Электрооборудование

Вращающееся магнитное поле статора. Образование вращающегося магнитного поля

Вращающееся магнитное поле статора. Образование вращающегося магнитного поля

Условия получения:

1) наличие не менее двух обмоток;

2) токи в обмотках должны отличаться по фазе

3) оси обмоток должны быть смещены в пространстве.

В трёхфазной машине при одной паре полюсов (р=1) оси обмоток должны быть смещены в пространстве на угол 120°, при двух парах полюсов (р=2) оси обмоток должны быть смещены в пространстве на угол 60° и т.д.

Рассмотрим магнитное поле, которое создаётся с помощью трёхфазной обмотки, имеющей одну пару полюсов (р=1). Оси обмоток фаз смещены в пространстве на угол 120° и создаваемые ими магнитные индукции отдельных фаз (BA, BB, BC) смещены в пространстве тоже на угол 120°.

Магнитные индукции полей, создаваемые каждой фазой, как и напряжения, подведённые к этим фазам, являются синусоидальными и отличаются по фазе на угол 120°.

Принцип действия

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на стержни ротора и по закону магнитной индукции наводит в них ЭДС. В стержнях ротора под действием наводимой ЭДС возникает ток. Токи в стержнях ротора создают собственное магнитное поле стержней, которые вступают во взаимодействие с вращающимся магнитным полем статора. В результате на каждый стержень действует сила, которая складываясь по окружности, создает вращающийся электромагнитный момент ротора.

Приняв начальную фазу индукции в фазе А (φA) равной нулю, можно записать:

Магнитная индукция результирующего магнитного поля определяется векторной суммой этих трёх магнитных индукций.

Найдём результирующую магнитную индукцию с помощью векторных диаграмм, построив их для нескольких моментов времени.

Нарисовать векторные диаграммы

Как следует из диаграмм, магнитная индукция B результирующего магнитного поля машины вращается, оставаясь неизменной по величине. Таким образом, трёхфазная обмотка статора создаёт в машине круговое вращающееся магнитное поле. Направление вращения магнитного поля зависит от порядка чередования фаз. Величина результирующей магнитной индукции.

Частота вращения магнитного поля зависит от частоты сетии числа пар полюсов магнитного поля.

, [об/мин].

При этом частота вращения магнитного поля не зависит от режима работы асинхронной машины и её нагрузки.

При анализе работы асинхронной машины часто используют понятие о скорости вращения магнитного поля ω0, которая определяется соотношением:

, [рад/сек].

Для сравнения частоты вращения магнитного поля и ротораввели коэффициент, который назвали скольжением и обозначили буквой. Скольжение может измеряться в относительных единицах и в процентах.

или

Процессы в асинхронной машине Цепь статора

а) ЭДС статора.

Магнитное поле, создаваемое обмоткой статора, вращается относительно неподвижного статора с частотой и будет наводить в обмотке статора ЭДС. Действующее значение ЭДС, наводимой этим полем в одной фазе обмотки статора определяется выражением:

где: =0.92÷0.98 – обмоточный коэффициент;

–частота сети;

–число витков одной фазы обмотки статора;

–результирующее магнитное поле в машине.

б) Уравнение электрического равновесия фазы обмотки статора.

Это уравнение составлено по аналогии с катушкой с сердечником, работающей на переменном токе.

Здесь и– напряжение сети и напряжение, подведённое к обмотке статора.

–активное сопротивление обмотки статора, связанное с потерями на нагрев обмотки.

–индуктивное сопротивление обмотки статора, связанное с потоком рассеяния.

–полное сопротивление обмотки статора.

–ток в обмотке статора.

При анализе работы асинхронных машин часто принимают. Тогда можно записать:

Из этого выражения следует, что магнитный поток в асинхронной машине не зависит от её режима работы, а при заданной частоте сетизависит только от действующего значения приложенного напряжения. Аналогичное соотношение имеет место и в другой машине переменного тока – в трансформаторе.

Во всех режимах работы асинхронный машин всегда присутствует вращающееся магнитное поле статора. Оно создаётся тремя обмотками, сдвинутыми в пространстве относительно друг друга на 120 градусов, скорость этого вращения равна:

где:

n1 – Скорость вращения магнитного поля статора;

f – Частота питающей сети (50Гц);

p – Количество пар полюсов (max 12 min 2);

Из формулы понятно, что скорость вращения магнитного поля статора асинхронной машины зависит от: частоты питающей сети, на территории стран СНГ она постоянна и равняется 50Гц, от количества пар полюсов в статоре асинхронной машины. Скорость вращения ротора синхронной машины напрямую зависит от скорости вращения магнитного поля статора.

Так же известно, что в их конструкции присутствует ротор, вращающаяся часть, которая может вращаться с различными скоростями. В целом можно сказать, что в асинхронных машинах скорость вращения изменяется только у ротора. Многочисленные наблюдения показали, что в зависимости от частоты вращения ротора асинхронной машины, с ней происходят различные явления. Для упрощения понимания этого вопроса, был введен параметр S – разность скоростей вращения магнитного поля статора, от скорости вращения ротора:

Скольжение

Эти скорости обозначают буквенно: n – скорость вращения ротора; n1 – скорость вращения магнитного поля.

Режим работы асинхронной машины зависит именно от этого значения разности скоростей вращения магнитного поля статора и скорости вращения ротора.

Различают следующие режимы работы асинхронных машин:

  • Режим двигателя;
  • Режим генератора;
  • Режим электромагнитного тормоза;
  • Режим динамического торможения;

Режим двигателя

Асинхронные двигатели стали очень популярна и наиболее часто применяемая в электроприводах. Режим электродвигателя применяется для приведения во вращение различные устройства, механизмы, насосы, лебедки, редуктора и т.д. путем преобразования электрической энергии в механическую. Как уже многим известно, что её принцип действия объясняется взаимодействием двух магнитных полей статора и ротора. Магнитное поле статора создается системой трехфазных обмоток и магнитопровода, расположенных непосредственно на статоре (корпусе асинхронной машины). Это поля является вращающимся, так как в трех фазной цепи, ток протекает из фазы А в фазу В, из фазы В в фазу С, а из фазы С обратно в фазу А. Обмотки каждой фазы располагают на статоре так, что бы равномерно заполнить всю окружность, т.е. окружность занимает 360 градусов, имея три обмотки, делим 360/3 получаем 120 градусов на каждую обмотку.

Это вращающееся магнитное поле пронизывая ротор, индуцирует в нем ЭДС, так как ротор короткозамкнутый, то по нему протекает ток. Протекание тока вызывает образование у ротора собственного магнитного поля. Поле статора, которое вращается с скоростью n1 взаимодействует с полем ротора, которое является неподвижным, и старается остановить, затормозить поле статора. Так как ротор закреплен на подшипниках, он способен свободно вращаться вокруг своей оси. Получается, что магнитное поля статора притягивает поле ротора, увлекает его за собой с определенной силой, в результате чего и сам ротор начинает вращаться.

Особенностью этого режима является то, что скорость вращения магнитного поля статора и скорость вращения ротора не должны быть равными, тем более, скорость ротора всегда меньше. Если же каким-либо образом их скорости будут равными, то исходя из явления электромагнитной индукции, обязательна разность магнитного потока, пересекающего тот или иной контур, что и обеспечивается отставанием ротора от магнитного поля статора. Если же все-таки их скорости сравняются, по короткозамкнутой обмотке ротора перестанет протекать электрический ток, исчернит его магнитное поле и ротор не будит увлекаться полем статора. Скольжение в режиме электродвигателя должно быть положительным числом и не равным нулю.

Стоит добавить, что режим двигателя у асинхронных машин является самым часто используемым.

Режим генератора

Режим генератора у асинхронных машин является полной противоположностью режиму двигателя. Самым главным отличием является то, что при режиме двигателя, асинхронная машина потребляет из сети электрическую энергию. А в режиме генератора наоборот отдает в сеть выработанную электрическую энергию.

Режим генератора возможен только тогда, когда скорость вращения ротора n будет выше скорости вращающегося магнитного поля статора. В этом случаи скольжение S будит отрицательным. Для этого необходимо ускорить ротор синхронной машины, то есть посадить на вал ротора, какой-либо механизм (турбина, редуктор, другой двигатель).


Допустим ротор мы разогнали до 3500 оборотов в минуту, а скорость магнитного поля статора 3000 оборотов в минуту, определим скольжение:

Режим генератора у асинхронных машин не является часто используемым, и может применяться в узких специализированных областях, в маломощных электростанциях.

Стоит отметить, что при таком режиме работы, отдаваемая в сеть электроэнергия совпадает по частоте с частотой самой сети. Так как она зависит только от частоты вращения магнитного поля статора, которая как мы знаем не изменяется.

В использовании таких генераторов есть огромный плюс, в его устройстве отсутствуют скользящие контакты, вращающиеся обмотки, это обеспечивает надежную и долговременную эксплуатацию. Так же эти генераторы мало восприимчивы к коротким замыканиям в сети. Еще не маловажным условием работы является, наличие остаточной намагниченности ротора, которое усиливается конденсаторными установками, включенными в цепи статорных обмоток.

Режим электромагнитного торможения

Режим электромагнитного торможения является еще более специфичными специализированным. Вся суть этого режима в том, что если вращение ротора асинхронной машины не совпадает с направлением вращения магнитного поля статора, то ротор будит затормаживаться под действием этого магнитного поля статора. Такой режим возможен только при асинхронной машины, так как путем переключения двух фаз достигается изменение направления вращения магнитного поля статора, и используется в различных грузоподъемных и транспортировочных устройствах. Этот режим часто называют режимом торможения противотоком или противовключением. При таком режиме, если нам необходимо остановить двигатель, при полной остановке, статор необходимо отключить от сети, так как вал начнет вращаться в обратном направлении.

Режим динамического торможения

В таком режиме, асинхронная машина отключается от трех фазной сети, и на обмотки статора подается постоянный ток. Таким образом на статоре образуется постоянное магнитное поле (постоянный магнит), которое тормозит ротор двигателя.

Все выше представленные режимы работы асинхронных машин, кроме режима двигателя, являются специализированными, и используются только в определенных установках, устройствах, станках и т.д.

Вращающееся магнитное поле

Магнитное поле, ось которого вращается в пространстве с постоянной угловой частотой, называется вращающимся магнитным полем. Если при этом величина индукции в любой точке оси магнитного поля остается постоянной, то такое поле называется круговым вращающимся магнитным полем. Это связано с тем, что его можно изобразить вращающимся в пространстве вектором постоянной длины, конец которого при вращении описывает окружность.

Формирование кругового вращающегося магнитного поля является необходимым условием работы асинхронных и синхронных машин. Для этого в пазы пакета статора (рис. 1) укладывают три одинаковые обмотки (катушки), состоящие из двух частей, располагающихся диаметрально противоположно в пакете статора. Причем оси трех обмоток статора смещены по отношению друг к другу на 120° .

Если схематически представить обмотки статора состоящими из одного витка, то на статоре будет только шесть пазов, в каждом из которых будет лежать половина витка обмотки. Обозначим начала витков обмоток буквами A , B и C , а концы витков буквами X, Y и Z . Обозначим также направления протекания тока в витках обмоток, считая положительным направление от начала к концу обмотки. Тогда для положительных значений тока стороны A , B и C будут обозначены крестом, а стороны X, Y и Z – точкой(рис.2).

При подключении обмоток статора к трехфазной сети переменного тока в обмотках будут протекать токи , смещенные во времени (по фазе) друг относительно друга на 120° электрических так, как это показано на рисунке. Выделим в пределах периода шесть моментов времени, отстоящих друг от друга на 60° эл. и для каждого из них отметим направления токов в обмотках с учетом знаков токов в соответствующий момент времени. Нетрудно заметить, что в любой момент токи в двух половинах пакета статора протекают в разных направлениях и образуют магнитное поле, ось которого совпадает с осью разделения направлений токов, т.е. через каждые 60° эл. ось магнитного поля поворачивается в пространстве на 60° . Таким образом, с помощью этой симметричной системы обмоток, питающейся от симметричной системы трехфазной сети мы получили круговое вращающееся магнитное поле.

Угловая частота, с которой магнитное поле вращается в пространстве полностью определяется частотой питающей сети и электрической схемой обмоток. Если увеличить число витков вдвое и соединить их в обмотки так, чтобы по окружности пакета статора располагались две чередующиеся пары групп с одинаковым направлением тока, то образуется магнитное поле с двумя парами полюсов (рис. 3). Оно также будет вращаться в пространстве, перемещаясь за один период колебаний токов на угол соответствующий расстоянию между одноименными полюсами, т.е. на 180° . Значит, угловая скорость вращения поля будет вдвое меньшей.

Таким образом, угловая частота вращения магнитного поля равна [рад/с] или [об/мин], где - частота питающей сети, а p - число пар полюсов обмотки статора. Отсюда возникает ряд возможных скоростей вращения магнитного поля для промышленной сети частотой 50 Гц: 3000, 1500, 1000, 750, 600 и т.д. [об/мин]

Направление вращения магнитного поля определяется последовательностью подключения обмоток к трехфазной сети. Для изменения направления вращения достаточно поменять местами точки подключения двух любых обмоток.

Основные понятия и принцип действия асинхронной машины

Конструктивная схема асинхронной машины показана на рисунке 1. Она состоит из пакета статора 1 с пазами 2 для укладки обмотки и цилиндрического ротора 3 в круглых пазах которого находятся проводники (стержни) 4 его обмотки. Стержни замкнуты по краям кольцами (на рисунке не показаны), поэтому обмотка ротора называется короткозамкнутой. Такой тип ротора наиболее распространен у асинхронных машин, т.к. он прост, надежен и технологичен. Если мысленно извлечь обмотку ротора из пакета ротора, то она будет иметь вид, показанный на рисунке 2. Этот тип обмотки называется "беличья клетка".

Кроме роторов типа "беличья клетка" в асинхронных машинах применяются ротора, у которых в пазах уложена такая же трехфазная обмотка (рис 3 1), как в статоре. Для подключения к внешним электрическим цепям (5) концы обмотки выведены наружу через контактные кольца (3) и щетки (4)(см. рисунок). Такой тип ротора называется фазным

Обмотка ротора не имеет электрического соединения с внешними цепями и ток в ней возникает в результате электромагнитной индукции. Этот процесс происходит следующим образом. Трехфазная обмотка статора подключается к сети переменного тока и ток обмотки () формирует круговое вращающееся магнитное поле. Поле статора () вращается в пространстве относительно оси вращения ротора () и пересекает стержни его обмотки. В результате в них наводится ЭДС индукции () и т.к. концы стержней ротора электрически замкнуты кольцами, то в них под действием ЭДС формируется электрический ток (). Взаимодействие протекающего в стержнях тока с внешним магнитным полем вызывает действие силы (F ) и соответствующего электромагнитного момента (M ), приводящего ротор во вращение (). Таким образом, возникновение вращающего момента возможно только в случае, если стержни ротора пересекают магнитное поле статора, а для этого необходимо, чтобы ротор вращался со скоростью отличной от скорости вращения магнитного поля, т.е. чтобы он вращался несинхроннно с полем. Отсюда происходит название этой машины – асинхронная.

Сказанное выше можно представить в виде логической последовательности , в которой существует только один условный переход от вращающегося поля к ЭДС и току ротора. Если , то поле и ротор вращаются синхронно и ЭДС ротора не возбуждается. Такой режим называется холостым ходом и он может создаваться только за счет внешнего вращающего момента.

Если скорость вращения ротора меньше скорости вращения поля, то электромагнитный момент действующий на ротор положительный и стремится разогнать его. При скорости ротора выше скорости поля направления ЭДС и тока в роторе меняются на противоположные. Электромагнитный момент также меняет знак и становится тормозящим.

Для описания электромеханических процессов в асинхронной машине обычно пользуются понятием скольжения s. Оно равно разности скоростей или частот вращения магнитного поля ()и ротора () отнесенной к скорости или частоте вращения магнитного поля . Отсюда скорость или частоту вращения можно выразить через скольжение . Скорость или частоту вращения магнитного поля называют также синхронной скоростью или частотой.

Основной магнитный поток и потоки рассеяния. Индуктивные сопротивления


В обмотке ротора протекают токи, наводимые ЭДС индукции. Они формируют собственное поле ротора вращающееся относительно тела ротора с частотой скольжения . Таким образом, поле ротора участвует в двух вращательных движениях – движении относительно тела тора и вместе с ним относительно статора с частотой . Следовательно, частота вращения поля ротора равна , т.е. поле ротора вращается в пространстве с такой же частотой, что и поле статора. Поэтому эти поля неподвижны друг относительно друга и образуют единое поле машины. Основная часть магнитного потока поля охватывает обмотки статора и ротора, пересекая воздушный зазор . Эта часть называется основным магнитным потоком Ф. Две другие части сцепляются только с одной из обмоток и образуют соответствующие потоки рассеяния и

Обмотка ротора пересекается основным магнитным потоком с частотой . Отсюда ЭДС обмотки – , где – ЭДС обмотки ротора при частоте статора , т.е. при неподвижном роторе.

Магнитодвижущие силы и токи статора и ротора

Оптимальное преобразование энергии в асинхронной машине возможно при условии, что магнитодвижущие силы (МДС) обмоток распределены вдоль окружности зазора по синусоидальному закону. Однако обмотки статора представляют собой катушки, создающие МДС с распределением близким к прямоугольному. Поэтому их разделяют на секции и раскладывают вдоль зазора в соседние пазы. В результате МДС приобретает распределение близкое к синусоидальному, но если выделить основную пространственную гармонику, которая собственно и требуется для работы машины, то окажется, что расчет МДС по выражению справедливому для сосредоточенной обмотки , где w и I – число витков и ток в обмотке, окажется завышенным. Поэтому для расчета МДС асинхронной машины вводят т.н. обмоточный коэффициент , учитывающий конструктивные особенности обмоток – распределение вдоль зазора, скос пазов и укорочение шага. В результате введения этого коэффициента реальная распределенная обмотка как бы преобразуется в сосредоточенную обмотку, которая при токе равном току в реальной обмотке создает МДС с синусоидальным распределением, соответствующим МДС основной гармонике реальной обмотки.

С учетом сказанного полные МДС, создаваемые всеми обмотками статора и ротора, можно представить в виде

Где - число фаз; - число витков; - обмоточные коэфициенты соответственно статора и ротора.

Простота технической реализации кругового движения для вращения магнитного поля заложена в основу работы всех 3-х фазных машин, включая электрические генераторы и двигатели.


Условия создания вращающегося магнитного поля . Его создание достигается одновременным выполнением двух условий:

1. Размещением трех обмоток с одинаковыми электрическими параметрами в одной плоскости вращения с равным угловым смещением (Δα=360°/3=120°) ;

2. Пропусканием по этим обмоткам равных по величине и форме синусоидальных гармоник токов, которые сдвинуты по времени на треть периода (по угловой частоте на 120°).


Сформированное круговое магнитное поле станет вращаться. Постоянная индукция созданного поля имеет максимальную амплитуду с величиной Bmax, направленной по оси поля со скоростью постоянного углового вращения ωп.

Расположение трех обмоток катушек в одной плоскости вращения показано на рисунке и соответствует требованиям первого условия.

По обмоткам катушек А-Х , В-Y , С-Z от их начала (входа) А , В , С к окончанию (выходу) X , Y , Z пропускается электрический симметричный 3-х фазный ток, значение которого для любого мгновения времени вычисляется по выражениям:

iA=Im∙sin(ωt+0);
iВ=Im∙sin(ωt-120°);
iС=Im∙sin(ωt+120°)
.


Каждый виток обмотки катушек формирует свое индивидуальное магнитное поле, у которого индукция пропорциональна току, проходящему по витку (В=k*i) . Суммирование полей всех витков в каждой катушке формирует симметричную относительно центра вращения (начала отсчета координат) систему из трех индукций:

ВА=Вm∙sin(ωt+0);
ВB=Вm∙sin(ωt+0);
ВC=Вm∙sin(ωt+0)
.


Магнитные поля в виде векторов индукции ВА , ВB , ВC имеют в пространстве строго выраженное ориентирование, определяемое известным правилом буравчика по отношению к положительному направлению тока в обмотке катушки.

Общий (результирующий) вектор магнитной индукции В от создаваемого магнитного поля в электрической машине рассчитывается геометрическим сложением фазных векторов ВA , ВB , ВC от всех катушек.

В частном случае для временной оценки вектора магнитной индукции выбирается несколько точек периода, например те, которые соответствуют 0, 30 и 60 градусам его поворота относительно начальной ординаты.

Пространственное расположение векторов индукции каждой фазы и полученного от их геометрического сложения результирующего вектора для каждого случая на комплексной плоскости демонстрируют графики.


Результаты графического сложения удобно анализировать после их представления отдельной таблицей:


Результаты проведенного анализа указывают, что полный вектор индукции В всех магнитных полей фаз машины имеет одно постоянное значение во всех рассматриваемых точках. Аналогичные выводы получатся при математическом решении аналогичной задачи для любых других временных моментов.

Свойства вектора магнитной индукции В :

Направление его вращения в пространстве соответствует движению по ближайшему направлению от катушки А в сторону катушки В ;

Угловая скорость движения вектора ωп соответствует угловой частоте проходящего по виткам обмоток тока и зависит от количества катушек. Она определяется по выражению: ωп=ωp=2πp [рад/с], .


Основным показателем общего магнитного поля считают частоту его вращения, выражаемую количеством сделанных оборотов за одну минуту. Она определяется формулой: n=60fр .

Число р влияет на картинки распределения поля в пространстве. Для р =1 формируется одна пара (два противоположных: северный и южный) полюсов. Для р =2 появляется 2 пары либо 4 противоположных полюса.

Последовательное увеличение числа р ведет к аналогичному возрастанию количества противоположных полюсов, поэтому значения р называют числами пар полюсов у магнитного поля.

Пульсирующее поле. При питании однофазной обмотки переменным током возникает магнитное поле, пульсирующее во времени с частотой изменения тока. В этом случае при синусоидальном распределении МДС (рис. 3.12) в каждой точке воздушного зазора, расположенной на расстоянии х от оси обмотки, действует МДС

Fx = F0 cos (πx/τ) = Fm sin ωt cos (πx/τ),

Где F0 = Fm sin ωt - МДС в точке, расположенной на оси обмотки.

Выражение (3.14) можно преобразовать к виду

Fx = 0,5Fm sin (ωt - πx/τ) + 0,5Fm sin (ωt + πx/τ).

Каждый из членов правой части (3.13) представляет собой уравнение бегущей (или вращающейся) волны МДС. Следовательно, пульсирующее магнитное поле, синусоидально распределенное в пространстве, можно представить в виде суммы двух магнитных полей, вращающихся в противоположных направлениях (рис. 3.13). При этом бегущие волны МДС, создающие эти магнитные поля,

F"x = 0,5Fm sin (ωt - πx/τ); F""x = 0,5Fm sin (ωt + πx/τ).

В каждом из этих полей максимальные значения МДС в различные моменты времени остаются неизменными. Следовательно, если каждое из этих полей представить в виде пространственного вектора МДС F (рис. 3.12,6), то конец его будет описывать окружность. Такое поле называют круговым.

В качестве положительного направления условно примем направление вращения бегущей волны МДС по часовой стрелке. Координату точки х, в которой МДС F"x максимальна и равна 0,5Fm , можно получить, положив sin (ωt - πx/τ) = 1. При этом ωt - πx/τ = π/2, откуда

х = τ(ωt - π/2)/π.

Следовательно, при увеличении угла ωt координата точки х перемещается в положительном направлении, т. е. МДС F"x вращается по часовой стрелке, a F""x - против часовой стрелки. Линейная скорость перемещения бегущей волны МДС

u = dx/dt = ωτ/π = 2fτ

Т. е. за один период магнитное поле проходит пару полюсов. Частота вращения бегущей волны МДС (частота вращения магнитного поля)

n 1 = 60u /(πD ) = 60 2/(πD ) = 60f /p .

Следовательно, изменяя число полюсов электрической ма-шины 2р, можно получать различные частоты вращения магнитного поля.

Из (3.17) следует, что в многополюсной машине за один период изменения переменного тока магнитное поле поворачивается на пространственный угол 360°/р , соответствующий одной паре полюсов. Поэтому при рассмотрении электромагнитных процессов в электрических машинах вводят понятие «электрические градусы», с которыми оперируют при построении векторных диаграмм, проектировании обмоток и пр. При этом 360 временным градусам соответствует 360р электрических градуса, а электрические градусы имеют связь с геометрическими градусами в виде соотношения α°эл = рα°геом .

Круговое вращающееся поле при трехфазной обмотке. Если на статоре электрической машины расположить симметричную трехфазную обмотку (рис. 3.14), у которой оси фаз АХ, BY и CZ сдвинуты в пространстве на угол 120°, то при питании ее симметричным трехфазным током получим круговое вращающееся магнитное поле. На рис. 3.14 для простоты фазы обмотки показаны сосредоточенными, но распределение МДС, образуемое каждой фазой, следует считать синусоидальным.

Ввиду того что в рассматриваемой обмотке фазы АХ , BY и CZ смещены в пространстве на (2/3) τ, а токи в них сдвинуты во времени на угол (2/3) π, получим следующие выражения для составляющих МДС в точке х от каждой из фаз:
FxA = Fm sin ωt cos
πx
τ
=
Fm
2
sin (ωt -
πx
τ
) +
Fm
2
sin (ωt +
πx
τ
);
FxB = Fm sin (ωt -
3
) cos (
πx _ 2π
τ 3
) =
Fm
2
sin(ωt -
πx
τ
) +
Fm
2
sin (ωt +
πx _ 4π
τ 3
);
FxC = Fm sin (ωt -
3
) cos (
πx _ 4π
τ 3
) =
Fm
2
sin(ωt -
πx
τ
) +
Fm
2
(ωt +
πx
τ
+
3
).

Результирующую МДС в точке х можно получить путем сложения отдельных ее составляющих FxA , FxB , FxC . При этом обратновращающиеся волны МДС исчезают, а результирующая МДС

Fxpeз = 1,5Fm sin (ωt - πx/τ).


Круговое вращающееся поле при двухфазной обмотке. В симметричной двухфазной обмотке фазы АХ и BY (рис. 3.15, а) сдвинуты в пространстве на половину полюсного деления τ. Если такую обмотку питать симметричным двухфазным током, при котором токи отдельных фаз ÍА и ÍВ (рис. 3.15,6) сдвинуты во времени на угол 90° (ÍВ = ± jÍА ) то возникает круговое вращающееся поле.

Для составляющих МДС, образуемых этими токами, получим следующие выражения:
FxA = Fm sin ωt cos
πx
τ
=
Fm
2
sin (ωt -
πx
τ
) +
Fm
2
sin (ωt +
πx
τ
);
FxB = Fm sin (ωt -
π
2
)cos (
πx _ π
τ 2
) =
Fm
2
sin (ωt -
πx
τ
) +
Fm
2
sin (ωt +
πx
τ
- π );

При этом уравнение бегущей волны принимает вид

Fxpeз = FxA + FxB = Fm sin (ωt - πx/τ).

Частота вращения поля, образованного двухфазной обмоткой, определяется так же, как и поля, образованного трехфазной обмоткой, по формуле (3.17). Для изменения направления вращения поля следует изменить порядок чередования тока в фазах обмотки, т. е. переключить провода, присоединяющие фазы обмотки к сети. Общий случай кругового вращающегося поля. В общем случае, когда по симметричной m-фазной обмотке (фазы которой сдвинуты в пространстве на угол α = 2π/т ) проходят переменные токи, сдвинутые во времени на угол 2π/т , уравнение бегущей волны МДС имеет вид

Fxpeз = 0,5mFm sin (ωt - πx/τ).

Несимметричная m-фазная обмотка также может создать круговое вращающееся поле, если на ее фазы подать определенным образом подобранную m -фазную несимметричную систему токов. Однако на практике фазы многофазных обмоток обычно располагают симметрично, чтобы получить круговое поле при минимальных токах в фазах и электрических потерях в них.

Круговое вращающееся магнитное поле обладает следующими характерными свойствами:

а) максимумы результирующих волн МДС и индукции всегда совпадают с осью той фазы, в которой ток имеет максимум. Это положение легко проверить, задаваясь величиной ωt, соответствующей максимуму тока в фазе, и определяя по (3.15) координату точки х , в которой МДС F " x максимальна;

б) магнитное поле перемещается в сторону оси той фазы, в которой ожидается ближайший максимум. Это свойство непосредственно следует из предыдущего;

в) для изменения направления вращения поля необходимо изменить порядок чередования тока в фазах. В трехфазных машинах для этого следует поменять местами провода, подводящие ток из трехфазной сети к двум любым фазам обмотки. В двухфазных машинах нужно переключить провода, присоединяющие фазы обмотки к двухфазной сети.

Эллиптическое поле. Круговое вращающееся магнитное поле возникает при симметрии токов, проходящих по фазам (симметрии МДС катушек отдельных фаз), симметричном расположении этих фаз в пространстве, сдвиге во времени между фазными токами, равном пространственному сдвигу между фазами и синусоидальном распределении индукции в воздушном зазоре машины вдоль окружности статора (ротора). При несоблюдении хотя бы одного из указанных условий возникает не круговое, а эллиптическое вращающееся поле, у которого максимальное значение результирующей МДС и индукции для различных моментов времени не остается постоянным, как при круговом поле. В таком поле пространственный вектор МДС описывает эллипс (см. рис. 3.12, в ).

Эллиптическое поле можно представить в виде двух эквивалентных круговых полей, вращающихся в противоположных направлениях. Поле, вращающееся по направлению вращения результирующего эллиптического поля, называют прямым; поле, вращающееся в противоположном направлении,- обратным. Разложение эллиптического поля на прямое и обратное круговые поля производят методом симметричных составляющих, с помощью которого определяют МДС прямой иобратной последовательностей.

Рассмотрим, например, двухфазную машину, у которой на статоре расположены две фазные обмотки (фазы) АХ и BY , оси которых смещены в пространстве на некоторый угол α (рис. 3.16, а ). Токи, проходящие по этим фазам, и соответствующие векторы МДС FxA и FxB сдвинуты во времени на некоторый угол β. Фазы АХ и BY создают пульсирующие магнитные поля, синусоидально распределенные в пространстве. МДС этих фаз, действующие в любой точке х воздушного зазора,

FxA = FmA sin ωt cos(πx/τ); FxB = FmB sin(ωt + β)cos(πx/τ + α).

МДС фаз АХ и BY аналогично (3.15) можно представить в виде суммы двух бегущих волн МДС противоположных направлений:

α) . }

В выражениях (3.21) складываются или вычитаются временные и пространственные углы, т. е. они становятся эквивалентными. Это объясняется тем, что пространственное положение вектора МДС вращающегося поля определяется временем и частотой тока, питающего фазы, - за один период поле перемещается на пару полюсов. Результирующее магнитное поле, создаваемое совместным действием двух обмоток, можно получить путем сложения составляющих векторов МДС прямой последовательности, вращающихся по часовой стрелке (образующих прямое поле):

F"xA = 0,5FmA sin(ωt - πx/τ) и F"xB = 0,5FmB sin(ωt + β - πx/τ ± α),

А также векторов МДС обратной последовательности, вращаю-щихся против часовой стрелки (образующих обратное поле)

F"xA = 0,5FmA sin (ωt + πx/τ) и F"xB = 0,5FmB sin (ωt + β + πx/τ
+
α).

Суммарные МДС полей, вращающихся в противоположные стороны, т. е. F"x = F"xA + F"xB и F""x = F"xA + F"xB , не равны по величине (рис. 3.16,6), а поэтому результирующее поле машины не пульсирующее, а вращающееся. В этом поле максимальное значение результирующей МДС в различные моменты времени не остается постоянным, как при круговом поле, т. е. поле эллиптическое. В двухфазной машине можно также получить и круговое вращающееся поле; при этом одна из составляющих МДС F"x или F"x должна отсутствовать. Условия получения кругового поля в такой машине сводятся к взаимной компенсации одной из пар МДС F"xA и F"xB или F"xA и F"xB . Последнее может быть, если указанные МДС равны по амплитуде, но противоположны по фазе, т. е. если α ± β = π .