Электрооборудование

Тепловая нагрузка формула. Самостоятельный расчет тепловой нагрузки на отопление: часовых и годовых показателей

Тепловая нагрузка формула. Самостоятельный расчет тепловой нагрузки на отопление: часовых и годовых показателей

Уют и комфорт жилья начинаются не с выбора мебели, отделки и внешнего вида в целом. Они начинаются с тепла, которое обеспечивает отопление. И просто приобрести для этого дорогой нагревательный котел () и качественные радиаторы недостаточно – сначала необходимо спроектировать систему, которая будет поддерживать в доме оптимальную температуру. Но чтобы получить хороший результат, нужно понимать, что и как следует делать, какие существуют нюансы и как они влияют на процесс. В этой статье вы ознакомитесь с базовыми знаниями о данном деле – что такое системы отопления, как он проводится и какие факторы на него влияют.

Для чего необходим тепловой расчет

Некоторые владельцы частных домов или те, кто только собираются их возводить, интересуются тем, есть ли какой-то смысл в тепловом расчете системы отопления? Ведь речь идет о простом загородном коттедже, а не о многоквартирном доме или промышленном предприятии. Достаточно, казалось бы, только купить котел, поставить радиаторы и провести к ним трубы. С одной стороны, они частично правы – для частных домовладений расчет отопительной системы не является настолько критичным вопросом, как для производственных помещений или многоквартирных жилых комплексов. С другой стороны, существует три причины, из-за которых подобное мероприятие стоит провести. , вы можете прочитать в нашей статье.

  1. Тепловой расчет существенно упрощает бюрократические процессы, связанные с газификацией частного дома.
  2. Определение мощности, требуемой для отопления жилья, позволяет выбрать нагревательный котел с оптимальными характеристиками. Вы не переплатите за избыточные характеристики изделия и не будет испытывать неудобств из-за того, что котел недостаточно мощен для вашего дома.
  3. Тепловой расчет позволяет более точно подобрать , трубы, запорную арматуру и прочее оборудование для отопительной системы частного дома. И в итоге все эти довольно дорогостоящие изделия проработают столько времени, сколько заложено в их конструкции и характеристиках.

Исходные данные для теплового расчета системы отопления

Прежде чем приступать к подсчетам и работе с данными, их необходимо получить. Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже.

  1. Площадь постройки, высота до потолков и внутренний объем.
  2. Тип здания, наличие примыкающих к нему строений.
  3. Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
  4. Количество окон и дверей, как они обустроены, насколько качественно утеплены.
  5. Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
  6. Продолжительность отопительного сезона, средний минимум температуры в этот период.
  7. «Роза ветров», наличие неподалеку других строений.
  8. Местность, где уже построен или только еще будет возводиться дом.
  9. Предпочтительная для жильцов температура тех или иных помещений.
  10. Расположение точек для подключения к водопроводу, газу и электросети.

Расчет мощности системы отопления по площади жилья

Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.

Шаг 1. По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м 2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м 2 потребуется примерно 15 000 Вт.

Совет! В некоторых случаях владельцы коттеджей разделяют внутреннюю площадь жилья на ту часть, которой требуется серьезный обогрев, и ту, для которой подобное излишне. Соответственно, для них применяются разные коэффициенты – к примеру, для жилых комнат это 100, а для технических помещений – 50-75.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.

Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м 2 , комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так. «Как сделать , Вы можете прочитать в нашей статье».

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м 3 .

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому.

Прежде чем приступать к закупке материалов и монтажу систем теплоснабжения дома или квартиры, необходимо провести расчет отопления, исходя из площади каждого помещения. Базовые параметры для проектирования обогрева и расчета тепловой нагрузки:

  • Площадь;
  • Количество оконных блоков;
  • Высота потолков;
  • Расположение комнаты;
  • Теплопотери;
  • Теплоотдача радиаторов;
  • Климатический пояс (температура наружного воздуха).

Методика, описанная ниже, применяется для расчета количества батарей для площади помещения без дополнительных источников отопления (теплые полы, кондиционеры и т.д.). Рассчитать отопление можно двумя способами: по простой и усложненной формуле.

До начала проектирования теплоснабжения стоит решить, какие именно радиаторы будут устанавливаться. Материал, из которого изготавливаются батареи обогрева:

  • Чугун;
  • Сталь;
  • Алюминий;
  • Биметалл.

Оптимальным вариантом считаются алюминиевые и биметаллические радиаторы. Самая высокая тепловая отдача у биметаллических устройств. Чугунные батареи долго нагреваются, но после отключения отопления температура в помещении держится довольно долго.

Простая формула для проектирования количества секции в радиаторе обогрева:

K = Sх(100/R), где:

S – площадь помещения;

R – мощность секции.

Если рассматривать на примере с данными: комната 4 х 5 м, биметаллический радиатор, мощность 180 Вт. Расчет будет выглядеть так:

K = 20*(100/180) = 11,11. Итак, для комнаты площадью 20 м 2 необходимой для установки является батарея с минимум 11-ю секциями. Или, например, 2 радиатора по 5 и 6 ребер. Формула используется для помещений с высотой потолка до 2,5 м в стандартном здании советской постройки.

Однако такой расчет системы отопления не учитывает теплопотери здания, также не берется в расчет температура наружного воздуха дома и количество оконных блоков. Поэтому следует также брать во внимание эти коэффициенты, для окончательного уточнения количества ребер.

Вычисления для панельных радиаторов

В случае когда предполагается установка батареи с панелью вместо ребер, используется следующая формула по объему:

W = 41хV, где W – мощность батареи, V – объем комнаты. Число 41 – норма средней годовой мощности обогрева 1 м 2 жилого помещения.

В качестве примера можно взять помещение площадью 20 м 2 и высотой 2,5 м. Значение мощности радиатора по объему помещения в 50 м 3 будет равно 2050 Вт, или 2 кВт.

Расчет теплопотерь

H2_2

Основные потери тепла происходят через стены помещения. Для расчета нужно знать коэффициент теплопроводности наружного и внутреннего материала, из которого построен дом, толщину стены здания, также важна средняя температура наружного воздуха. Основная формула:

Q = S х ΔT /R, где

ΔT – разница температуры снаружи и внутреннего оптимального значения;

S – площадь стен;

R – тепловое сопротивление стен, которое, в свою очередь, рассчитывается по формуле:

R = B/K, где B – толщина кирпича, K – коэффициент теплопроводности.

Пример расчета: дом построен из ракушняка, в камень, находится в Самарской области. Теплопроводность ракушняка в среднем составляет 0,5 Вт/м*К, толщина стены – 0,4 м. Учитывая средний диапазон, минимальная температура зимой -30 °C. В доме, согласно СНИП, нормальная температура составляет +25 °C, разница 55°C.

Если комната угловая, то обе ее стены непосредственно контактируют с окружающей средой. Площадь наружных двух стен комнаты 4х5 м и высотой 2,5 м: 4х2,5 + 5х2,5 = 22,5 м 2 .

R = 0,4/0,5 = 0,8

Q = 22,5*55/0,8 = 1546 Вт.

Кроме того, необходимо учитывать утепление стен помещения. При отделке пенопластом наружной площади теплопотери уменьшаются примерно на 30%. Итак, окончательная цифра составит около 1000 Вт.

Расчет тепловой нагрузки (усложненная формула)

Схема теплопотерь помещений

Чтобы вычислить окончательный расход тепла на отопление, необходимо учесть все коэффициенты по следующей формуле:

КТ = 100хSхК1хК2хК3хК4хК5хК6хК7, где:

S – площадь комнаты;

К – различные коэффициенты:

K1 – нагрузки для окон (в зависимости от количества стеклопакетов);

K2 – тепловой изоляции наружных стен здания;

K3 –нагрузки для соотношения площади окон к площади пола;

K4 – температурного режима наружного воздуха;

K5 – учитывающий количество наружных стен комнаты;

K6 – нагрузки, исходя из верхнего помещения над рассчитываемой комнатой;

K7 – учитывающий высоту помещения.

Как пример, можно рассмотреть ту же комнату здания в Самарской области, утепленную снаружи пенопластом, имеющую 1 окно с двойным стеклопакетом, над которой расположено отапливаемое помещение. Формула тепловой нагрузки будет выглядеть следующим образом:

KT = 100*20*1,27*1*0,8*1,5*1,2*0,8*1= 2926 Вт.

Расчет отопления ориентирован именно на эту цифру.

Расход тепла на отопление: формула и корректировки

Исходя из выше сделанных расчетов, для отопления комнаты необходимо 2926 Вт. Учитывая тепловые потери, потребности составляют: 2926 + 1000 = 3926 Вт (KT2). Для расчета количества секций используют следующую формулу:

K = KT2/R, где KT2 – окончательное значение тепловой нагрузки, R – теплоотдача (мощность) одной секции. Итоговая цифра:

K = 3926/180 = 21,8 (округленная 22)

Итак, чтобы обеспечить оптимальный расход тепла на отопление, необходимо поставить радиаторы, имеющие в сумме 22 секции. Нужно учитывать, что самая низкая температура – 30 градусов мороза по времени составляет максимум 2-3 недели, поэтому можно смело уменьшить число до 17 секций (- 25%).

Если хозяев жилья не устраивает такой показатель количества радиаторов, то следует изначально брать во внимание батареи, имеющие большую мощность теплоснабжения. Либо утеплять стены здания и внутри, и снаружи современными материалами. Кроме того, нужно правильно оценить потребности жилья в тепле, исходя из второстепенных параметров.

Существует еще несколько параметров, влияющих на дополнительный расход энергии впустую, что влечет за собой увеличение тепловой потери:

  1. Особенности наружных стен. Энергии обогрева должно хватить не только для отопления помещения, но и для компенсации потерь тепла. Стена, контактирующая с окружающей средой, со временем от перепадов температуры наружного воздуха начинает пропускать внутрь влагу. Особенно следует хорошо утеплить и провести качественную гидроизоляцию для северных направлений. Также рекомендуется изолировать поверхность домов, находящихся во влажных регионах. Высокий годовой уровень осадков неизбежно приведет к повышению теплопотерь.
  2. Место установки радиаторов. Если батарея монтирована под окном, то происходит утечка энергии обогрева через его конструкцию. Уменьшить потери тепла поможет установка качественных блоков. Также нужно рассчитывать мощность прибора, установленного в подоконной нише – она должна быть выше.
  3. Условность годовой потребности тепла для зданий в разных часовых поясах. Как правило, по СНИПам рассчитывается усредненная температура (усредненный годовой показатель) для зданий. Однако потребности в тепле бывают существенно ниже, если, например, на холодную погоду и низким показателям наружного воздуха приходится в общей сложности 1 месяц в году.

Совет! Чтобы максимально снизить потребности в тепле зимой, рекомендуется установить дополнительные источники обогрева воздуха внутри помещения: кондиционеры, передвижные обогреватели и пр.

Проектирование и тепловой расчет системы отопления – обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий – определение оптимальных параметров котла и системы радиаторов.

Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.

В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.

Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Галерея изображений

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери;
  • определить количество и условия использования теплоносителя;
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

Для нежилых помещений офисного типа площадью до 100 м 2:

  • 22-24°С – оптимальная температура воздуха;
  • 1°С – допустимое колебание.

Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Комфортная температура помещения у каждого человека “своя”. Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно – это всё достаточно индивидуально

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

И всё же для конкретных помещений квартиры и дома имеем:

  • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
  • 19-21°С – кухня, туалет, допуск ±2°С;
  • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
  • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

В домах, которые сдавались в эксплуатацию в последние годы, обычно данные правила выполнены, поэтому расчет отопительной мощности оборудования проходит на основе стандартных коэффициентов. Индивидуальный расчет может проводиться по инициативе собственника жилья или коммунальной структуру, занимающейся поставкой тепла. Это случается при стихийной замене радиаторов отопления, окон и других параметров.

В квартире, обслуживаемой коммунальным предприятием, расчет тепловой нагрузки может быть проведен только при передаче дома с целью отслеживания параметров СНИП в принимаемом на баланс помещении. В противном случае это делает владелец квартиры, чтобы рассчитать свои теплопотери в холодное время года и устранить недостатки утепления – использовать теплоизолирующую штукатурку, поклеить утеплитель, монтировать на потолках пенофол и установить металлопластиковые окна с пятикамерным профилем.

Расчет тепловых утечек для коммунальной службы с целью открытия спора, как правило, не дает результата. Причина в том, что существуют стандарты теплопотерь. Если дом введен в эксплуатацию, то требования выполнены. При этом приборы отопления соответствуют требованиями СНИП. Замена батарей и отбор большего количества тепла запрещен, так как радиаторы установлены по утвержденным строительным стандартам.

Частные дома отапливаются автономными системами, что при этом расчет нагрузки осуществляется для соблюдения требований СНИП, и коррекции отопительной мощности проводится в совокупности с работами по уменьшению теплопотерь.

Расчеты можно сделать вручную, используя несложную формулу или калькулятор на сайте. Программа помогает рассчитать необходимую мощность системы отопления и утечки тепла, характерные для зимнего периода. Расчеты осуществляются для определенного теплового пояса.

Основные принципы

Методика включает в себя целый ряд показателей, которые в совокупности позволяют оценить уровень утепления дома, соответствие стандартам СНИП, а также мощность котла отопления. Как это работает:

По объекту проводится индивидуальный или усредненный расчет. Основной смысл проведения подобного обследования состоит в том, что при хорошем утеплении и малых утечках тепла в зимний период можно использовать 3 кВт. В здании той же площади, но без утепления, при низких зимних температурах потребляемая мощность составит до 12 кВт. Таким образом, тепловую мощность и нагрузку оценивают не только по площади, но и по теплопотерям.

Основные теплопотери частного дома:

  • окна – 10-55%;
  • стены – 20-25%;
  • дымоход – до 25%;
  • крыша и потолок – до 30%;
  • низкие полы – 7-10%;
  • температурный мост в углах – до 10%

Данные показатели могут варьироваться в лучшую и худшую сторону. Их оценивают в зависимости от типов установленных окон, толщины стен и материалов, степени утепления потолка. Например, в плохо утепленных зданиях теплопотери через стены могут достигать 45% процентов, в этом случае к системе отопления применимо выражение «топим улицу». Методика и
калькулятор помогут оценить номинальные и расчетные значения.

Специфика расчетов

Данную методику еще можно встретить под названием «теплотехнический расчет». Упрощенная формула имеет следующий вид:

Qt = V × ∆T × K / 860, где

V – объем помещения, м³;

∆T – максимальная разница в помещении и вне помещения, °С;

К – оценочный коэффициент тепловых потерь;

860 – коэффициент перехода в кВт/час.

Коэффициент тепловых потерь К зависит от строительной конструкции, толщины и теплопроводности стен. Для упрощенных расчетов можно использовать следующие параметры:

  • К = 3,0-4,0 – без теплоизоляции (неутепленное каркасное или металлическое строение);
  • К = 2,0-2,9 – малая теплоизоляция (кладка в один кирпич);
  • К = 1,0-1,9 – средняя теплоизоляция (кирпичная кладка в два кирпича);
  • К = 0,6-0,9 – хорошая теплоизоляция по стандарту.

Данные коэффициенты усредненные и не позволяют оценить теплопотери и тепловую нагрузку на помещение, поэтому рекомендуем воспользоваться онлайн-калькулятором.

Нет записей по теме.

Тепловая нагрузка подразумевает под собой количество тепловой энергии, необходимое для поддержания комфортной температуры в доме, квартире или отдельной комнате. Под максимальной часовой нагрузкой на отопление подразумевается количество тепла, необходимое для поддержания нормированных показателей в течение часа в самых неблагоприятных условиях.

Факторы, влияющие на тепловую нагрузку

  • Материал и толщина стен. К примеру, стена из кирпича в 25 сантиметров и стена из газобетона в 15 сантиметров способны пропустить разное количество тепла.
  • Материал и структура крыши. Например, теплопотери плоской крыши из железобетонных плит значительно отличаются от теплопотерь утепленного чердака.
  • Вентиляция. Потеря тепловой энергии с отработанным воздухом зависит от производительности вентиляционной системы, наличия или отсутствия системы рекуперации тепла.
  • Площадь остекления. Окна теряют больше тепловой энергии по сравнению со сплошными стенами.
  • Уровень инсоляции в разных регионах. Определяется степенью поглощения солнечного тепла наружными покрытиями и ориентацией плоскостей зданий по отношению к сторонам света.
  • Разность температур между улицей и помещением. Определяется тепловым потоком через ограждающие конструкции при условии постоянного сопротивления теплопередаче.

Распределение тепловой нагрузки

При водяном отоплении максимальная тепловая мощность котла должна равняться сумме тепловой мощности всех устройств отопления в доме. На распределение устройств отопления влияют следующие факторы:

  • Жилые комнаты в середине дома – 20 градусов;
  • Угловые и торцевые жилые комнаты – 22 градуса. При этом за счет более высокой температуры не промерзают стены;
  • Кухня – 18 градусов, поскольку в ней имеются собственные источники тепла – газовые или электрические плиты и пр.
  • Ванная комната – 25 градусов.

При воздушном отоплении тепловой поток, который поступает в отдельное помещение, зависит от пропускной способности воздушного рукава. Зачастую простейшим способом его регулировки является подстройка положения решеток вентиляции с контролем температуры вручную.

При системе отопления, где применяется распределительный источник тепла (конвектора, теплые полы, электрообогреватели и т.д.), необходимый режим температуры устанавливается на термостате.

Методики расчета

Для определения тепловой нагрузки существует несколько способов, обладающие различной сложностью расчета и достоверностью полученных результатов. Далее представлены три наиболее простые методики расчета тепловой нагрузки.

Метод №1

Согласно действующему СНиП, существует простой метод расчета тепловой нагрузки. На 10 квадратных метров берут 1 киловатт тепловой мощности. Затем полученные данные умножаются на региональный коэффициент:

  • Южные регионы имеют коэффициент 0,7-0,9;
  • Для умеренно-холодного климата (Московская и Ленинградская области) коэффициент равен 1,2-1,3;
  • Дальний Восток и районы Крайнего Севера: для Новосибирска от 1,5; для Оймякона до 2,0.

Расчет на примере:

  1. Площадь здания (10*10) равна 100 квадратных метров.
  2. Базовый показатель тепловой нагрузки 100/10=10 киловатт.
  3. Это значение умножается на региональный коэффициент, равный 1,3, в итоге получается 13 кВт тепловой мощности, которые требуются для поддержания комфортной температуры в доме.

Обратите внимание! Если использовать эту методику для определения тепловой нагрузки, то необходимо еще учесть запас мощности в 20 процентов, чтобы компенсировать погрешности и экстремальные холода.

Метод №2

Первый способ определения тепловой нагрузки имеет много погрешностей:

  • Разные строения имеют разную высоту потолков. Учитывая то, что обогревается не площадь, а объем, этот параметр очень важен.
  • Через двери и окна проходит больше тепла, чем через стены.
  • Нельзя сравнивать городскую квартиру с частным домом, где снизу, сверху и за стенами не квартиры, а улица.

Корректировка метода:

  • Базовый показатель тепловой нагрузки равняется 40 ватт на 1 кубический метр объема помещения.
  • Каждая дверь, ведущая на улицу, добавляет к базовому показателю тепловой нагрузки 200 ватт, каждое окно – 100 ватт.
  • Угловые и торцевые квартиры многоквартирного дома имеют коэффициент 1,2-1,3, на который влияет толщина и материал стен. Частный дом обладает коэффициентом 1,5.
  • Региональные коэффициенты равны: для Центральных областей и Европейской части России – 0,1-0,15; для Северных регионов – 0,15-0,2; для Южных регионов – 0,07-0,09 кВт/кв.м.

Расчет на примере:

Метод №3

Не стоит обольщаться – второй способ расчета тепловой нагрузки также весьма несовершенен. В нем весьма условно учтено тепловое сопротивление потолка и стен; разность температур между наружным воздухом и воздухом внутри.

Стоит отметить, чтобы поддерживать внутри дома постоянную температуру необходимо такое количество тепловой энергии, которое будет равняться всем потерям через вентиляционную систему и ограждающие устройства. Однако, и в этом методе расчеты упрощены, так как невозможно систематизировать и измерить все факторы.

На теплопотери влияет материал стен – 20-30 процентов потери тепла. Через вентиляцию уходит 30-40 процентов, через крышу – 10-25 процентов, через окна – 15-25 процентов, через пол на грунте – 3-6 процентов.

Чтобы упростить расчеты тепловой нагрузки, подсчитываются тепловые потери через ограждающие устройства, а затем это значение просто умножается на 1,4. Дельта температур измеряется легко, но взять данные про термическое сопротивление можно только в справочниках. Ниже приведены некоторые популярные значения термического сопротивления:

  • Термическое сопротивление стены в три кирпича равно 0,592 м2*С/Вт.
  • Стены в 2,5 кирпича составляет 0, 502.
  • Стены в 2 кирпича равно 0,405.
  • Стены в один кирпич (толщина 25 см) равно 0,187.
  • Бревенчатого сруба, где диаметр бревна 25 см – 0,550.
  • Бревенчатого сруба, где диаметр бревна 20 сантиметров – 0,440.
  • Сруба, где толщина сруба 20 см – 0,806.
  • Сруба, где толщина 10 см – 0,353.
  • Каркасной стены, толщина которой 20 см, утепленной минеральной ватой – 0,703.
  • Стены из газобетона, толщина которой 20 см – 0,476.
  • Стены из газобетона, толщина которой 30 см – 0,709.
  • Штукатурки, толщина которой 3 см – 0,035.
  • Потолочного или чердачного перекрытия – 1,43.
  • Деревянного пола – 1,85.
  • Двойной деревянной двери – 0,21.

Расчет по примеру:

Вывод

Как видно из расчетов, способы определения тепловой нагрузки обладают существенными погрешностями . К счастью, избыточный показатель мощности котла не навредит:

  • Работа газового котла на уменьшенной мощности осуществляется без падения коэффициента полезного действия, а работа конденсационных устройств при неполной нагрузке осуществляется в экономичном режиме.
  • То же относится и к соляровым котлам.
  • Показатель коэффициента полезного действия электрического нагревательного оборудования равен 100 процентам.

Обратите внимание! Работа твердотопливных котлов на мощности меньше номинального значения мощности противопоказана.

Расчет тепловой нагрузки на отопление является важным фактором, вычисления которого обязательно необходимо выполнять перед началом создания системы отопления. В случае подхода к процессу с умом и грамотного выполнения всех работ гарантируется безотказная работа отопления, а также существенно экономятся деньги на лишних затратах.