -460°F по шкале Фаренгейта), он выяснил, что при сверхнизких температурах электрическое сопротивление падает практически до нуля. Почему такое происходит, он, собственно, не мог даже и догадываться, но факт оказался налицо. При сверхнизких температурах электроны практически не испытывали сопротивления со стороны атомов кристаллической решетки металла и обеспечивали сверхпроводимость.

Но почему всё так происходит? Это оставалось тайной вплоть до 1957 года, когда еще три физика-экспериментатора — Джон Бардин (John Bardeen, 1908-1991), Леон Купер (Leon Cooper, р. 1930) и Джон Роберт Шриффер (John Robert Schrieffer, р. 1931) придумали объяснение этому эффекту. Теория сверхпроводимости теперь так и называется в их честь «теорией БКШ» — по первым буквам фамилий этих физиков.

А суть ее заключается в том, что при сверхнизких температурах тяжелые атомы металлов практически не колеблются в силу их низкого теплового движения, и их можно считать фактически стационарными. Поскольку любой металл только потому и обладает присущими металлу электропроводящими свойствами, что отпускает электроны внешнего слоя в «свободное плавание» (см. Химические связи), мы имеем, что имеем: ионизированные, положительно заряженные ядра кристаллической решетки и отрицательно заряженные электроны, свободно «плавающие» между ними. И вот проводник попадает под действие разности электрических потенциалов. Электроны — волей или неволей — движутся, будучи свободными, между положительно заряженными ядрами. Всякий раз, однако, они вяло взаимодействуют с ядрами (и между собой), но тут же «убегают». Однако, в то самое время, пока электроны «проскакивают» между двумя положительно заряженными ядрами, они как бы «отвлекают» их на себя. В результате, после того как между двумя ядрами «проскочил» электрон, они на недолгое время сближаются. Затем два ядра, конечно же, плавно расходятся, но дело сделано — возник положительный потенциал, и к нему притягиваются всё новые отрицательно заряженные электроны. Тут самое важное — понять: благодаря тому, что один электрон «проскакивает» между атомами, он, тем самым, создает благоприятные энергетические условия для продвижения еще одного электрона. В результате электроны перемещаются внутри атомно-кристаллической структуры парами — по-другому они просто не могут, поскольку это им энергетически не выгодно. Чтобы лучше понять этот эффект можно привлечь аналогию из мира спорта. Велосипедисты на треке нередко используют тактику «драфтинга» (а именно, «висят на хвосте» у соперника) и, тем самым, снижают сопротивление воздуха. То же самое делают и электроны, образуя куперовские пары .

Тут важно понять, что при сверхнизких температурах все электроны образуют куперовские пары. Теперь представьте себе, что каждая такая пара представляет собой связку наподобие вермишели, на каждом конце которой находится заряд-электрон. Теперь представьте себе, что перед вами целая миска подобной «вермишели»: она вся состоит из переплетенных между собой куперовских пар. Иными словами, электроны в сверхпроводящем металле попарно взаимодействуют между собой, и на это уходит вся их энергия. Соответственно, у электронов просто не остается энергии на взаимодействие с ядрами атомов кристаллической решетки. В итоге доходит до того, что электроны замедляются настолько, что им больше нечего терять (энергетически), а окружающие их ядра «остывают» настолько, что они более не способны «тормозить» свободные электроны. В результате электроны начинают перемещаться между атомами металла, практически не теряя энергии в результате соударения с атомами, и электрическое сопротивление сверхпроводника устремляется к нулю. За открытие и объяснение эффекта сверхпроводимости Бардин, Купер и Шриффер в 1972 году получили Нобелевскую премию.

С тех пор прошло немало лет, и сверхпроводимость из разряда явлений уникальных и лабораторно-курьезных превратилась в общепризнанный факт и источник многомиллиардных доходов предприятий электронной индустрии. А дело всё в том, что любой электрический ток возбуждает вокруг себя магнитное поле (см. Закон электромагнитной индукции Фарадея). Поскольку сверхпроводники долгое время проводят ток практически без потерь, если поддерживать их при сверхнизких температурах, они представляют собой идеальный материал для изготовления электромагнитов. И, если вы когда-нибудь подвергались медико-диагностической процедуре, которая называется электронная томография и проводится на сканере, использующем принцип ядерно-магнитного резонанса (ЯМР), то вы, сами того, возможно, не подозревая, находились в считанных сантиметрах от сверхпроводящих электромагнитов. Именно они создают поле, позволяющее врачам получать высокоточные образы тканей человеческого тела в разрезе без необходимости прибегать к скальпелю.

Современные сверхпроводники сохраняют свои уникальные свойства при нагревании вплоть до температур порядка 20K (двадцать градусов выше абсолютного нуля). Долгое время это считалось температурным пределом сверхпроводимости. Однако в 1986 году сотрудники швейцарской лаборатории компьютерной фирмы IBM Георг Беднорц (Georg Bednorz, р. 1950) и Александр Мюллер (Alexander Müller, р. 1927) открыли сплав, сверхпроводящие свойства которого сохраняются и при 30K. Сегодня же науке известны материалы, остающиеся сверхпроводниками даже при 160К (то есть чуть ниже -100°C). При этом общепринятой теории, которая объясняла бы этот класс высокотемпературной сверхпроводимости , до сих пор не создано, но совершенно ясно, что в рамках теории БКШ ее объяснить невозможно. Практического применения высокотемпературные сверхпроводники на сегодняшний день не находят по причине их крайней дороговизны и хрупкости, однако разработки в этом направлении продолжаются.

John Bardeen, 1908-91

Американский физик, один из немногих дважды лауреатов Нобелевской премии. Родился в Мэдисоне, штат Висконсин в семье профессора-патологоанатома. Образование получил в Мэдисонском и Принстонском университетах. В перерыве между учебой в первом и втором несколько лет проработал в нефтяной компании Gulf Oil в качестве сейсмолога-разведчика нефтяных залежей. В годы второй мировой войны служил в навигационной лаборатории ВМФ США в Вашингтоне, по окончании войны работал в радиолаборатории телефонной компании Bell, где стал соавтором изобретения транзистора, за что в 1956 году был удостоен своей первой Нобелевской премии по физике. После этого Бардин стал профессором Университета штата Иллинойс, где занялся разработкой теории БКШ, за которую, вместе с соавторами, в 1972 году получил Нобелевскую премию во второй раз.

Явление сверхпроводимости. У многих металлов и сплавов при температурах, близких к абсолютному нулю, наблюдается резкое уменьшение удельного сопротивления. Это явление получило название сверхпроводимости , а температуру Тсв, при которой происходит переход в сверхпроводящее состояние, называют критической температурой перехода. Впервые сверхпроводимость была обнаружена у ртути (Tсв = 4,2 К) голландским физиком X. Каммерлинг-Оннесом.

Если в кольце из сверхпроводника индуцировать электрический ток (например, с помощью магнитного поля), то он не будет затухать в течение длительного времени. По скорости уменьшения магнитного поля наведенного тока в кольце была произведена оценка удельного сопротивления материалов в сверхпроводящем состоянии. Его значение составило около 10–26 Ом · м, что в 1017 раз меньше сопротивления меди при комнатной температуре.

Физическая природа сверхпроводимости. Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений. Почти полвека с момента открытия сущность этого явления оставалась неразгаданной из-за того, что методы квантовой механики еще не в полной мере использовались в физике твердого тела. Микроскопическая теория сверхпроводимости, объясняющая все опытные данные, была предложена в 1957г. американскими учеными Бардиным, Купером и Шриффером (теория БКШ). Значительный вклад в развитие теории сверхпроводимости внесли работы советского академика Н. Н. Боголюбова.

Согласно установившимся представлениям, явление сверхпроводимости возникает в том случае, когда электроны в металле притягиваются друг к другу. Притяжение электронов возможно только в среде, содержащей положительно заряженные ионы, поле которых ослабляет силы кулоновского отталкивания между электронами. Притягиваться могут лишь те электроны, которые принимают участие в электропроводности, т.е. расположенные вблизи уровня Ферми. Если такое притяжение имеет место, то электроны с противоположным направлением импульса и спина связываются в пары, называемые куперовскими.В образовании куперовских пар решающую роль играют взаимодействие электронов с тепловыми колебаниями решетки – фононами. В твердом теле электроны могут как поглощать, так и порождать фононы. Мысленно представим себе следующий процесс: один из электронов, взаимодействуя с решеткой, переводит ее в возбужденное соcтояние и изменяет свой импульс; другой электрон, также взаимодействуя с решеткой, переводит ее в нормальное состояние и тоже изменяет свой импульс. В результате состояние решетки не изменяется, а электроны обмениваются квантами тепловой энергии – фононами .

Обменное фононное взаимодействиеи вызывает силы притяжения между электронами, которые превосходят силы кулоновского отталкивания. Обмен фононами при участии решетки происходит непрерывно.

В упрощенном виде обменное фононное взаимодействие проиллюстрировано схемой на рис. 4. Электрон, движущийся среди положительно заряженных ионов, поляризует решетку, т.е. электростатическими силами притягивает к себе ближайшие ионы. Благодаря такому смещению ионов в окрестности траектории электрона локально возрастает плотность положительного заряда. Второй электрон, движущийся вслед за первым, естественно, может притягиваться областью с избыточным положительным зарядом. В результате косвенным образом, за счет взаимодействия с решеткой между электронами 1 и 2, возникают силы притяжения. Второй электрон становится партнером первого – образуется куперовская пара. Поскольку силы притяжения невелики, спаренные электроны слабо локализованы в пространстве. Эффективный диаметр куперовской пары имеет порядок 10–7 м, т.е. охватывает тысячи элементарных ячеек. Эти парные образования перекрывают друг друга, постоянно распадаются и вновь создаются, но в целом все пары образуют электронный конденсат, энергия которого за счет внутреннего взаимодействия меньше, чем у совокупности разобщенных нормальных электронов. Вследствие этого в энергетическом спектре сверхпроводника появляется энергетическая щель 2D – область запрещенных энергетических состояний (рис. 5). Спаренные электроны располагаются на дне энергетической щели. Грубая оценка показывает, что количество таких электронов составляет около 10–4 от общего их числа. Размер энергетической щели зависит от температуры, достигая максимального значения при абсолютном нуле и полностью исчезая при Т = Тсв. Теория БКШ дает следующую связь ширины щели с критической температурой перехода:

Рис. 4. Схема образования электронных пар в сверхпроводящем металле

Рис. 5. Распределение электронов по энергиям в металле в состоянии сверхпроводимости

Формула (1.1) достаточно хорошо подтверждается экспериментально. Для большинства сверхпроводников энергетическая щель составляет 10–4 – 10–3 эВ.

Как было показано, электрическое сопротивление металла обусловлено рассеянием электронов на тепловых колебаниях решетки и на примесях. Однако при наличии энергетической щели для перехода электронов из основного состояния в возбужденное требуется достаточная порция тепловой энергии, которую при низких температурах электроны не могут получить от решетки, поскольку энергия тепловых колебаний меньше ширины щели. Именно поэтому спаренные электроны не рассеиваются на дефектах структуры. Особенностью куперовских пар является их импульсная упорядоченность, состоящая в том, что все пары имеют одинаковый импульс и не могут изменять свои состояния независимо друг от друга. Электронные волны, описывающие движение пар, имеют одинаковые длину и фазу. Фактически движение всех электронных пар можно рассматривать как распространение одной электронной волны, которая не рассеивается решеткой, «обтекает» дефекты структуры. Такая согласованность в поведении пар обусловлена высокой мобильностью электронного конденсата: непрерывно меняются наборы пар, происходит постоянная смена партнеров.

При абсолютном нуле все электроны, расположенные вблизи уровня Ферми, связаны в пары. С повышением температуры за счет тепловой энергии происходит разрыв некоторой части электронных пар, вследствие чего уменьшается ширина щели. Движение неспаренных электронов, переходящих с основных уровней на возбужденные, затрудняется рассеянием на дефектах решетки. При температуре Т = Т свпроисходит полный разрыв всех пар, ширина щели обращается в нуль, сверхпроводимость исчезает.

Переход вещества в сверхпроводящее состояние при его охлаждении происходит в очень узком интервале температур (сотые доли градуса). Неоднородности структуры, создаваемые примесями, искажениями решетки, границами зерен, пластической деформацией и т.п., не приводят к уничтожению сверхпроводимости, а вызывают лишь расширение температурного интервала перехода из одного состояния в другое. Электроны, ответственные за создание сверхпроводимости, не обмениваются энергией с решеткой. Поэтому при температуре ниже критической наблюдается существенное уменьшение теплопроводности металлов.

Магнитные свойства сверхпроводников. Важнейшая особенность сверхпроводников состоит в том, что внешнее магнитное поле совершенно не проникает в толщу образца, затухая в тончайшем слое. Силовые линии магнитного поля огибают сверхпроводник. Это явление, получившее название эффекта Мейснера, обусловлено тем, что в поверхностном слое сверхпроводника при его внесении в магнитное поле возникает круговой незатухающий ток, который полностью компенсирует внешнее поле в толще образца. Глубина, на которую проникает магнитное поле, обычно составляет 10–7 – 10–8 м. Таким образом, сверхпроводники по магнитным свойствам являются идеальными диамагнетиками с магнитной проницаемостью μ = 0. Как всякие диамагнетики, сверхпроводники выталкиваются из магнитного поля. При этом эффект выталкивания выражен настолько сильно, что открываются возможности удерживать груз в пространстве с помощью магнитного поля. Аналогичным образом можно заставить висеть постоянный магнит над кольцом из сверхпроводящего материала, в котором циркулируют индуцированные магнитом незатухающие токи (опыт В. К. Аркадьева).

Состояние сверхпроводимости может быть разрушено, если напряженность магнитного поля превысит некоторое критическое значение H св. По характеру перехода материала из сверхпроводящего состояния в состояние обычной электропроводности под действием магнитного поля различают сверхпроводники I и II рода. У сверхпроводников I рода этот переход происходит скачкообразно, как только напряженность поля достигнет критического значения. Сверхпроводники II рода переходят из одного состояния в другое постепенно; для них различают нижнюю H св1 и верхнюю H св2 критические напряженности поля. В интервале между ними материал находится в промежуточном гетерогенном состоянии, в котором сосуществуют нормальная и сверхпроводящая фазы. Соотношение между их объемами зависит от Н. Таким образом, магнитное поле постепенно проникает в сверхпроводник II рода. Однако материал сохраняет нулевое сопротивление вплоть до верхней критической напряженности поля.

Сверхпроводимость может быть разрушена не только внешним магнитным полем, но и током, проходящим по сверхпроводнику, если он превышает некоторое критическое значение I св.

Сверхпроводящие материалы. Явление сверхпроводимости при криогенных температурах достаточно широко распространено в природе. Сверхпроводимостью обладают 26 металлов. Большинство из них являются сверхпроводниками I рода с критическими температурами перехода ниже 4,2 К. В этом заключается одна из причин того, что большинство сверхпроводящих металлов для электротехнических целей применить не удается. Еще 13 элементов проявляют сверхпроводящие свойства при высоких давлениях. Среди них такие полупроводники, как кремний, германий, селен, теллур, сурьма и др. Следует заметить, что сверхпроводимостью не обладают металлы, являющиеся наилучшими проводниками в нормальных условиях. К ним относятся золото, медь, серебро. Малое сопротивление этих материалов указывает на слабое взаимодействие электронов с решеткой. Такое слабое взаимодействие не создает вблизи абсолютного нуля достаточного межэлектронного притяжения, способного преодолеть кулоновское отталкивание. Поэтому и не происходит их переход в сверхпроводящее состояние. Кроме чистых металлов сверхпроводимостью обладают многие интерметаллические соединения и сплавы. Общее количество наименований известных в настоящее время сверхпроводников составляет около 2000. Среди них самыми высокими критическими параметрами обладают сплавы и соединения ниобия. Некоторые из них позволяют использовать для достижения сверхпроводящего состояния вместо жидкого гелия более дешевый хладагент – жидкий водород.

Все интерметаллические соединения и сплавы относятся к сверхпроводникам II рода. Однако деление веществ по их сверхпроводящим свойствам на два вида не является абсолютным. Любой сверхпроводник I-го рода можно превратить в сверхпроводник II-го рода, если создать в нем достаточную концентрацию дефектов кристаллической решетки. Например, у чистого олова Т св = 3,7 К, но если вызвать в олове резко неоднородную механическую деформацию, то критическая температура возрастет до 9 К, а критическая напряженность магнитного поля увеличится в 70 раз.

Сверхпроводимость никогда не наблюдается в системах, в которых существует ферро- или антиферромагнетизм. Образованию сверхпроводящего состояния в полупроводниках и диэлектриках препятствует малая концентрация свободных электронов. Однако в материалах с большой диэлектрической проницаемостью силы кулоновского отталкивания между электронами в значительной мере ослаблены. Поэтому некоторые из них также проявляют свойства сверхпроводников при низких температурах. Примером может служить титанат стронция (SrTiO3), относящийся к группе сегнетоэлектриков. Ряд полупроводников удается перевести в сверхпроводящее состояние добавкой большой концентрации легирующих примесей (GeTe, SnTe, CuS и др.).

В настоящее время промышленность выпускает широкий ассортимент сверхпроводящих проволок и лент для самых различных целей. Изготовление таких проводников связано с большими технологическими трудностями. Они обусловлены плохими механическими свойствами многих сверхпроводников, их низкой теплопроводностью и сложной структурой проводов. Особенно большой хрупкостью отличаются интерметаллические соединения с высокими критическими параметрами. Поэтому вместо простых проволок и лент приходится создавать композиции из двух (обычно сверхпроводник с медью) и даже нескольких металлов. Для получения многожильных проводов из хрупких интерметаллидов особенно перспективен бронзовый метод (или метод твердофазной диффузии), освоенный промышленностью. По этому методу прессованием и волочением создается композиция из тонких нитей ниобия в матрице из оловянной бронзы. При нагреве олово из бронзы диффундирует в ниобий, образуя на его поверхности тонкую сверхпроводящую пленку станнида ниобия Nb3Sn. Такой жгут может изгибаться, но пленки остаются целыми.

Применение сверхпроводников. Сверхпроводящие элементы и устройства находят все более широкое применение в самых различных областях науки и техники. Разработаны крупномасштабные долгосрочные программы промышленного использования сильноточной сверхпроводимости.

Одно из главных применений сверхпроводников связано с получением сверхсильных магнитных полей. Сверхпроводящие соленоиды позволяют получать однородные магнитные поля напряженностью свыше 107 А/м в достаточно большой области пространства, в то время как пределом обычных электромагнитов с железными сердечниками являются напряженности порядка 106 А/м. К тому же в сверхпроводящих магнитных системах циркулирует незатухающий ток, поэтому не нужен внешний источник питания. Сильные магнитные поля необходимы при проведении научных исследований. Сверхпроводящие соленоиды позволяют в значительной мере уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц. Перспективно использование сверхпроводящих магнитных систем для удержания плазмы в реакторах управляемого термоядерного синтеза, в магнитогидро–динамических (МГД) преобразователях тепловой энергии в электрическую, в качестве индуктивных накопителей энергии для покрытия пиковых мощностей в масштабах крупных энергосистем. Широкое развитие получают разработки электрических машин со сверхпроводящими обмотками возбуждения. Применение сверхпроводников позволяет исключить из машин сердечники из электротехнической стали, благодаря чему уменьшаются в 5–7 раз их масса и габаритные размеры при сохранении мощности. Экономически обосновано создание сверхпроводящих трансформаторов, рассчитанных на высокий уровень мощности (десятки-сотни мегаватт). Большое внимание в разных странах уделяется разработке сверхпроводящих линий электропередач на постоянном и переменном токах. Разработаны опытные образцы импульсных сверхпроводящих катушек для питания плазменных пушек и систем накачки твердотельных лазеров. В радиотехнике начинают использовать сверхпроводящие объемные резонаторы, обладающие, благодаря ничтожно малому электрическому сопротивлению, очень высокой добротностью. Принцип механического выталкивания сверхпроводников из магнитного поля положен в основу создания сверхскоростного железнодорожного транспорта на «магнитной подушке».

Широкие перспективы применения сверхпроводников открывает измерительная техника. Дополняя возможности имеющихся измерительных средств, сверхпроводящие элементы позволяют регистрировать очень тонкие физические эффекты, измерять с высокой точностью и обрабатывать большое количество информации.

Уже сейчас на основе сверхпроводимости созданы высокочувствительные болометры для регистрации ИК-излучения, магнитометры для измерения слабых магнитных потоков, индикаторы сверхмалых напряжений и токов. Количество этих приборов непрерывно растет.


Проблемные вопросы лекции:

1. Где можно применять явление сверхпроводимости?

2. Какие могут быть тенденции в развитии этого явления?

3. Проблемы создания сверхпроводников комнатной температуры

Учебные вопросы:

1) Основные признаки сверхпроводящего состояния.

2) Теория низкотемпературной сверхпроводимости.

3) Понятия ВТСП и комнатной сверхпроводимости.

4) Структура ВТСП.

5) Проблема создания теория высокотемпературной сверхпроводимости.

Презентация (вводная лекция).

Введение

В 1911 году, в Голландии, в лаборатории низких температур Х. Камерлинг-Оннес открыл явление сверхпроводимости. Он замораживал в жидком гелии ртуть и пропускал через нее электрический ток. По мере снижения температуры, сопротивление ртути убывало. Как только температура опустилась до 4,12 К, ее сопротивление резко упало до нуля, оно совсем исчезло. Вот слова самого Камерлинг-Оннеса: «Таким образом, при 4,12 градусов выше абсолютного нуля, ртуть переходит в новое состояние, которое можно назвать «сверхпроводящим»». Так впервые было введено новое понятие – сверхпроводимость. В 1913 г. Шведская академия наук присудила Камерлинг-Оннесу Нобелевскую премию.

За почти столетнюю историю исследования сверхпроводимости было открыто огромное число сверхпроводящих составов, которые можно классифицировать следующим образом :
1. Органические сверхпроводники , открыты в 1979 г., имеют максимальную критическую температуру T c = 11,5 К.
2. Соединения типа A-15 , представляющие собой классические низкотемпературные сверхпроводники с T c =23,2К, были открыты в 1954 г. 3. Магнитные сверхпроводники или фазы Чевреля , открыты в 1979 г., объединяют ферромагнитные и антиферромагнитные сверхпроводники, с T c = 15 К высоким значением верхнего поля, достигающего B c2 = 60 Тл.
4. Тяжелые фермионы с максимальной критической температурой T c =18К демонстрируют сосуществование сверхпроводимости с ферромагнитизмом и антиферромагнитизмом.
5. Оксидные сверхпроводники без меди – предшественники высокотемпературных сверхпроводников (ВТСП) имеют T c =31К, а монокристаллы оксида вольфрама, допированного натрием в 1999 г. продемонстрировали в поверхностном слое высокотемпературную сверхпроводимость с критической температурой 91 К.
6. Оксипниктиды – редкоземельные оксидные структуры без меди, открытые в 2008 году, быстро достигли сверхпроводящей температуры – второй после высокотемпературных сверхпроводников (T c =55К); они также как и ВТСП имеют слоистую кристаллическую структуру и соответствующие проводящие плоскости FeAs.
7. Оксиды пирохлоров , представляющие группу минералов, содержащих титан, тантал и ниобий, с невысокой температурой перехода (T c = 9,6 К).
8. Рутенокупраты – ближайшие структурные родственники ВТСП, в которых сверхпроводимость сосуществует с ферромагнетизмом, T c = 50 К.
9. Высокотемпературные сверхпроводники – сверхпроводящие купраты, открытые в 1986 г., в которых сверхпроводимость осуществляется по плоскостям CuO 2 , имеют на сегодняшний день рекордную температуру сверхпроводящего перехода (T c = 166 ± 1,5 K).
10. В редкоземельных борокарбидах достигнута T c =23 К.
11. Кремниевые сверхпроводники при высоком избыточном давлении (что является одним из основных факторов повышения сверхпроводимости в сверхпроводящих материалах) показывают T c =14 К.
12. Халькогениды – структуры на основе серы и селена демонстрируют невысокую критическую температуру T c =4,15 К.
13. Углеродные сверхпроводники – фуллеренные структуры, подтвержденная критическая температура в них составляет T c = 40 К.
14. MgB 2 и родственные структуры (T c =39К). Открытие сверхпроводимости в этих известных с начала 1950-х годов, дешевых и широкодоступных материалах (магнезия продается в любой аптеке), демонстрирующих довольно высокую критическую температуру, было достаточно удивительно, поскольку открытие состоялось только в 2001 г.
Потребности человечества в энергии выдвигают на первый план научные направления, связанные с созданием новых видов и источников энергии, а также устройств ее сохранения и передачи на значительные расстояния. Важность решения этих задач была подчеркнута тем, что комитет по присуждению Нобелевских премий по физике никогда не оставлял без внимания ученых, занимавшихся вопросами сверхпроводимости и смежными исследованиями.

    Теория сверхпроводимости

    1. Понятие сверхпроводимости

Сверхпроводимость – это явление, при котором течение электрического тока в материале происходит без заметной диссипации энергии. Оно сопровождается внезапным падением до нуля электрического сопротивления при охлаждении материала сверхпроводника ниже т. н. температуры сверхпроводящего перехода (T c ), определяемой для каждого конкретного материала. По закону Джоуля – Ленца количество теплоты, выделяющееся при прохождении электрического тока по проводнику, возрастает пропорционально его длине и электрическому сопротивлению, что приводит к огромным потерям, например в сегодня используемых медных и алюминиевых проводах из-за существенного электрического сопротивления. Если сделать провода из сверхпроводящего материала, то можно минимизировать электрические потери. Другим ключевым параметром является критический ток (I c ) или его плотность (J c ). Его значение представляет собой величину постоянного незатухающего электрического тока в сверхпроводнике, выше которого образец возвращается в нормальное (несверхпроводящее состояние). Третьим критическим параметром является напряженность приложенного магнитного поля (H c ) или магнитная индукция (B c ), при превышении которой восстанавливается электрическое сопротивление сверхпроводника, и он снова становится несверхпроводящим. Существует также целый ряд других важных сверхпроводящих параметров, определяющих явление сверхпроводимости и поведение сверхпроводящего материала. Различают низкотемпературную, высокотемпературную и комнатную сверхпроводимость, соответствующие температурам сверхпроводящего перехода до 30 К, выше 77 К (температура жидкого азота) и 293 К (комнатная температура).

    1. Основные признаки сверхпроводимости

Основные признаки сверхпроводников:

    Потеря сопротивления ниже температуры сверхпроводящего перехода (T c ), называемой критической и определяемой для каждого конкретного материала.

    Сверхпроводники – идеальные диамагнетики, т.е. сверхпроводник полностью вытесняет магнитное поле из своего объема (рис 1). Этот эффект наблюдался немецкими физиками В. Мейснером и Р. Оксенфельдом в 1933 году, и был назван в их честь. Если поместить магнит над сверхпроводником, магнит зависнет в воздухе, как будто поддерживаемый некой невидимой силой. Причина эффекта Мейснера заключается в том, что магнит обладает свойством создавать внутри сверхпроводника собственное «зеркальное отражение», так что настоящий магнит и его отражение начинают отталкиваться друг от друга. Еще одно наглядное объяснение этого эффекта - в том, что сверхпроводник непроницаем для магнитного поля. Он как бы выталкивает магнитное поле. Поэтому, если поместить магнит над сверхпроводником, силовые линии магнита при контакте со сверхпроводником исказятся. Эти силовые линии и будут выталкивать магнит вверх, заставляя его левитировать.

Рис.1 – Эффект Мейснера-Оксенфельда

    Эффект Джозефсона (туннелирование через диэлектрическую прослойку) - протекание сверхпроводящего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника. В 1962 году Брайан Джозефсон, являясь студентом-старшекурсником, предсказал, что два сверхпроводящих слоя, разделенных ничтожно тонкой прослойкой изолятора всего в несколько атомов толщиной, будут вести себя как единая система. Пользуясь принципами квантовой механики, он показал, что куперовские пары будут преодолевать этот барьер (переход Джозефсона ) даже при отсутствии приложенного к ним напряжения. Существование электрического тока подобного рода вскоре было подтверждено экспериментально, а сам эффект также получил название стационарного эффекта Джозефсона . Если же приложить постоянное напряжение по обе стороны перехода, то куперовские пары электронов начнут перемещаться через барьер сначала в одном направлении, а затем в обратном. В результате возникнет переменный ток, частота которого увеличивается по мере роста напряжения. Это нестационарный эффект Джозефсона

    1. Сверхпроводники 1 и 2 рода

В зависимости от характера проникновения магнитного поля в сверхпроводнике и динамики разрушения сверхпроводимости при увеличении напряженности магнитного поля различают сверхпроводники 1-го и 2-го рода.

Сверхпроводники I рода вытесняют магнитное поле и способны «бороться» против него, пока его напряженность не достигла критического значения H c . Выше этого предела вещество переходит в нормальное состояние. В промежуточном состоянии образец как бы впускает в себя магнитное поле, однако с точки зрения физики точнее сказать, что образец просто разбивается на «большие» соседствующие куски - нормальные и сверхпроводящие. Через нормальные «протекает» магнитное поле напряженностью H c , а в сверхпроводящих, как и положено, магнитное поле равно нулю.

Сверхпроводники II рода также вытесняют магнитное поле, но только очень слабое. При повышении напряженности магнитного поля сверхпроводник II рода «находит возможность» впустить поле внутрь, одновременно сохраняя сверхпроводимость. Это происходит при напряженности поля, намного меньшей H c : в сверхпроводнике самопроизвольно зарождаются вихревые токи.

Вихревое состояние сверхпроводников II рода теоретически предсказал советский физик А. А. Абрикосов в работе, опубликованной в 1957 году. Токовые вихри можно уподобить длинным соленоидам с толстой обмоткой (рис. 2), только ток в них течет не по проводам, а прямо в толще сверхпроводника, не растекаясь в стороны и не меняя своей силы со временем, - ведь это сверхпроводящий ток. Как и в любой катушке индуктивности из провода, в таком вихре создается магнитное поле, т.е. в толще сверхпроводника формируется нормальный канал, вбирающий в себя струйку потока магнитного поля. Диаметр этого вихревого канала строго задан, он не зависит от внешнего магнитного поля и меняется от сверхпроводника к сверхпроводнику, а численно составляет около 10 –7 см - гораздо меньше, чем обычные размеры областей промежуточного состояния сверхпроводников I рода.

Рис. 2 - Схематическое изображение вихря в сверхпроводнике II рода. Вихрь параллелен внешнему магнитному полю. Силовые линии поля снаружи проводника и в центре вихря обозначены прямыми стрелками, а вихревые токи - замкнутыми круговыми стрелками

    1. Механизм сверхпроводимости

В 1957 года три физика-экспериментатора - Джон Бардин, Леон Купер и Джон Роберт Шриффер создали теорию сверхпроводимости, позже названной в их честь «теорией БКШ» - по первым буквам фамилий этих физиков. В основе теории БКШ лежит представление о том, что между электронами проводимости кристалла могут действовать не только силы отталкивания, но и силы притяжения, возникающие вследствие поляризации решетки. Электроны, движущиеся в кристаллической решетке, притягивают к себе положительные ионы и тем самым создают вдоль своего пути движения избыточный положительный заряд, к которому могут быть притянуты другие электроны. Это эквивалентно возникновению силы притяжения между электронами, но действующей не непосредственно, а через поляризованную решетку, поэтому сверхпроводимость наблюдается у тех металлов, у которых имеет место сильное взаимодействие с кристаллической решеткой, а значит, такие металлы в обычных условиях имеют относительно низкую электропроводность. Например, у хорошо проводящих металлов Cu, Ag, Au сверхпроводимость не наблюдается.

Преобладание в определенных условиях сил притяжения между электронами над силой их кулоновского отталкивания приводит к понижению энергии кристалла. Расчетами Купера показано, что энергетически наиболее выгодным является образование из электронов электронных пар, причем таких, которые образованы из электронов, обладающих противоположными спинами, равными по величине, но противоположными по направлению импульсами. Такие электроны называются куперовскими. В них объединяются два электрона, находящихся с разных сторон от ближайшего положительно заряженного иона. Взаимодействие электронов в паре происходит путем обмена фононами – квантами колебания кристаллической решетки, таким образом, куперовские пары имеют заряд –2е, нулевое значение спина и нулевое значение импульса в отсутствии внешнего электрического поля (бозоны). Обладая нулевым значением спина, куперовские пары подчиняются статистике Бозе – Эйнштейна. Переход значительного числа электронных пар в состояние с нулевым импульсом называется бозеконденсацией по аналогии с конденсацией молекул пара в жидкость при низких температурах. Так как сила притяжения между электронами в куперовской паре относительно слаба, то спаренные электроны не “слипаются” друг с другом, они находятся на достаточно большом расстоянии друг от друга: . Следовательно, объем занимаемый одной куперовской парой будет равен .

В металлах в куперовские пары могут объединяться только те электроны, которые могут возбуждаться и менять свое состояние. Такими электронами являются электроны с уровня Ферми, ответственные за электропроводность металла. Их концентрация , следовательно, в объеме, занимаемой одной куперовской парой будет находиться других куперовских пар. Пространственное перекрытие огромного числа куперовских пар приводит к строгой взаимной корреляции (согласованности) их движения под действием внешнего электрического поля. Все они приобретают один и тот же импульс и движутся как единый коллектив в одном и том же направлении с некоторой дрейфовой скоростью. При этом поведение куперовских пар отличается от поведения обычных электронов, т.е. электронов, находящихся в нормальном состоянии. Нормальные электроны испытывают рассеяние на колебаниях кристаллической решетки и других дефектах решетки. Это приводит к хаотичности их движения, что является причиной возникновения электрического сопротивления. Куперовские пары пока они не разорваны, не могут рассеиваться на дефектах решетки, так как выход любой из них из строго коррелированного коллектива мало вероятен. При этом вырвать куперовскую пару из такого коллектива тем труднее, чем больше таких пар. Любое нарушение в движении данной пары должно сказываться на свойствах всей совокупности пар. Пару можно вырвать из коллектива лишь разрушив ее, однако, при очень низких температурах число фононов, имеющих для этого энергию, исключительно мало. Поэтому подавляющее число образовавшихся куперовских пар сохраняются не разрушенными. Не испытывая рассеяние при своем направленном движении и имея заряд –2е, они обуславливают появление сверхпроводящего тока. Куперовские пары, являясь бозонами, размещаются на одном уровне, расположенном ниже уровня Ферми на расстоянии энергетическом Δ. Чтобы разорвать куперовскую пару на два отдельных электрона при T = 0, необходимо затратить энергию, равную 2Δ. Δ (так называемая сверхпроводящая энергетическая щель) - еще одна важная характеристика не только в теории БКШ, но и во всей теории сверхпроводимости. Δ зависит от температуры (рис. 3) и при T = T c зануляется, что легко понять - в этот момент сверхпроводимость разрушается и для разрыва куперовской пары нет надобности затрачивать энергию. За создание теории сверхпроводимости Бардин, Купер и Шриффер в 1972 году получили Нобелевскую премию.

Рис. 3 – Зависимость энергетической щели проводника от температуры

    Высокотемпературные сверхпроводящие проводники

(ВТСП)

    1. Открытие ВТСП

Начало новому захватывающему этапу в развитии сверхпроводимости положила работа А.Мюллера и Г.Беднорца из исследовательской лаборатории фирмы IBM в Швейцарии (рис. 4).

Рис. 4 - Родоначальники ВТСП. Лауреаты Нобелевской премии Алекс Мюллер и Георг Беднорц.

На рубеже 1985 - 1986 годов этим ученым удалось синтезировать соединение лантана, бария, меди и кислорода, так называемую металлооксидную керамику La-Ва-Cu-О , которое проявляло признаки сверхпроводимости при рекордно высокой по тем временам температуре в 35 К! Статья под осторожным названием «Возможность высокотемпературной сверхпроводимости в системе La-Ва-Cu-О » была отклонена ведущим американским физическим журналом «Physical Review Letters» - научное сообщество за последние двадцать лет устало от многочисленных ложных сенсаций по поводу открытия то в одном, то в другом месте мифического высокотемпературного сверхпроводника и таким образом ограждало себя от очередного бума. Мюллер и Беднорц отослали статью в немецкий журнал «Zeitschrift fur Physik». Сейчас, когда сверхпроводящий бум действительно разразился и даже несколько угас, а исследования высокотемпературных сверхпроводников ведутся в сотнях лабораторий, почти каждая из тысяч статей, посвященных исследованию нового явления, начинается со ссылки на эту публикацию, осенью же 1986 года она прошла почти незамеченной. Лишь одна японская группа на всякий случай перепроверила и подтвердила заявленный в этой статье результат. Затем феномен высокотемпературной сверхпроводимости был подтвержден американскими, китайскими, советскими физиками. В начале 1987 года весь мир охватила лихорадка поиска новых и исследования свойств уже обнаруженных сверхпроводников. Критическая температура быстро повышалась: для соединения La-Sr-Cu-О она составила уже 45 К, для La-Ва-Cu-О (под давлением) поднялась до 52 К и, наконец, в феврале 1987 года, когда американец Пол Чу догадался сымитировать действие внешнего давления заменой атомов лантана соседними по столбцу таблицы Менделеева, но меньшими по размеру атомами иридия (Y ), критическая температура синтезированного соединения YBa 2 Cu 3 O 7 перевалила через заветный «азотный рубеж», достигнув 93 кельвинов. Это был долгожданный триумф, однако еще не конец истории: в 1988 году синтезируется соединение, состоящее уже из пяти элементов, типа Ва-Са-Sr-Cu-О с критической температурой 110 К (Маеда), а несколько позже - ртутные и таллиевые его аналоги с температурой 125 К (Шенг, Херман). Под давлением в 300 атм предельная критическая температура ртутного рекордсмена уже неплохо звучит и в шкале Цельсия: -108 °С! Открытие высокотемпературной сверхпроводимости во многом уникально для современной физики. Во- первых, оно сделано всего двумя учеными и очень скромными средствами. Во-вторых, в состав обнаруженных соединений входят легкодоступные элементы, и в принципе такие сверхпроводники могут быть приготовлены за день работы в школьном кабинете химии. Так случайно или закономерно открытие Мюллера и Беднорца? Можно ли было синтезировать вещество со столь уникальными свойствами раньше? Как непросто дать ответы на эти вопросы. Мы давно привыкли к тому, что все новое получается на грани возможностей: с применением уникальных установок, сверхсильных полей, сверхнизких температур, сверхвысоких энергий. Здесь же ничего такого нет, «испечь» высокотемпературный сверхпроводник, как говорилось, не так уж сложно - с этим вполне мог бы справиться квалифицированный средневековый алхимик. Некоторые из сегодняшних высокотемпературных сверхпроводников лежали на полке лабораторного шкафа с... 1979 года! Именно тогда в Институте общей и неорганической химии АН СССР они были синтезированы И.С.Шаплыгиным с соавторами совсем для других целей. Однако измерений проводимости этих соединений при низких температурах, позволивших бы обнаружить новое явление, проведено не было - открытие не состоялось...

    1. Структура ВТСП

Рис. 5 – Структура органического сверхпроводника

Практически все ВТСП являются сложными слоистыми медьсодержащими оксидами, структура которых включает кислород-дефицитные перовскитные блоки (рис.5). В настоящее время ответственным за сверхпроводимость в купратах считают именно медь-кислородный слой CuO 2 , в котором атомы меди образуют квадратную сетку и располагаются в ее узлах, в то время как атомы кислорода находятся на линиях, соединяющих эти узлы. Электроны атомов меди (3d x2-y2 ) и кислорода (2p x,y ), образующие связи в таком слое, делокализованы, т.е. не принадлежат какому-либо из атомов слоя. Поэтому соединения, содержащие в своих структурах слои (СuO 2 ), могут иметь металлический тип проводимости. Сверхпроводимость при температурах ниже критической возникает при "допировании" слоев CuO 2 оптимальным количеством носителей заряда, которое происходит при упорядочении кислородных атомов и вакансий по достижении ВТСП-фазой определенной кислородной стехиометрии, при гетеровалентном легировании, при приложении внешнего давления и т.д. Экспериментально установлено, что для возникновения сверхпроводимости необходимо, чтобы формальная степень окисления меди в этих слоях с обобщенными электронами немного отличалась от +2 и находилась в диапазонах от +2,05 до +2,25 (дырочные сверхпроводники - 123, Bi-, Tl-семейства) или от +1,8 до +1,9 (электронные сверхпроводники - семейство фаз типа Nd 2 CuO 4 ). Другим важным параметром, определяющим сверхпроводящие свойства, является длина связи между атомами меди и кислорода в слое, которая должна находиться в интервале 0,19-0,197 нм при расстоянии между ближайшими атомами меди – 0,380-0,394 нм. Атомы меди могут быть также связаны с атомами кислорода, расположенными в соседних слоях, однако эти связи должны быть существенно длиннее и превышать 0,22 нм. Другими словами, в структурах сверхпроводящих купратов реализуются неравноценные химические связи: сильные связи в плоскости слоя СuO 2 и значительно более слабые - перпендикулярно этим слоям. Как следствие, эти структуры являются слоистыми, в то время как каркасные сложные оксиды меди - перовскиты с химическими связями, равноценными в трех направлениях, сверхпроводниками не являются. Поскольку кристаллическая структура не может состоять только из одноименно заряженных фрагментов (слои CuO 2 ), для выполнения условия электронейтральности необходимо существование других, компенсирующих заряд слоев, или присутствие между "сверхпроводящими плоскостями" CuO 2 диэлектрических прослоек. Наличие в этих прослойках легко поляризующихся ионов (например, Ca 2+ , Sr 2+ , Ba 2+ ) может быть использовано "дырками", находящимися в слое CuO 2 , для образования куперовской пары при переходе в сверхпроводящее состояние. Так, в большинстве известных сверхпроводников чередуются слои CuO 2 и слои BaO, SrO, TlO + , BiO + Ca 2+ , Y 3+ и др. Если в структуре изменяется число слоев CuO 2 , то образуются гомологические ряды соединений, имеющих родственное строение. В последнем случае полученные слоистые кристаллические структуры будут устойчивы, если каждый слой в них геометрически соразмерен с выше- и нижележащими слоями.

ВТСП-материалы

В промышленности производится два основных материала на основе ВТСП – ВТСП материалы 1 и 2 поколения. ВТСП 1 поколения представляют собой ленты, состоящие из нитей сверхпроводника на основе оксида висмута, имплантированных в серебряную матрицу. Такие провода доступны на рынке с 2000 года и имеют длины до 1,5 км. Недостатки их - наличие больших теплопритоков и механическая хрупкость. Конструкция проводов 2-го поколения решает эту проблему. ВТСП ленты 2 поколения имеют слоистую структуру, в их основе лежит металлическая лента, на которую последовательно нанесены буферный слой, служащий для защиты поверхности металла, затем слой ВТСП и наконец, защитный слой (рис. 6).

Рис. 6 - Строение ВТСП-материалов 1 и 2 поколений

ВТСП ленты 2 поколения имею ряд преимуществ перед лентами 1 поколения:

Меньшая стоимость, т.к. для их изготовления используются более дешевые материалы (ВТСП ленты 1 поколения на 2/3 состоят из серебра, а у лент 2 поколения основной материал – никель); они имеют большую плотность критического тока и меньшие потери на переменном токе;

Большая механическая прочность;

Возможность работы в сильных магнитных полях, т.к. помещение их в магнитное поле не слишком сильно понижает значение их критической температуры.

Эти факторы свидетельствуют о предпочтительном применении лент 2 поколения. Для их создания используют два метода:

    В качестве подложки используют поликристаллическую не текстурированную ленту.

    В качестве подложки используют ленту с двуосной структурой.

Рис. 7. Структура ВТСП-провода 2-го поколения: а - защитный слой Сu; б - керамика Y–Ba–Cu–O; в - ориентированный слой MgO; г - неориентированный слой MgO; д - лента из нержавеющей стали

Важную роль играет слой MgO, который напыляется непосредственно на нержавеющую ленту под углом 30–40°. Косое напыление создает на поверхности MgO одинаково направленные борозды. Эти борозды служат для ориентации кристаллов ВТСП-керамики, которая напыляется непосредственно на MgO. В качестве ВТСП-керамики используется Y–Ba–Cu–O или близкие к ней по структуре керамики. Слой ВТСП-пленки имеет толщину менее 2 мкм. Структура ВТСП-провода 2-го поколения показана на рис. 7.

    1. Применение ВТСП-материалов

В начале 1990-х гг. началось применение ВТСП в конкретных устройствах и изделиях. Постепенно были разработаны и созданы образцы ВТСП проводов и кабелей, разных форм и размеров, на основе сверхпроводящей керамики были изготовлены ВТСП двигатели, генераторы, ограничители тока, информационные системы, антенные решетки, сверхпроводящие подшипники и другие изделия. В 2004 г. были созданы сверхпроводящие прототипы всех электрических устройств. Решающими здесь являются открывающиеся возможности по передаче, превращению и сохранению энергии. В частности, системные применения сверхпроводимости охватывают сверхпроводящие магнитные устройства; криогенные хранилища; (в) космические платформы; научные инструменты; вращающиеся накопители энергии. Например, как показали эксперименты, поезда, использующие эффект магнитной левитации (MagLev), в которых дно тележки включает ВТСП плавленую керамику, а рельсы представляют собой магниты, могут развивать скорость до 1000 км/ч! Не обошелся без сверхпроводящих изделий и большой адронный коллайдер, запущенный, в частности с целью поиска бозона Хиггса в ноябре 2009 года. Он является крупнейшей экспериментальной установкой в мире. В туннеле длиной 27 км установлено свыше 8 тысяч сверхпроводящих магнитов (с общим весом сверхпроводящих материалов около 1200 т), использованных для создания детекторов и предускорителей элементарных частиц в коллайдере.
Другим применением сверхпроводимости по праву может стать сверхпроводниковый квантовый компьютер. Его создание связано с экспериментальным воплощением квантового бита на основе сверхпроводящей структуры - главным преимуществом такой структуры по сравнению с другими твёрдотельными аналогами (одноэлектронными структурами) даже в рамках современной технологии. Наличие сверхпроводящего состояния означает, что даже многоэлектронная система может в этом случае находиться в основном самом низком по энергии состоянии достаточно долго, поскольку все возбуждения этого состояния отделены энергетической щелью. Эта же причина обусловливает большое время декогерентизации в системе. Структура сверхпроводящего квантового бита может быть изготовлена с помощью традиционной технологии джозефсоновских контактов (переходов). Архитектура построения сверхпроводникового квантового компьютера является гибридной нитевидной архитектурой, которая позволяет в 250 раз увеличить быстродействие сегодняшних самых скоростных компьютеров. Стержнем такого квантового компьютера могут стать сверхпроводниковые схемы быстрой одноквантовой логики и другие криоэлектронные компоненты. Ранние концепции сверхпроводниковых интегральных схем (ИС) использовали нешунтированные джозефсоновские переходы, приводящие к появлению так называемого эффекта «залипания», снижающего быстродействие и усложняющего топологию ИС. Концепция RSFQ, разработанная К.К. Лихаревым и В. К. Семёновым в 1985-1986 гг. и экспериментально опробованная В. П. Кошельцом в 1986 г., основана на использовании шунтированных джозефсоновских переходов. В 1999 г. К. К. Лихарев, с соавторами продемонстрировали несколько действующих ИС (в том числе RSFQ аналого-цифровой преобразователь), включающих до 2000 джозефсоновских переходов каждая. Три попытки создать сверхпроводниковый компьютер (1969-1983 гг. – IBM, США; 1970–1981 гг. – НИИФП, Зеленоград, СССР; 1981–1990 гг. – MITI, США) оказались неудачными из-за непреодолимых в то время технологических трудностей. Современная ниобиевая технология с использованием джозефсоновских переходов с двойным барьером позволяет сформировать десятки тысяч стабильных переходов с воспроизводимыми характеристиками. Это – так называемые S–N–I–S-контакты: «сверхпроводник–нормальный металл–изолятор–сверхпроводник» (обычно это – Nb/Al/AlO x /Nb), работающие при температуре 4-5 К. NbN-технология позволяет перейти к рабочей температуре 10 К. Принципиально более высокие рабочие температуры и быстродействия достижимы с использованием высокотемпературных сверхпроводников, но это потребует достаточно долгого времени и огромного финансирования. В 2000 г. в США была предпринята новая попытка создания сверхпроводникового квантового компьютера производительностью до 10 15 операций с плавающей запятой в секунду, а в 2004 г. была реализована сверхпроводниковая компьютерная петафлопс-система. При этом была определена оптимальная комбинация различных новейших технологий – сверхпроводниковой логики, сети оптоволоконных соединений, голографической оптической и полупроводниковой памяти. Особенность новой системы – использование распределённой памяти, включающей голографическую, полупроводниковую (SRAM) и криогенную (CRAM) компоненты. Стержень системы – сверхпроводниковые процессоры, использующие RSFQ-логику. Значительный шаг в реализации сверхпроводникового квантового компьютера был сделан в 2003 г., когда Т. Ямамото с соавторами удалось продемонстрировать образование т. н. «запутанного состояния» между двумя твёрдотельными сверхпроводниковыми кубитами. Разработанная структура квантового компьютера отличалась от той, на которой уже было продемонстрировано когерентное взаимодействие двух квантовых битов (кубитов), наличием двух затворов, каждый из которых управлял состоянием соответствующего кубита. Управляющий кубит имел вид петли СКВИДa, а сами кубиты взаимодействовали друг с другом через ёмкость. На такой системе двух сверхпроводящих кубитов Т. Ямамото с соавторами успешно выполнили логическую квантовую операцию CNOT («контролируемое НЕ»). Известно, что классический компьютер начинается с одного бита, далее идёт простая арифметика наращивания количества битов. Началом квантового компьютера можно считать только два кубита, выполняющих операцию CNOT. Операция CNOT в 2003 г. не была выполнена в полном объеме. Она была продемонстрирована только для амплитуды состояний, но её выполнение с учетом фазы состояния не было осуществлено. До этого подобное удавалось проделать только с молекулами и атомами в магнитных ловушках. В 2005 г. А. Вальрафу с соавторами удалось проследить за поведением одиночных джозефсоновских вихрей, что открыло перспективу их использования в качестве носителей битов квантовой информации. Для изготовления масштабируемого квантового процессора нужно научиться сохранять когерентность квантовых состояний в больших системах и управлять этими состояниями. Мезоскопические твёрдотельные объекты, такие как джозефсоновские контакты и квантовые точки, легко масштабируются и управляются локальными электрическими сигналами. В то же время, одной из основных проблем сверхпроводникового квантового компьютера является организация взаимодействия между удалёнными кубитами. Напротив, квантовые оптические системы на основе атомов или ионов в магнитной ловушке подвержены декогерентизации в гораздо меньшей степени. Но их проблемы связаны со сложностью миниатюризации и интеграции в электрические цепи. Они не позволяют использовать такое число кубитов, которое достаточно для практического применения. В данном случае невозможно организовать надёжную адресацию к определённым атомам при большом их количестве. В 2005 г. в США была продемонстрирована возможность организации необходимого взаимодействия с помощью резонатора, как и в квантовом компьютере на атомах в ловушке. В качестве «атомов» выступали два зарядовых кубита, основанные на джозефсоновских контактах, которые имели ёмкостную связь с микроволновым резонатором. При этом удалось наблюдать запутанное состояние трёх объектов – двух кубитов и фотона в резонаторе. В 2006 г. был предложен способ интеграции одночастичных систем (полярных молекул) с мезоскопическими твёрдотельными устройствами, который допускает эффективный контроль когерентных состояний молекул (например, CaBr) и взаимодействий между ними. Роль базисных состояний кубитов играют вращательные состояния молекул. Операции с кубитами осуществляются посредством электрических затворов. Молекулы располагаются на субмикронных расстояниях от сверхпроводникового СВЧ-резонатора, через который и осуществляется связь между ними. Запутанные состояния удалённых друг от друга кубитов формируются за счёт обмена СВЧ-фотонами. В этом случае шумы – одно из главных препятствий для квантовых вычислений – удаётся подавить до очень низкого уровня. В 2009 г. Ди Карло с соавторами успешно осуществили двухкубитные варианты квантовых алгоритмов Дойча и Гровера, основанные на использовании запутанных квантовых состояний. Хотя характерное время декогерентизации сверхпроводниковых кубитов (порядка 1 мкс) на несколько порядков меньше, чем у ионов в ловушке, но зато и операции с ними можно осуществлять гораздо быстрее (в данном случае для достижения конечного результата потребовалось около десяти операций). Число кубитов можно многократно увеличить путем механического наращивания количества сверхпроводящих контуров с использованием хорошо разработанной технологии. Большой проблемой, однако, остаются сверхнизкие рабочие температуры (примерно 1 мК). В 2007 г. было объявлено о создании и демонстрации в Канаде первого в мире квантового компьютера. Компьютер «Орион» сделан из ниобия, с использованием кубита постоянного тока. В массиве (4-4) кубитов связь между ними реализовывалась схемотехнически. При этом решаемыми задачами являлись элементарные задачи перебора. Скептицизм, проявленный научным сообществом по поводу практической реализации этого компьютера, в первую очередь был связан с вопросами функционирования кубитов (время декогерентизации, надёжность ввода и считывания данных, собственно квантовые явления в кубите, степень связи между кубитами и её контролируемости и т. д.). Очевидно, можно предположить, что момент создания квантового компьютера наступит, когда будет продемонстрировано решение какой-нибудь практически важной задачи, причём, полученное быстрее, чем на классическом компьютере. Будущий сверхпроводниковый квантовый компьютер позволит сформировать инфраструктуру для изготовления и последующей эксплуатации криогенных ИС, в частности будут решены вопросы, связанные с необходимостью использовать сверхнизкие рабочие температуры. Эта инфраструктура будет способствовать более широкому применению сверхпроводниковых вычислительных устройств. При этом сфера применения низкотемпературной электроники может быть достаточно широкой и включать аналого-цифровые и цифро-аналоговые преобразователи, цифровые СКВИДы, цифровые автокорреляторы, генераторы псевдослучайных сигналов и применения, связанные с высокими уровнями радиации. Одно из возможных направлений применения такого квантового компьютера будет связано с существованием квантового алгоритма, который позволит эффективно моделировать различные гамильтонианы, описывающие спаривание электронов (например, БКШ-гамильтониан) на квантовом компьютере, основанном на явлении ядерного магнитного резонанса. Этот алгоритм даст возможность найти спектр низкоэнергетических возбуждений в окрестности энергетической щели между основным и первым возбуждённым состояниями. Он может быть, в частности, использован для проверки применимости модели БКШ к мезоскопическим сверхпроводящим системам, таким как ультрамалые металлические зерна.

    Комнатная сверхпроводимость

В настоящее время остро стоит вопрос о получении сверхпроводников комнатной температуры. В прессе постоянно проскакивают ничем не подтвержденные сведения о создании таких материалов. Хотелось бы привести текст следующей статьи «Физики нашли признаки сверхпроводимости в комнатных условиях», выложенной на сайте «Нанотехнологическое сообщество» от 16 сентября 2012 года.

«Отдельные зерна графита могут проявлять сверхпроводящие свойства при комнатной температуре после обработки водой и выпекания в печи, что говорит о возможности достижения сверхпроводимости в нормальных условиях на практике, заявляют немецкие физики в статье, опубликованной в журнале Advanced Materials.

"В целом, данные нашего эксперимента указывают на то, что сверхпроводимость при комнатной температуре осуществима, и что использованные нами методы могут проложить дорогу к новому поколению сверхпроводников, чье появление принесет пока сложно оценимую пользу для человечества," - заявил руководитель группы физиков Пабло Эскуинаци (Pablo Esquinazi) из Лейпцигского университета (Германия).

Эскуинаци и его коллеги исследовали физические свойства графита и других форм углерода. В ходе одного из экспериментов ученые засыпали графитовый порошок в пробирку с водой, размешали его и оставили в покое на 24 часа. После этого физики отфильтровали графит и высушили его в печи при температуре 100 градусов.

В результате этого ученые получили набор из гранул графита, обладающих крайне интересными физическими свойствами. Так, поверхность этих зерен обладает сверхпроводящими свойствами, которые сохраняются даже при температуре 300 градусов Кельвина, или 26 градусов Цельсия.

Это проявлялось в том, что внутри зерен появлялись характерные резкие фазовые переходы магнитного момента, существующие в классических высокотемпературных сверхпроводниках. Физикам так и не удалось проверить, обладает ли графит двумя другими основными признаками таких материалов: отсутствием сопротивления и так называемым эффектом Мейснера - полным вытеснением магнитного поля из тела проводника.

Тем не менее, открытие даже одного из эффектов позволяет предположить, что высокотемпературные сверхпроводники могут функционировать и при комнатной температуре.

К сожалению, зерна графита, полученные Эскуинаци и его коллегами, нельзя использовать в качестве "строительного материала" для сверхпроводников. Во-первых, сверхпроводящими свойствами обладает лишь 0,0001% от массы графита из-за того, что этот эффект наблюдается только на поверхности зерен. Во-вторых, эта форма графита чрезвычайно хрупкая, и физические свойства зерен теряются безвозвратно даже при малейших деформациях.

В своих последующих работах физики планируют изучить поверхность зерен и роль атомов водорода, которые остаются на их поверхности после "водной бани" и последующего просушивания. Кроме того, Эскуинаци и его коллеги проверят, обладают ли такие зерна нулевым сопротивлением, и возникает ли в них эффект Мейснера.

Подборка лекций по сверхпроводимости

Перечень вопросов для подготовки (темы рефератов):

    Открытие сверхпроводимости.

    Свойства сверхпроводящего состояния, история их открытия.

    Левитация.

    Теория низкотемпературной сверхпроводимости.

    Теория Гинзбурга-Ландау.

    Открытие ВТСП.

    Проблема создания теории высокотемпературной сверхпроводимости.

    Структура ВТСП-лент.

    Комнатная сверхпроводимость.

    Поверхностная сверхпроводимость.

    Применение ВТСП и КСП.


Сверхпроводимость - физическое явление, состоящее в том, что у некоторых веществ, при охлаждении,которых ниже определенной (критической) температуры Tt, обращается в нуль сопротивление постоянному току. Явление сверхпроводимости было открыто голландским физиком Камерлинг-Оннесом (1911), который обнаружил, что при охлаждении ртути до темпералуры Tk lt; 4,2 К, у нее сопротивление постоянному току скачком обращается в нуль. К настоящему времени сверхпроводимость обнаружена у более 20 металлов и ряда сплавов, в том числе и у сплавов тех веществ, которые сами не являются сверхпроводниками."
Проведенные исследования сверхпроводников позволили обнаружить у них ряд интересных свойств. Считается, что электрический ток в сверхпроводнике продолжает течь и после того, когда отключается напряжение. Магнитик, падающий на сверхпроводящую пластину, зависает в воздухе и продолжает висеть до тех пор, пока сверхпроводящая пластина охлаждена до температуры, ниже критической. Сверхпроводимость может разрушаться внешним магнитным полем, а также в том случае, когда по образцу пропускают достаточно большой ток.
Природа явления сверхпроводимости долго оставалась неяс- ной. И только в 1957 году американские физики Дж. Бардин, JI. Купер" и Дж. Шриффер создали теорию, которая получила название по начальным буквам их фамилий - БКШ. За эту работу они получили Нобелевскую премию по физике за 1977 год. В последние годы в разработку теории сверхпроводимости внесли свой вклад BJL Гинзбург, А.А. Абрикосов, Энтони Дж. Леггетт, которые за «пионерский вклад в теорию сверхпроводимости и сверхтекучести» тоже получили Нобелевскую премию по физике за 2003 год.
Как же объясняет современная теория явление сверхпроводимости? По законам квантовой механики ток в проводнике может быть незатухающим только в том случае, если все переносчики заряда будет описывать единая волновая функция. Ho это возможно только в том случае, если эти переносчики принадлежат к классу бозонов, т.е. все они долж-

ны иметь целый (в том числе нулевой) спин. Бозоны - коллективисты. Они стремятся объединиться не только с ближайшими соседями, образуя «бозе-конденсат», но и присоединить к себе «свободных» соседей из ближайшего окружения. Образуется как бы «коллективная частица», состоящая из большого числа отдельных бозонов. Такое образование, двигаясь как одно целое сквозь кристалл, не будет реагировать ни на микроскопические дефекты решетки, ни на ионы в ее узлах.
Ho электроны принадлежат к классу фермионов, так как они имеют спин S = 1/2, а его проекция может иметь только два значения: -1/2 и +1/2. Фермионы являются индивидуалистами, и каждый из них, имея свою волновую функцию, взаимодействует поодиночке со всеми окружающими их частицами. Поэтому они не могу образовывать “бозе- конденсат”. В теории БКШ и последующих теориях дается “обоснование” возможности объединения электронов в пары, несмотря на куло- новское отталкивание друг от друга.
В 1956 году Л. Купер выдвинул гипотезу, что электроны, при определенных условиях, могут “слипаться” в пары. При этом их спины должны быть антипараллельны, т.е. объединяться могут электроны со спинами -1/2 и +1/2. Суммарный спин у этой пары будет равен нулю, и она становится бозоном. Такие пары электронов стали называть “ку- перовскими парами”.
Дж. Бардин предложил гипотезу, объясняющую природу сил притяжения между электронами при их объединении в куперовские пары. По этой гипотезе, ионы, находящиеся в узлах кристаллической решетки, являются квантовой системой, и в этой системе имеются квазичастицы, соответствующие колебаниям решетки, которые называются фонона- ми. Электроны, обмениваясь фононами, испытывают притяжение друг к другу, сила которого превышает силу кулоновского отталкивания.
Куперовские пары имеют конечный размер порядка 1(Н- 10~5 см, а среднее расстояние между электронами в металле около 10-* см (этот парадокс является проявлением квантовых свойств вещества). Почему же они не мешают друг другу? Отвечая на этот вопрос, один из авторов теории БКШ Шриффер для сравнения уподобил электроны в сверхпроводнике с танцорами в современной дискотеке: двое танцуют, и хотя между ними много других танцоров, но они не теряют связь друг с другом. В процессе дальнейших исследований явления сверхпроводимости было установлено, что помимо фонового, должен существовать и другой механизм передачи взаимодействия между электронами. Предполагается, что в веществе могут существовать и другие виды квазичастиц (плазмоны, магноны и т.п.), которые являются переносчиками взаимодействия между электронами.
Таким образом, при разработке теории явления сверхпроводимости основные усилия ученых были направлены на раскрытие механизма взаимодействия между электронами при их объединении в куперовские пары, в котором главную роль якобы играют разного рода квазичастицы (фононы, плазмоны, магноны). Ho подобные частицы - это реальность или миф? Экспериментально это доказать невозможно, т.к. квазичастицы существовать вне тела не могут. Поэтому попытку объяснения явления сверхпроводимости с помощью куперовских пар нельзя считать удачной.
Существующие научные представления об электрическом токе, как направленном, упорядоченном движении электррнов по проводнику, на наш взгляд, не позволяют разработать удовлетворительную теорию, объясняющую механизм проявления многих свойств сверхпроводников. Хорошая теория должна дать ответы на такие вопросы, как, например, почему у ртути, олова, свинца и таллия наблюдается сверхпроводимость, а у хороших проводников из серебра, золота и меди нет? Почему у некоторых монокристаллических сверхпроводников сопро-. тивление поперек слоя в десятки раз превышает сопротивление вдоль них? Почему у многих сверхпроводников при нормальной температуре удельное сопротивление в десятки раз выше, чем у меди?
Однако, несмотря на то, что с разработкой теории явления сверхпроводимости дела обстоят неважно, экспериментаторы практически «вслепую» получили многочисленные классы высокотемпературных сверхпроводников (ВТСП). Открытие в 1986 году физиками Г. Беднор- цем и А. Мюллером (Швейцария) класса металлооксидов с высокими температурами сверхпроводящего перехода (Tic ~ 40 К) вызвало настоящий «сверхпроводящий» бум. Типичными представителями сверхпро- водниковых сплавов являются соединения на основе лантана и иттрия: La - Ba - Cu - О, Y - Ba - Cu - О. За последующие десять лет исследований температура сверхпроводящего перехода при атмосферном давлении у некоторых сплавов была доведена до 140 К. В таблице 5.8.1 приведены некоторые соединения трех классов ВТСП на основе теллура, висмута и ртути, созданных в этот период .
Структура всех этих сверхпроводниковых сплавов соответствует так называемым слоистым перовскитам, характерной особенностью которых является чередование в их слоях элементарных ячеек с фиксированными сторонами. В частности, отметим, что ВТСП на основе теллура и висмута в своем составе не содержат элементов, которые сами являются сверхпроводниками.
Итак, что же определяет проявление сверхпроводимости у металлов и рплавов? Скорее всего, все те основные факторы, которые влияют и на величину электрического сопротивления проводников при обыч
ной температуре: строение электронных оболочек атомов, форма кристаллической решетки, температура (рис. 5.8.1).
Рассмотрим явление сверхпроводимости с позиции эфирной природы электрического тока. Электрический ток - это направленное волнообразное движение эфитонов под воздействием электрического поля. Сопротивление движению эфитонов определяется двумя основными факторами: величиной межатомных расстояний и силой электромагнитного взаимодействия с эфитонами межатомного эфирного пространства, которые, свою рчередь, зависят от формы кристаллической решетки вещества, электронной конфигурации атомной оболочки и температуры.

Si
п/п
Соединения
(сокращенное
обозначение)
Форма решетки (сингония) Размер элементар. ячейки, А Tk
I Те0а2СаСи2О7, (Te - 1212) Тетрагональная а = б = 3,86; с= 12,8 103
2 TeBa2Ca2Cu309, (Te -1223) Тетрагональная а = б»3,85;с= 15,9 120
3 Те2Ва2Са2Си3010, (Te - 2223) Тетрагональная а = 6 = 3,85; с = 35,9 125
4 Bi2Sr2Ca2Cu3010, (Bi - 2223) Ромбическая а = 6 = 5,41; с = 37,1 110
5 HgBa2CaCu206, (Hg -1212) Тетрагональная а = б = 3,86;с= 12,7 121
6 HgBa2CaCu308, (Hg -1223) Тетрагональная а = б = 3,85; с = 15,9 133
7 HgBa2Ca3Cu40ie, (Hg - 1234) Тетрагональная а = б = 3,85; с = 19,0 127

Таблица 5.8.1.

Сверхпроводимость-это свойство не отдельных атомов, а всего их коллектива, атомной структуры образца. Она возникает тогда, когда межатомные расстояния, хотя бы по одному из направлений кристаллической решетки, позволяют эфитонам тока беспрепятственно двигаться по ней, а их взаимодействие с эфитонами межатомного эфирного поля должно быть сведено к нулю.
Межатомные расстояния определяются формой кристаллической решетки, особенностями строения электронных оболочек атомов (сортов атомов), а также температурой. Наибольший «вклад» в величину межатомных расстояний вносит форма кристаллической решетки. Об этом свидетельствует слоистость структуры ВТСП, полученных на основе лантана, иттрия, теллура, висмута и ртути. У всех этих сплавов форма кристаллической решетки тетрагональная или ромбическая. В первой элементарная ячейка имеет Вид правильной четырехгранной призмы с фиксированными сторонами (а = б ~ 3,85 А, с ~ 12,5 - 36 А), а во вто
рой - прямоугольного параллелепипеда с произвольными сторонами.
У чистых металлов явление сверхпроводимости также очень сильно зависит от формamp; решетки. В частности, серое олово - полупроводник, а белое олово - сверхпроводник, у которого Tit =
= 3,72 К, а две кристаллические модификации лантана имеют разные значения Тк.
При понижении температуры тела происходит снижение амплитуды колебаний эфитонов в электронных оболочках атомов, в результате чего объем каждого атома уменьшается, а межатомные расстояния в решетке, несмотря на сокращение размера тела в целом, могут возрастать. Вместе с тем, изменение межатомных расстояний по сторонам элементарной ячейки, особенно в сплавах, происходит неодинаковым образом. В большей степени будет расти та: сторона, где расстояния между атомами были больше. Это объясняется тем, что при меньшем расстоянии между атомами сила межатомного взаимодействия всегда сильнее и поэтому противодействие увеличению расстояния между ними тоже будет сильнее. В свою очередь, возрастание межатомных расстояний приводит к снижению плотности эфитонов в межатомном эфирном поле.
Неравномерность изменения межатомных расстояний по различным граням кристаллической решетки при понижении температуры вызывает смещение атомов из положения их равновесия и изменение периодичности структуры самой решетки. Резкое изменение формы кристаллической решетки в веществе, по-видимому, наступает при понижении температуры до Tt, равной отрицательной точке Кюри.
Быстрое изменение формы кристаллической решетки вызывает такое увеличение межатомных расстояний по отдельным ее граням, что плотность межатомного эфирного поля в них снижается до кри
тической величины. Кроме того, при низкой температуре амплитуда колебаний эфитонов значительно уменьшается. При такой плотности межатомного эфирного поля и малой амплитуде его колебаний под воздействием направленного движения эфитонов в нем происходят своеобразные «разрывы» в виде ударной волны, которые позволяют току беспрепятственно двигаться по кристаллической решетке, если сила электромагнитного взаимодействия эфитонов тока с эфитонами межатомного эфирного поля будет сведено к нулю. Величина этой силы зависит как от электронной конфигурации атомов, так и от температуры сверхпроводника.
Как видно из таблицы 5.8.2, все сверхпроводники по электронной конфигурации атомов могут быть сгруппированы в две группы. К первой группе относятся в основном элементы 3-5 групп периодической системы, а ко второй группе - элементы 12-14 групп.
Таблица 5.8.2

Общим правилом для всех сверхпроводников является то, что заполнение последнего внутреннего слоя заканчивается электронами, находящимися в состоянии d (в полном или неполном составе), т.е. в их электронных оболочках отсутствуют электроны с состояниями fag.

У сверхпроводников первой группы характерной особенностью электронной конфигурации является то, что во внешнем слое электронной оболочки атома находятся в основном 2 электрона в состоянии s (у ниобия I электрон), а в ближайшем внутреннем слое до его полного заполнения не хватает 6-9 электронов (в состоянии d). При этом, заполнение электронами (в состоянии s) внешнего слоя начинается тогда, когда в предыдущем слое еще отсутствуют электроны в состоянии d. А это означает, что в результате взаимодействия между электронами энергия электрона в состоянии s внешнего слоя оказывается меньше, чем энергия любого электрона в состоянии d предыдущего слоя, т.е. у сверхпроводников первой группы энергия электронов внешнего слоя оказывается незначительной. И еще, магнитные моменты двух электронов, находящиеся во внешнем электронном слое атома, под воздействием “спин- вращающих” сил стремятся занять противоположные направления.
Примечания. В таблице не приведены химические элементы уран (92U 5 f3/6dl/7s2 - период 7, группа 6) и иридий (77Ir 5d7/6s2 - период 6, группа9), которые также являются сверхпроводниками. Данные о строении электронной оболочки содержат атомный номер элемента, символ элемента, электронную конфигурацию. Так, для лантана: 57 - атомный номер, La - символ элемента, 5dl/6s2 - электронная конфигурация (в 5-ом слое в состоянии d находятся один электрон, а в 6-ом слое в состоянии s - два электрона). Возможное число электронов в оболочке по слоям: в первом слое (от ядра) - не более 2, во втором - не более 8, в третьем - не более 18, в четвертом - не более 32, в пятом - не более 18 (при Z lt; 89 или не более 32 при Z gt; 89), в шестом - не более 8, в седьмом - не более 2. Каждый электронный слой атома последовательно заполняется электронами в состояниях s, р, d, f, g. Максимально возможное число электронов в каждом состоянии: s - 2, р - 6, d- 10, f- 14, g- 18
При подобной ориентации магнитных моментов электронов их общий магнитный момент становится равным нулю, т е. электроны оказывают минимальное воздействие на ориентацию по магнитной составляющей эфитонов межатомного эфирного поля.
У сверхпроводников второй группы заполнение последнего внутреннего электронного слоя атомов заканчивается полным составом электронов в состоянии d (d = 10), а во внешнем электронном слое находятся I, 2 или 3 электрона. А это означает, что поскольку внутренние слои электронных оболочек атомов в каждом слое содержат четное число электронов, то их общий магнитный момент должен быть равен нулю. Если во внешнем слое находятся два электрона, то их общий магнитный момент также равен нулю, т.е. в этом случае атом в целом маг- нетонейтрален. При нечетном же числе электронов во внешнем слое (I или 3) магнитный момент одного из электронов будет не скомпенсирован, и он может оказывать определенное влияние на ориентацию по магнитной составляющей эфитонов межатомного эфирного поля.
Так как у атомов сверхпроводников второй группы в последнем внутреннем электронном слое всегда находится по 10 электронов, то они “экранируют” кулоновские силы притяжения между ядром атома и внешними электронами сильнее, чем у сверхпроводников первой группы. Поэтому нечетный электрон внешнего слоя может легче изменять ориентацию своего магнитного момента под воздействием эфитонов тока.
Таким образом, на возникновение явления сверхпроводимости у металлов и сплавов оказывают влияние следующие основные факторы: структура и форма кристаллической решетки вещества, электронная конфигурация оболочек атомов и температура. Действие всех этих факторов на проявление сверхпроводимости комплексное.
При понижении температуры сверхпроводника до отрицательной точки Кюри (-Тк) наступает быстрое изменение формы кристаллической решетки и уменьшение амплитуды колебаний межатомного эфирного поля, которые вызывают резкое увеличение межатомных интервалов по отдельным граням решетки, уменьшение плотности межатомного эфирного поля и его энергетики. Большие межатомные интервалы и малая энергетика межатомного эфирного поля приводят к тому, что в этом поле под воздействием направленного движения эфитонов тока происходят своеобразные «разрывы» в виде ударной волны, которые позволяют ему беспрепятственно двигаться по кристаллической решетке. Этому способствуют электронные конфигурации оболочек атомов сверхпроводников, электроны внешних слоев которых практически не оказывают воздействия на ориентацию эфитонов межатомного эфирного поля, что сводит силу электромагнитного взаимодействия эфитонов этого поля с эфитонами тока к нулю. Такрв возможный механизм возникновения явления сверхпроводимости.
Рассмотрим механизм проявления основных свойств сверхпроводников с позиции эфирной природы электрического тока. Считается, что электрический ток в сверхпроводнике продолжает течь и после того, когда отключается напряжение. Это утверждение базируется наследующем опыте Камерлинг-Оннеса (1911).
Замкнутый проводник из чистой твердой ртути помещался между полюсами электромагнита. При выключении тока в обмотке электромагнита в проводнике возникал индукционный ток, который в обычных условиях быстро затухал. При охлаждении же проводника жидким гелием до температуры ниже 4,21 К, сопротивление у него резко уменьшалось и индукционный ток продолжал течь по проводнику в течение многих часов без заметного ослабления. Подобный же эксперимент был проведен в 1959 г. Через 2,5 года после начала опыта не было обнаружено никакого уменьшения тока, протекающего по кольцу .
Течение тока по проводнику в отсутствие электрического напряжения (разности потенциалов), даже при нулевом сопротивлении проводника, противоречит законам Природы и здравому смыслу, тем более, что никакими способами и средствами нельзя достичь нулевого сопротивления проводника. В сообщениях об экспериментах с ртутью не указывалось, каким образом измерялась величина тока в сверхпроводнике. Ho он не мог быть методом непосредственного измерения, а, скорее всего, был основан на измерении величины напряженности магнитного поля вокруг проводника, по которой, используя закон Био-Савара, определялась величина тока. Если это так, то с позиции эфирной природы тока эффект продолжительного течения тока в сверхпроводнике без заметного ослабления и в отсутствие напряжения объясняется следующим образом.
Ток - это направленное поступательное движение ориентированных определенным образом эфирных частиц - эфитонов. У эфитонов тока направление электрической составляющей всегда совпадает с направлением тока, а магнитная составляющая перпендикулярна электрической. Движение тока происходит из области высокой концентрации эфитонов (от плюса) в область с меньшей концентрацией (к минусу) по межатомному эфирному полю. Эфитоны тока, являясь бозонами, «принуждают» эфитоны окружающего пространства согласовывать направления их магнитных составляющих со своими. Так возникает магнитное поле вокруг проводника. Плотность эфитонов в проводнике определяется силой тока, протекающего по проводнику. При отключении питания происходит выравнивание плотности эфитонов по всему проводнику с сохранением их ориентации. Соответственно сохраняется и ориентация у эфитонов окружающего пространства, т.е. магнитное поле вокруг проводника сохраняется. А если величина тока в сверхпроводнике измеряется по напряженности магнитного поля вокруг него, то это создает ложную картину наличия в нем тока. Сохранение магнитного поля вокруг сверхпроводника после отключения в Нем тока объясняет следующее интересное его свойство. Магнитик, падающий на сверхпроводящую пластину, зависает в воздухе и продолжает висеть до тех пор, пока сверхпроводящая пластина охлаждена до температуры, ниже критической. Падая, магнитик своим магнитным полем возбуждает в пластине кольцевой ток, магнитное поле которого отталкивает магнитик. После зависания магнитика электрический ток затухает, но магнитное поле вокруг пластины сохраняется, и оно продолжает удерживать магнитик в зависшем состоянии. Сверхпроводимость может разрушаться в случаях, когда по образцу пропускают достаточно большой ток, а также внешним магнитным полем.
Одной из характеристик сверхпроводника является величина максимального тока Imajf который может по нему протекать без заметного сопротивления. И если величина тока I превысит значение Imai, то сверхпроводимость разрушается. Это Объясняется тем, что межатомные расстояния данного сверхпроводника, и, соответственно, «разрывы» в межатомном эфирном поле не в состоянии обеспечить беспрепятственное протекание подобного тока. Как через маленькое отверстие нельзя без сопротивления пропустить большую струю воды, так и через небольшие «разрывы» в межатомном эфирном поле - большой поток эфитонов. При I gt; Imax возникают завихрения, нарушаются ориентация и направление движения эфитонов, что ведет к усилению их взаимодействия с эфирными полями атомов и, соответственно, к появлению сопротивления течению тока.
В результате сверхпроводник переходит в состояние обычного проводника.
Согласно существующим представлениям на природу электромагнетизма, в сверхпроводнике, помещенным в не очень сильное магнитное поле, это поле должно сохраняться. Более того, оно должно сохраняться и после выключения магнитного поля, так как его должны поддерживать токи, индуцированные в сверхпроводнике. Вместе с тем, результаты исследований показывают, что ничего подобного не наблюдается.
Магнитное поле - это эфирное поле, в котором эфитоны ориентированы по магнитной составляющей. Вектор ориентации эфитонов определяется направлением поля и величиной его напряженности. При взаимодействии двух полей в результирующем поле ориентация эфитонов будет равна сумме векторов ориентации эфитонов этих полей. И если в сверхпроводнике, помещенном во внешнее магнитное поле, это поле не сохраняется, то напряженность его настолько мала, что не оказывает заметного влияния на ориентации эфитонов тока, т.е. внешнее магнитное поле как бы «выталкивается» из сверхпроводника. И только у поверхности сверхпроводника возникает небольшой слой, в котором наблюдается результирующее магнитное поле, экранирующее сверхпроводник. Этой слой называется глубиной проникновения, а его толщина примерно равна 10-5-10-6 см. Если же увеличивать величину магнит

ного поля, то при достижении некоторой его напряженности свойство сверхпроводимости у проводника скачком разрушается.
Разрушение сверхпроводимости внешним магнитным полем наступает, когда напряженность этого поля В начинает превышать некоторую критическую величину напряженности магнитного поля Bxp которая зависит от температуры и геометрических размеров сверхпроводника. Чем ниже температура и тоньше сверхпроводник, тем выше Bxp При достижении В = Bxp, сверхпроводник скачком переходит в состояние с нормальной проводимостью.
Строго говоря, в полной мере это справедливо только для чистых сверхпроводников, состоящих из одного металла, таких как ртуть, слово, свинец. Такие сверхпроводники называют сверхпроводниками Ipoda.
У сверхпроводников IIрода, состоящих из сплавов или из металлов с примесями, существует два значения критической величины напряженности магнитного поля: нижнее Bxpii и верхнее В. При напряженности внешнего магнитного поля В lt;
lt; Bispii свойства сверхпроводников I и II рода совпадают. Если же напряженность внешнего магнитного поля находится в пределах Bxpt lt; В lt; Bxpii, то у сверхпроводника одновременно проявляется как области сверхпроводимости, так и области обычной проводимости (смешанное состояние).
В этом состоянии сверхпроводник как бы «пронизан» огромным количеством нитей с нормальной проводимостью, которые направлены вдоль поля и расположены в правильном порядке. В поперечном^ срезе они образуют периодическую структуру, аналогичную кристаллической решетке с треугольными ячейками (рис. 5.8.2). При этом каждая ячейка имеет сердцевину, диаметр которой составляет доли микрона. Сверхпроводимость существует только между нитями. Возможность существования в сверхпроводнике нитей с обычной проводимостью (абрикосовских вихрей) подтверждается результатами исследований. Для этого торец сверхпроводника припудривается тончайшим порошком ферромагнетика. Его частицы собираются в местах, где есть магнитное поле, т.е. в точках выхода нитей. Наблюдения данного торца с помощью электронного микроскопа показывают, что нити располагаются периодически, образуя правильную решетку.

При В lt; Bkph внешнее магнитное поле своим воздействием на эфитоны тока еще не способно оказывать существенного влияния на их ориентацию. Поэтому сопротивления току не возникает и сверхпроводимость сохраняется по всей области проводника. Ho когда Вкргlt; В lt; Bitpii, то внешнее магнитное поле становится уже способным влиять на ориентацию эфитонов тока по магнитной составляющей в области тех граней кристаллической решетки, где межатомные расстояния минимальны. В свою очередь, нарушения ориентации эфитонов ведут к изменению направления их движения и частичному рассеиванию. Так возникают обособленные области сопротивление току, которые располагаются вдоль граней кристаллической решетки сверхпроводника с минимальными межатомными расстояниями. Эти области и образуют «нити» с нормальной проводимостью. Чем сильнее магнитное поле, тем больше нитей возникает в сверхпроводнике.
Когда напряженность,внешнего магнитного поля начинает превышать Bxpt, сверхпроводник превращается в обычный проводник. Физический смысл данного явления заключается в следующем. Внешнее магнитное поле напряженностью В gt; Biipt уже способно своим магнитным полем влиять на ориентацию эфитонов тока по магнитной составляющей по всей области сверхпроводника, что приводит к изменению направления движения эфитонов и их частичному рассеиванию, т.е. к появлению сопротивления. Открытие класса ВТСП показало, что сверхпроводимость может проявляться не обязательно при температурах, близких к абсолютному нулю, а и при достаточно высоких температурах. Она может также проявляться у сплавов, компоненты которых сами хорошими проводниками не являются.
Итак, с позиции эфирной природы электромагнетизма и строения материи наблюдаемая сверхпроводимость в металлах и ставах определяются совместным действием следующих основных факторов: формы кристаллической решетки вещества, особенностями строения электронных оболочек атомов, температурой и внешними условиями (внешним магнитным полем).

Явление сверхпроводимости заключается в том, что при очень низких температурах, близких к абсолютному нулю, некоторые материалы полностью теряют электросопротивление.

Явление сверхпроводимости в материалах

Явление сверхпроводимости впервые открыл в 1911 году голландский ученый . С тех пор ведутся интенсивные поиски новых сверхпроводящих материалов , которые бы позволили использовать это явление в конкретных устройствах с максимальной энергетической и экономической выгодой.

Голландский ученый Г. Камерлинг-Онкес — открыл явление сверхпроводимости

Сверхпроводимость открывает фантастические перспективы перед электротехникой, энергетикой, транспортом. Ведь если сопротивление проводника равно нулю, то по нему можно пропускать сколь угодно большой ток, и при этом совершенно не будет потерь на нагревание. Это мечта электротехников! Из-за нагрева обычных проводов безвозвратно теряется до 20 % всей вырабатываемой электроэнергии, а в линиях электропередач из сверхпроводников потери будут мизерными.

Американский профессор Ричард Мак-Фи подсчитал, что сверхпроводящий кабель толщиной в руку может справиться со всей пиковой мощностью, вырабатываемой электростанциями США. Открывается возможность получения сверхмощных магнитных полей , которые так необходимы при создании термоядерных реакторов, уникальных конструкций генераторов тока, новых физических приборов, поездов на магнитной подушке и многих других полезных вещей.

Явление сверхпроводимости в композитах

Создавая композиты , можно формировать необходимые физические свойства и тем самым решать разнообразные физические задачи.

Одна из них - создание сверхпроводящих устройств . Это очень большая проблема, в работе над ней участвуют люди разных профессий. Задача для физиков и химиков - получение веществ, обладающих сверхпроводимостью. А использование уже известных сверхпроводящих материалов для создания определенного изделия - сверхпроводящего провода - типичная задача для материаловедов.

Сверхпроводящий провод - композит

Многолетние теоретические и экспериментальные исследования привели физиков к такому заключению относительно конструкции сверхпроводящих проводов: обеспечить надежную работу сверхпроводящего провода можно в том случае, если он будет представлять собой композит , состоящий из теплопроводной (например, медной) матрицы, в которой равномерно распределены непрерывные сверхпроводящие, волокна, ориентированные вдоль оси провода.


Сверхпроводящий медный провод

Желательно, чтобы диаметр этих волокон не превышал нескольких микрометров, а их количество измерялось тысячами или десятками тысяч. При этом объемная концентрация волокон в матрице должна составлять 5-7 % , а диаметр всего провода - быть порядка 1 мм.

Сверхпроводящие волокна

Задача материаловедов - научиться получать такой провод, задача непростая. Дело в том, что традиционные методы для ее решения не годятся:

  1. Нет сверхпроводящих волокон микрометрового диаметра, имеющих к тому же длину сотни метров или километров.
  2. Если бы даже таковые существовали, вряд ли удалось бы гарантировать, что они где-то не порвутся в процессе переработки, а это значит, что не было бы уверенности в качестве композита и в его надежности.

Здесь нужно искать какие-то новые, нетрадиционные пути.

Необходимо установить, каким материалам присуще явление сверхпроводимости и на сколько целесообразно использовать их в качестве сверхпроводящих волокон . Наиболее подходящими для этого являются сплав ниобий-титан или интерметаллические соединения, такие как Nb 3 Sn; Nb 3 Ge, Nb 3 Ga, и др. Первый сплав имеет температуру перехода в сверхпроводящее состояние Т к =8-10 К, тогда как у интерметаллидов эта температура составляет 17-20 К.

А чем выше температура перехода, тем экономически и технически проще выполнить сверхпроводящую установку в целом. Но у сплавов есть очень существенное преимущество - они пластичны, их можно обрабатывать давлением, не опасаясь, что они разрушатся. А интерметаллиды - хрупкие, они обработке давлением не поддаются.

Чему отдать предпочтение?

Материаловеды решают, как получить композит из меди, армированной тончайшими проволочками из сплава ниобий-титан, а так же разрабатывают использования более перспективных волокон. При этом они осмысливают результаты, анализируют информацию, которая, возможно, подскажет какие-то новые пути.

В процессе обдумывания появилась мысль, что нужно использовать хорошие пластические свойства ниобийтитанового сплава и меди и попробовать их совместно деформировать. Можно взять медный слиток, просверлить в нем несколько отверстий, вставить в них прутки из ниобиевого сплава и такую композитную заготовку подвергнуть волочению до нужного диаметра.

Но количество волокон в таком композите будет равно количеству просверленных отверстий. Сколько их можно просверлить? Десяток, сто. А нужны десятки тысяч волокон.

Если предположить, что взяли лист бумаги и согнули вдвое, потом еще вдвое, потом еще - и так пятьдесят раз - какую толщину будет иметь полученная стопка бумаги? Пусть этот лист имеет толщину 0,1 мм. Согнув его вдвое, получим 0,1 2=0,2 мм, еще вдвое 0,1 2 2 =0,4 мм, еще вдвое - 0,1 2 3 =0,8 мм.

Каждый перегиб увеличивает толщину в два раза, следовательно, согнув лист пятьдесят раз, мы получим толщину стопки 0,1 2 50 мм. Но 2 50 ≈ 10 15 , следовательно, искомая толщина составит 10 14 мм = 10 8 км=100 000 000 км. Сто миллионов километров! Совершенно неожиданный результат. Это же больше, чем половина расстояния от .

Вдруг стало ясно, как решить задачу. Ведь волокна можно заставить размножаться! Все очень просто, нужно использовать свойства геометрической прогрессии. Можно взять заготовку из меди (предположим, диаметром 100 мм), просверлить в ней отверстие диаметром 25 мм, вставить туда пруток из ниобийтитанового сплава и такую заготовку подвергнуть волочению до диаметра, скажем, 10 мм.

Потом длинный биметаллический пруток нужно разрезать на несколько коротких (пусть на 7) прутков одинаковой длины, уложить их вместе в медный стакан и снова подвергнуть совместному волочению или экструзии. Получится длинный медный пруток, в нем уже будет запрессовано 17 ниобийтитановых стерженьков, диаметр которых намного меньше исходного. Его снова можно разрезать на 7 частей, снова уложить в медный стакан и снова продавить через фильеру.

После этого получим медный прут будет уже 7 2 =49 ниобийтитановых проволочек, диаметр которых еще уменьшится. Если повторить те же операции 5 раз, получим в медной матрице 7 5 =16 807, если 6 раз - 7 6 = 117 649 волокон из сверхпроводящего сплава.

Не обязательно, конечно, разрезать прутки на 7 частей, можно на любое другое число, например, 10, 15, 19 и т. д.

Принципиальное решение найдено. Конечно, будет еще немало препятствий при его реализации, еще многое не будет получаться, но когда есть уверенность, что ты на правильном пути, все препятствия преодолимы.

В качестве сверхпроводящего материала использовался пластичный сплав.

Для многих сверхпроводящих устройств свойства полученного композитного провода недостаточны. Необходимо решить, как ввести в композит хрупкие интерметаллические волокна, например из Nb 3 Sn.

О прежней технологии нечего и говорить - пластической деформации Nb 3 Sn не поддается. Волочить его бесполезно даже совместно с медной матрицей - все равно разрушится.

Хотя то же самое межфазное взаимодействие, с которым столько неприятностей при создании , в данном случае можно заставить выполнять полезную работу. Сделать недруга союзником и помощником.

Можно же поступить так: подвергать волочению совместно с матрицей не соединение Nb 3 Sn, а чистый ниобий, а потом, получив нужную структуру материала, превратить каким-нибудь образом ниобий в Nb 3 Sn. Это, наверное, не так и сложно сделать. Нужно решить, как доставить к ниобиевым волокнам олово, а дальше при нагреве ниобий будет взаимодействовать с ним, образуя нужное нам соединение.

Обращаемся к прежней технологии, только вместо сплава ниобий-титан используем чистый ниобий, а вместо чистой меди - ее сплав с оловом (бронзу). И ниобий, и бронзу можно подвергать пластической деформации. После того как композит бронза - ниобий будет доведен до нужной структуры, то есть ниобиевые волокна будут иметь диаметр несколько микронов, нагреем полученный провод. При нагревании резко ускоряется диффузия, атомы олова из бронзы начнут проникать в ниобий и образовывать с ним соединение.


Бронза как материал для создания сверхпроводимого волокна

Недостаток бронзовой матрицы - пониженная тепло- и электропроводность по сравнению с медью. Уменьшить этот недостаток можно за счет использования смешанной матрицы, включающей наряду с бронзой чистую медь. Но при нагреве медь может реагировать с оловом, что опять ухудшит ее электро- и теплофизические показатели. Чтобы этого не произошло, нужно между медью и бронзой поставить барьеры, которые заодно будут снижать вихревые токи. Удобен для этой цели тантал.

Как выглядит провод, содержащий волокна Nb 3 Sn. Схематически его структура состоит из 19 многоугольников, форма которых близка к шестиугольной,- это проволоки из композита бронза - Nb 3 Sn. Все они расположены в медной матрице. Сечение одной такой проволоки состоит из 187 групп, содержащих волокна из Nb 3 Sn, причем в каждой группе по 19 таких волокон, а между ними - бронзовая матрица. Всего в композитном проводе содержится 67 507 волокон диаметром ~ 5 мкм (вернее, каждое волокно состоит из ниобиевого сердечника, покрытого слоем Nb 3 Sn толщиной ~ 1 мкм).

В завершение процесса изготовления всему композиту придается прямоугольное сочетание, чтобы его можно было плотно намотать на сердечник. Такой прямоугольный композитный проводник, имеющий поперечное сечение 1,75×5,46 мм, способен пропускать ток 5000 А в поле 6 Т и 1250 А в поле 12 Т.